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In this supplementary material, we introduce a scheme for handling collision between fluids and solids on

cells with different resolutions in a fluid simulation. This scheme does not enforce high-resolution cells at

boundaries so that adaptive grid structures, such as DCGrid, can use fewer cells at the boundary and more

cells elsewhere. Furthermore, to evaluate the suitability of DGrid for applications, we integrate DCGrid into a

framework for cloud simulation. In this application, the interaction between terrain and atmosphere requires

working with cells of varying resolution and quickly changing conditions.

1 BOUNDARY CONDITIONS
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Fig. 1. Fluidity 𝑟𝑐 for cells of dif-
ferent resolutions against a simple
spherical boundary.

In fluid simulations on adaptive grids often high-resolution cells

are used near domain and solid boundaries [Aanjaneya et al.

2017; Setaluri et al. 2014; Xiao et al. 2020]. For GPU simulation

the storage space available can be limited, which is why DCGrid

imposes limits on the number of cells that each mipmap level

can contain at any time. In this setting, having high-resolution

cells near boundaries would limit the efficacy of the adaptation

algorithm. Therefore, we do not enforce cells near boundaries

to have high resolution.

Not enforcing high-resolution cells near boundaries does pose

a problem. We need to handle fluid-solid interactions on cells

with different resolutions. As a solution, we propose an approx-

imation scheme. In our scheme, domain boundaries are treated

as standard Dirichlet boundary conditions. Inside the domain,

however, we do not just mark cells as either solid or fluid. In-

stead, we define a fluidity 𝑟𝑐 ∈ [0, 1] on each cell 𝑐 . Let Ω ∈ R3
be the part of the domain that is solid, then Ω𝑐

is the part of the

domain that is fluid. Now 𝑟𝑐 approximates the part of cell 𝑐 that overlaps with Ω𝑐
. For example,

𝑟𝑐 = 1 indicates that cell 𝑐 is completely fluid and 𝑟𝑐 = 0 indicates that 𝑐 is completely solid. Figure 1

illustrates the fluidity of cells at different mipmap levels where Ω is a sphere with radius 4, i.e

Ω = {x ∈ R3 : ∥x − (8, 8, 8)∥ ≤ 4}.

1.1 Approximating Fluidity
A naive implementation might regard a cell 𝑐 at a coarse mipmap level 𝑙 and position p ∈ R3 as if it
were the sum of the high-resolution cells it spans. It would calculate 𝑟𝑐 by iterating over all these
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high-resolution cells, and then taking the average of their fluidity:

𝑟𝑐 =
1

8
𝑙

p.𝑥+2𝑙∑︁
𝑥=p.𝑥

p.𝑦+2𝑙∑︁
𝑦=p.𝑦

p.𝑧+2𝑙∑︁
𝑧=p.𝑧

1Ω𝑐 (𝑥,𝑦, 𝑧) , (1)

where 1Ω𝑐 : R3 ↦→ {0, 1} is the indicator function of Ω𝑐
. This way, approximating the fluidity

of coarse cells requires more computations than approximating the fluidity of fine cells. This is

contrary to our reason for using coarse cells in the first place: to save computational power.

Our method approximates the fluidity of each cell using a single evaluation of the signed distance

function (SDF) of Ω. We define the SDF of Ω, 𝑓Ω : R3 ↦→ R as usual:

𝑓Ω (x) =
{
𝑑 (x, 𝜕Ω) if x ∈ Ω𝑐 ,

−𝑑 (x, 𝜕Ω) if x ∈ Ω ,
(2)

where 𝜕Ω denotes the boundary of Ω and

𝑑 (x, 𝜕Ω) = inf

y∈𝜕Ω
∥x − y∥ . (3)

To use this signed distance function, we use the following property of signed distance functions:

Theorem 1. Let Ω ∈ R3 be a bounded set with signed distance function 𝑓Ω : R3 ↦→ R and let
x, y ∈ R3 be two points such that x ∉ 𝜕Ω and ∥x − y∥ < |𝑓Ω (x) |. Then x and y are both inside, or both
outside of Ω, i.e., y ∈ Ω if and only if x ∈ Ω.

Proof. Let Ω, 𝑓Ω , x and y be defined as before. If x ∈ Ω and y ∈ Ω𝑐
, or if x ∈ Ω𝑐

and y ∈ Ω,
then the shortest path between x and y crosses 𝜕Ω at least once at some point z ∈ 𝜕Ω. It follows
that ∥x − y∥ = ∥x − z∥ + ∥y − z∥ ≥ ∥x − z∥ ≥ 𝑑 (x, 𝜕Ω) = |𝑓Ω (x) |. This statement contradicts our

condition that ∥x − y∥ < |𝑓Ω (x) |. Hence, either both x, y ∈ Ω, or both x, y ∈ Ω𝑐
. □

p

v1 v2

v3 v4

Fig. 2. Sampling for advec-
tion at point p. Solid areas
marked.

Now, let 𝑐 be a grid cell at mipmap level 𝑙 centered around p ∈ R3.
We can interpret 𝑐 as a cube with edge length 𝑠 = 2

𝑙
and thus for each

point p′ ∈ 𝑐 , ∥p − p′∥ < 1

2
𝑠
√
3.

Using Theorem 1, we observe the following:

• If p ∈ Ω𝑐
and 𝑓Ω (p) > 1

2
𝑠
√
3, then the cell is completely fluid, i.e.,

𝑐 ⊆ Ω𝑐
and hence its fluidity is 𝑟𝑐 = 1.

• If p ∈ Ω and 𝑓Ω (p) < − 1

2
𝑠
√
3, then the cell is completely solid, i.e.,

𝑐 ⊆ Ω and hence its fluidity is 𝑟𝑐 = 0.

• If − 1

2
𝑠
√
3 ≤ 𝑓Ω (p) ≤ 1

2
𝑠
√
3, then part of the cell overlaps with Ω

and part with Ω𝑐
. In this case, calculating the exact volume of

𝑐 ∩ Ω would be expensive and thus, we approximate 0 ≤ 𝑟𝑐 ≤ 1.

We combine these three observations to define a general approximation

formula for a cell’s fluidity:

𝑟𝑐 =
1

2

+ 𝑓Ω (p)
𝑠
√
3

. (4)

1.2 Handling Partially Solid Cells
We accounted for partially solid cells in our fluid simulation by modifying some operations. Here

we explain how we modified the semi-Lagrangian advection and the diffusion operations.
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Advection. To perform semi-Lagrangian advection with partially solid cells, we trace back veloci-

ties from cell centers as usual. We differed in the method used for sampling.

Let p be the point at which to sample for advection, and let 𝑐1, 𝑐2, 𝑐3 and 𝑐4 be the cells surrounding

p centered around p1, p2, p3 and p4 respectively (Figure 2). Normally, one would sample a value

by linearly interpolating values 𝑣1, 𝑣2, 𝑣3 and 𝑣4 depending upon position p. The problem with this

way of sampling is that the partially solid cells influence the resulting value too much. To balance

the influence of partially solid cells, we implemented a weighted interpolation scheme. Let grid

spacing be Δ𝑥 . For 𝑖 ∈ {1, 2, 3, 4}, we define the weight of cell 𝑖 as

𝑤𝑖 = 𝑟𝑐𝑖
(Δ𝑥 − |p.𝑥 − p𝑖 .𝑥 |) (Δ𝑥 − |p.𝑦 − p𝑖 .𝑦 |) (Δ𝑥 − |p.𝑧 − p𝑖 .𝑧 |)

Δ𝑥3
. (5)

Given values 𝑣𝑖 at cell 𝑐𝑖 , we interpolate as follows:

𝑣 =

∑
𝑖∈{1,2,3,4} 𝑣𝑖𝑤𝑖∑
𝑖∈{1,2,3,4}𝑤𝑖

. (6)

When all surrounding cells are completely fluid, i.e., 𝑟𝑐𝑖 = 1 for 𝑖 ∈ {1, 2, 3, 4}, then this interpolation

method is equal to bilinear interpolation. When all surrounding cells are completely solid, i.e.,

𝑟𝑐𝑖 = 0 for 𝑖 ∈ {1, 2, 3, 4}, we return a default value depending on the quantity that is advected.

c1 c2

(a) 𝑟𝑐1 = 1, 𝑟𝑐2 = 1.

c1 c2

(b) 𝑟𝑐1 = 1, 𝑟𝑐2 = 0.

c1 c2

(c) 𝑟𝑐1 =
3

4
, 𝑟𝑐2 =

1

2
.

Fig. 3. Different scenarios
for diffusion. Solid areas
marked.

Diffusion. In this section, we consider the diffusion of quantities

through the fluid. We implemented the diffusion operation for each

cell as a simple seven-point stencil that computes the diffusion between

a cell and its 6 direct neighbors using explicit integration of the diffusion

equation. To account for partially solid cells, we adjust the amount of

diffusion between a cell and one of its neighbors based on their fluidity.

Let 𝑐1, 𝑐2 be two directly neighboring cells and let 𝛼 be the amount of

diffusion between the cells if both are completely fluid. To calculate the

actual amount of diffusion 𝑠 (𝑐1, 𝑐2) between the two cells, we consider

three scenarios:

• If both cells are completely fluid, diffusion between the cells is

not limited (Figure 3a).

• If at least one of the cells is completely solid, i.e.,min{𝑟𝑐1 , 𝑟𝑐2 } = 0,

there can be no diffusion between them (Figure 3b).

• If both cells are partially fluid, i.e., 0 < 𝑟𝑐1 , 𝑟𝑐2 ≤ 1, then, on aver-

age, the area of the diffusion interface is limited by min{𝑟𝑐1 , 𝑟𝑐2 }.
However, also on average, the volume over which diffusion is

performed is scaled by

𝑟𝑐
1
+𝑟𝑐

2

2
(Figure 3c).

If we combine the three scenarios, we find a general formula for the

amount of diffusion between directly neighboring cells 𝑐1 and 𝑐2:

𝑠 (𝑐1, 𝑐2) = 𝛼
2min{𝑟𝑐1 , 𝑟𝑐2 }

𝑟𝑐1 + 𝑟𝑐2
. (7)

By pre-computing the fluidity of cells, we can handle arbitrarily complex solids with no runtime

overhead and constant memory overhead.

2 TERRAIN ATMOSPHERE INTERACTION
The physics-based simulation of meteorological phenomena has a long history in graphics. Kajiya

and Von Herzen [1984] introduced one of the first methods for computationally generating and

rendering cloud animations. Many refined representations have been presented to cope with the
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high computational complexity of cloud simulations. These representations range from geometric-

and particle-based [Bouthors and Neyret 2004; Gardner 1985; Neyret 1997], to position-based

dynamics [Ferreira Barbosa et al. 2015] and layer-based approaches [Vimont et al. 2020]. Recently,

Hädrich et al. [2020] introduced a method for modeling a wide range of cloud types using a generic

fluid solver which was later extended by [Hädrich et al. 2021] and [Herrera et al. 2021].

(a) Diffusion into lowest
cell that is completely
above the terrain. Note
the unnatural gaps.

(b) Ideal situation. Diffu-
sion into all cells above
the terrain following an
exponential distribution.

Fig. 4. Two different approaches to surface to atmo-
sphere diffusion. The color represents the diffusion
strength.

We utilize DCGrid to perform meteorologi-

cal simulations as presented in [Hädrich et al.

2020] who simulated a wide variety of cloud

types using a single general model. They relied

on first-principle formulations of atmospheric

physics and a small set of parameters describ-

ing heat and humidity on the ground to sim-

ulate anything from mist to cumulus clouds.

They modeled the ground as an inlet bound-

ary condition, which worked well when quan-

tities are relatively constant. When quantities

at the ground rapidly change, this model could

not capture their effects truthfully (Figure 6a).

We introduce a new method that does capture

both relatively constant and rapidly changing

quantities at the ground. Our method allows

for the simulation of an even wider variety of

atmospheric phenomena compared to previous

work.

ALGORITHM 1: Terrain-Atmosphere Interaction.

Input: Rectangular domain 𝐷 = {𝑥0, . . . , 𝑥1} × {𝑦0, . . . , 𝑦1} × {𝑧0, . . . , 𝑧1},
with horizontal slice 𝐷ℎ = {𝑥0, . . . , 𝑥1} × {𝑧0, . . . , 𝑧1},
heightmap ℎ : 𝐷ℎ ↦→ R,
ground layer 𝑔 : 𝐷ℎ ↦→ GroundCell,
surface layer 𝑠 : 𝐷ℎ ↦→ SurfaceCell,
atmosphere layer 𝑓 : 𝐷 ↦→ AtmosphereCell.

advect_temperature(𝑠 , ℎ)
advect_water(𝑠 , ℎ)
diffuse_quantities(𝑠)
for p ∈ 𝐷ℎ do

𝑐 ←
{
𝑓 [p.𝑥,𝑦, p.𝑧] : 𝑦 ∈ {𝑦0, . . . , 𝑦1}

}
diffuse_atmosphere_to_surface(𝑠 [p], 𝑐)
diffuse_ground_to_surface(𝑠 [p], 𝑔[p])
apply_state_transitions(𝑠 [p], ℎ[p])
diffuse_surface_to_atmosphere(𝑠 [p], 𝑐)

Three-Layer System. We model terrain-atmosphere interactions as a diffusion process consisting

of three layers: a two-dimensional ground layer, a two-dimensional surface layer and a three-

dimensional atmosphere layer.

We update quantities in the three layers according to Algorithm 1. First, we update the surface

layer in isolation. The surface layer update transports temperature uphill, and water content

downhill using semi-Lagrangian advection. It also diffuses both temperature and water content in
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each cell with their neighbors. The state transitions operation handles microphysics per surface cell.

These microphysics include the melting of snow, the pyrolysis of ground fuels, and other effects.

(a) 𝑡 = 150.

(b) 𝑡 = 450.

Fig. 5. Transition from fog (left) over stratocumulus to
cumulus (right). We use the same setup as [Hädrich
et al. 2020].

The ground layer models the base values.

The quantities in the surface layer will revert

to these base values when not externally influ-

enced. We modeled interactions between the

surface and the atmosphere layer as a diffusion

process split into two parts. First, the surface

layer is updated using quantities from the at-

mosphere. Then, the atmosphere is updated by

diffusing quantities from the surface layer into

the atmosphere. Since we work with fluid cells

of different resolutions, diffusing the quantities

into a single fluid cell would lead to unrealis-

tic results, especially as cells get coarser (Fig-

ure 4a). Instead, we diffuse the quantities from

the surface into the complete column above

the surface cell. We distribute the diffusion

strength 𝑠 following an exponential distribu-

tion (Figure 4b). Let Δ𝑎 ≥ 0 be the altitude of

a point above the surface. Let Δ𝑡 > 0 be the

timestep and let ℎ𝑑 > 0 be a general diffusion

parameter, controlling the strength of the diffusion. Now 𝑠 (Δ𝑎) = exp (−Δ𝑎/(ℎ𝑑Δ𝑡)). Note that∫ ∞
0

𝑠 (Δ𝑎) 𝑑 (Δ𝑎) = 1 for all values of ℎ𝑑 and Δ𝑡 .

Let 𝑐 be an atmosphere cell with top and bottom altitudes 𝑏, respectively 𝑎. Let ℎ be the altitude

of the terrain under the cell. To calculate the diffusion strength for 𝑠𝑐 for cell 𝑐 , we integrate 𝑠 over

[max{0, 𝑎 − ℎ},max{0, 𝑏 − ℎ}]. This results in the following formula:

𝑠𝑐 = exp

(
−ℎ𝑑Δ𝑡 max{0, 𝑎 − ℎ}

)
− exp

(
−ℎ𝑑Δ𝑡 max{0, 𝑏 − ℎ}

)
. (8)

To diffuse values from the atmosphere into the surface, we apply the inverse operation of diffusion

from the surface into the atmosphere. We sample quantities from the atmosphere column using the

same distribution 𝑠 (Δ𝑎) and update the surface cells according to these quantities.

(a) 𝑡 = 150,
previous work.

(b) 𝑡 = 150,
our method.

(c) 𝑡 = 450,
our method.

Fig. 6. Wildfire caused by the ignition of dry grass.

To make the velocity field divergence-free,

we use an approximate projection method

based on the pressure Laplacian. First, the diver-

gence on each active cell is computed using a 7

point stencil and the restriction operator is ap-

plied to obtain the divergence on all cells. Then,

the pressure Poisson equation is solved using a

cascading multigrid method with a small num-

ber of Jacobi iterations as the smoothing factor.

To increase the performance of the pressure

projection, we represent velocity at cell centers

of the grid as opposed to the common staggered

MAC arrangement.
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Expressiveness of our Approach. With our approach, we produced a spatial transition from low

fog-like structures to cumulus clouds (Figure 5a). Contrary to the previous work [Hädrich et al.

2020], we show that this structure is unstable over time (Figure 5b). The discrete patches of cloud

visible at timestep 𝑡 = 150 converge into a more uniform layer of clouds at timestep 𝑡 = 450. This

instability is caused by our multigrid projection method. Compared to the non-multigrid solver

used in the previous work, our multigrid solver takes more global features of the velocity field into

account.

Additionally, our approach captures rapidly evolving terrain conditions that the previous method

could not capture, such as wildfires (Figure 6).
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