Accurately Solving Physical Systems
with Graph Learning

Han Shao KAUST han.shao@kaust.edu.sa

Tassilo Kugelstadt RWTH Aachen kugelstadt@cs.rwth-aachen.de

Wojciech Patubicki UAM wpO6@amu. edu.pl

Jan Bender RWTH Aachen bender@cs.rwth-aachen.de

Soren Pirk Google Brain pirk@google.com

Dominik L. Michels KAUST dominik.michels@kaust.edu.sa
Abstract

Iterative solvers are widely used to accurately simulate physical systems. These
solvers require initial guesses to generate a sequence of improving approximate
solutions. In this contribution, we introduce a novel method to accelerate iter-
ative solvers for physical systems with graph networks (GNs) by predicting the
initial guesses to reduce the number of iterations. Unlike existing methods that
aim to learn physical systems in an end-to-end manner, our approach guarantees
long-term stability and therefore leads to more accurate solutions. Furthermore,
our method improves the run time performance of traditional iterative solvers. To
explore our method we make use of position-based dynamics (PBD) as a com-
mon solver for physical systems and evaluate it by simulating the dynamics of
elastic rods. Our approach is able to generalize across different initial conditions,
discretizations, and realistic material properties. Finally, we demonstrate that our
method also performs well when taking discontinuous effects into account such
as collisions between individual rods.

1 Introduction

The numeric simulation of a dynamic system commonly comprises the derivation of the mathemati-
cal model given by the underlying differential equations and their integration forward in time. In the
context of physics-based systems, the mathematical model is usually based on first principles and
depending on the properties of the simulated system, the numerical integration of a complex sys-
tem can be very resource demanding [37]], e.g., hindering interactive applications. Enabled by the
success of deep neural networks to serve as effective function approximators, researchers recently
started investigating the applicability of neural networks for simulating dynamic systems. While
many physical phenomena can well be described within fixed spatial domains (e.g., in fluid dynam-
ics) that can be learned with convolutional neural network (CNN) architectures [9, [17, 149, 57]], a
large range of physical systems can more naturally be represented as graphs. Examples include sys-
tems based on connected particles [36l], coupled oscillators [30L[33]], or finite elements [37]. Existing
methods enable learning these systems often in an end-to-end manner and with a focus on replac-
ing the entire integration procedure. A number of methods show initial success in approximating
physical systems; however, they often fail to reliably simulate the state of a system over longer time
horizons if significant disadvantages are not accepted, such as the use of large data sets containing
long-term simulations and the employment of specific memory structures [44]].

In this paper, we aim to improve the performance of iterative solvers for physical systems with graph
networks (GN). An iterative solver requires an initial guess, and based on it generates a sequence
of improving approximate solutions. The initial guess can be computed by simply using values
obtained in the previous iteration or by solving a few steps of a similar but simpler physical system.
The performance of an iterative solver is significantly influenced by the calculation of the initial
guess, which we aim to replace with the prediction of a GN. To demonstrate our approach, we
use a position-based dynamics (PBD) solver that approximates physical phenomena by using sets
of connected vertices [4} |5} 28], 136]. To simulate a physical system, PBD first computes updated
locations of vertices using symplectic Euler integration to then correct the initial position estimates
so as to satisfy a set of predefined constraints. The correction step is known as constraint projection
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Figure 1: Renderings taken from real-time simulations of the elastic deformation of a helix falling
down on the ground plane (left) and two rods colliding with each other (right).

and is commonly solved iteratively. The explicit forward integration for predicting the system’s
updated state has negligible cost, whereas the projection step is computationally expensive. Our
goal is to employ a GN to predict the outcome of the constraint projection step as an initial guess.
This way, our approach inherits the long-term stability of a classic PBD solver, while providing
better run-time performance.

To showcase the capabilities of our combined PBD solver, we aim to simulate the physically plau-
sible mechanics of elastic rods. Rods play an important role for a variety of application domains,
ranging from surgical simulation of sutures [14], catheters, and tendons [38], to human hair [32]]
and vegetation [39] in animated movies. Furthermore, approaches exist to realistically simulate rods
as sets of connected vertices accurately capturing their mechanical properties [[7} 23} 32, 38]. Our
approach is able to generalize across different initial conditions, rod discretizations, and realistic
material parameters such as Young’s modulus and torsional modulus [[10]. Moreover, we demon-
strate that our approach can handle discontinuous collisions between individual rods. Figure[T]shows
examples of elastic rod deformations of a helix falling down (left) and two colliding rods (right). Fi-
nally, we show that the data-driven prediction of the initial guesses of the constraint projection leads
to a decreased number of required iterations, which — in turn — results in a significant increase of
performance compared to canonical initial guesses.

In summary, our contributions are: (1) we show how to accelerate iterative solvers with GNs; (2) we
show that our network-enabled solver ensures long-term stability required for simulating physical
systems; (3) we showcase the effectiveness of our method by realistically simulating elastic rods;
(4) we demonstrate accuracy and generalizability of our approach by simulating different scenarios
and various mechanical properties of rods including collisions.

2 Related Work

In the following we provide an overview of the related work, which spans from data-driven physics
simulations and graph learning to position-based dynamics and elastic rods.

Data-driven Physics Simulations. It has been recognized that neural networks can be used as ef-
fective function approximators for physical and dynamic systems. To this end, early approaches
focus on emulating the dynamics of physics through learned controllers [[16] or by designing sub-
space integrators [[1]. Today, a range of approaches exist that enable learning ordinary and partial
differential equations [25} 40, 41]], for example, to transform them into optimization problems [11]],
to accelerate their computation [34} 48]], or to solve for advection and diffusion in complex ge-
ometries [6]. Other methods focus on specific data-driven solutions for non-linear elasticity [19],
for approximating Maxwell’s equation in photonic simulations [50], or for animating cloth [54].
More recently, research on data-driven approaches for modeling the intricacies of fluid dynamics
has gained momentum [24, 53]]. Due to fixed-size spatial representation of Eulerian fluid solvers,
a number of approaches rely on CNN-type architectures [9} [17, 49, |57]]. Furthermore, it has been
shown that data-driven approaches can even be used to approximate the temporal evolution of fluid
flows [56], to compute liquid splashing [S1]], artistic style-transfer [21], or to derive fluid dynamics
from reduced sets of parameters [20].

Graph-based Learning. Graphs have proven to be a powerful representation for learning a wide
range of tasks [13} 146]]. In particular, it has been shown that graphs enable learning knowledge
representations [22], message passing [15]], or to encode long-range dependencies, e.g., as found
in video processing [S3]]. A variety of methods uses graph-based representations to learn proper-
ties of dynamic physical systems, e.g. for climate prediction [47], with an emphasis on individual
objects [8] and their relations [43]], for partially observable systems [27]], the prevalent interactions
within physical systems [22], hierarchically-organized particle systems [35]], or — more generally —
physical simulation [43| 44]]. While many of the existing approaches learn the time integration of
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Figure 2: Illustration of the discretization of a single rod using several rod segments arranged along
its centerline (left). Each rod segment is described by its position and orientation within the gener-
alized coordinates p;. The Lagrange multipliers \; represent the interaction between rod segments.
The forward integration path is illustrated in red (middle) and constraint projection in green (right).

physical systems in an end-to-end manner, we use a graph network to predict the outcome of a PBD
solver for rod dynamics to enable more efficient computations.

Position-based Dynamics and Elastic Rods. PBD is a robust and efficient approach for simulating
position changes of connected sets of vertices [4, 5} 28] 136]. Compared to forced-based methods
that compute the force directly, the interaction between different vertices in PBD is realized by a
constraint projection step in an iterative manner. To avoid the dependency of the system’s stiffness
on the number of iterations and the time step size, an extended position-based dynamics approach
was introduced (XPBD) [28]]. A number of methods exist that model the dynamic properties of
rods that can even simulate more complicated rod mechanics [38]]. Moreover, particle systems
were employed to simulate the dynamics of rods [31]] and, in particular, for the physically accurate
simulation of thin fibers [32] such as present in human hair or textiles. On a different trajectory,
it has been recognized that rods can be simulated based on PBD [52]. The initial formulation was
improved [23] by including the orientation of rod segments in the system’s state to account for
torsion effects. Later, the XPBD framework was utilized [10] to address the non-physical influence
of iteration numbers and steps sizes, which enables the more accurate simulation of elastic rods.

3 Methodology

We propose a novel approach to simulate the temporal evolution of a dynamic system which con-
sists of elastic rods. Each rod is discretized using several rod segments arranged along its centerline
(Figure[2). For each rod segment, its state is described by its position, orientation, velocity and an-
gular velocity. The state of the system is given as the set of the individual states of all rod segments.
The simulation is carried out by employing PBD [36]] directly manipulating the system’s state. Ori-
entations are represented as quaternions allowing for a convenient implementation of bending and
twisting effects [23]]. Extended PBD (i.e. XPBD) [28]] is implemented to avoid that the rods’ stiff-
nesses depend on the time step size and the number of iterations [10].

The generalized coordinates of a rod segment i at time ¢ is given by p; ; € R® x H, which includes
its position x; ; € R given in Cartesian coordinates and its orientation described by a quaternion
qi.: € H. Correspondingly, v; ; € RS refers to the generalized velocity of the rod segment, which
includes velocity and angular velocity. The system is continuously updated during the simulation
by applying corrections Ap; = (Ax;, Ag,)"T € R® with position shifts Ax; € R® and orientation
shifts A¢, € R? representing the integration of the angular velocitym

A single time integration step is presented in Algorithm[I] In the beginning (lines[I]to ), general-
ized velocity and generalized coordinates are updated by employing a symplectic Euler integration
step. In this regard, a.x denotes the generalized acceleration due to the external net force, e.g., given
by gravity. XPBD [28]] employs the Lagrange multiplier A which is initialized as zero (line [5) along
with the integrated generalized coordinates p*. They are then used for the rod constraint projection
(line[9). Collision detection results are stored in Coll,.; and Coll,., (line @) where Coll,.; includes
all the pairs of two rod segments that potentially collide with each other and Coll, includes in-
formation of all rod segments that potentially collide with another object such as a plane. Within
several solver iterations, we alternate between rod constraint projection and the collision constrain
projection (lines[7]to[I5). The rod constraints include shear-stretch and bend-twist constraints repre-
senting the corresponding elastic energy. The Lagrange multiplier represents the interaction between
rod segments. Figure[2illustrated the discretization for a single rod into several interacting segments.
The correction values Ap and A in line[9are computed by constraint projection [10L23]]. The gen-

'Please note, that Aq; = G(q)A¢; € R*, in which the matrix G(q) € R**? describes the relationship
between quaternion velocity and angular velocity [3].



Algorithm 1 Numerical integration procedure updating p; ¢ — Pi t+A¢ and v, — U4 1 A

1: for all rod segments do

2: V] Vit + At Ay

3: pi < piy + At H(qs,e) v] with H(qi ) = [13x3,03x3; 04x3, G(Qi¢)]

4: end for

5: A%+ 0,p° «+ p*

6: (Coll., Coll.,) < generateCollisionConstraints(p, p*)

7: for j <— 0 to number of required solver iterations do

8: for all rods do o

9: (Ap, AX) < rodConstraintProjection(p’, A7)
10: N N+ AX
11: p’t «— pi+ Ap
12: end for
13:  p’*' « updateCollisionConstraintProjection(p’**, Coll.., Coll,,,)
14: j—j+1
15: end for
16: for all rod segments do
17: Pit+At < pz
18: Vipar < H' (qie)(Piyar — Pit) /At
19: end for
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Figure 3: Illustration of our approach incorporating a network which consists of M graph networks
(GN-blocks) into the position-based dynamics framework.

eralized coordinates and Lagrange multipliers are updated for each rod (lines [§]to[12), and rod-rod
and rod-plane collisions are addressed to update the generalized coordinates. For details about the
collision projection procedure, we refer to Macklin et al. [29]. For the non-collision case, the steps
within line @ and@] are not needed, and less solver iterations are necessary in line

The most expensive part within Algorithm [I]involves the computation of the corrections of gener-
alized coordinates and Lagrange multipliers (line[9). This projection step requires the solution of a
linear system which is a linearization of a non-linear one so that the matrix depends on the system’s
state making it impossible to precompute its inverse. Instead, a new system at every point in time
is solved iteratively using the conjugated gradient (CG) solver. Such iterative solvers are widely
used in the context of physical simulations and regularly described as the de facto standard [2} i42]]
since they often show superior performance and usually scale well allowing for exploiting parallel
hardware. However, we would like to point out that also highly efficient direct solvers can be found
in the literature [10]].

Instead of fully replacing the projection step in an end-to-end learning manner, we follow the strategy
of accelerating it by first computing a guess

(Ap°, AX) « correctionGuess(p?) , (1
for the iterative procedure (line[9)
(Ap, AX) « rodConstraintProjection(p’, A, Ap®, AX") . )

A neural network is employed to compute the initial guess in Eq. (I for the constraint projection.
The motivation for this approach is to reduce the number of iterations required for the convergence
of the CG solver compared to the canonical initialization with zeros. We obtain our final framework
by replacing line [9] in Algorithm [I] with Eq. (I) and Eq. (2) as illustrated in Figure 3] We name



the data-driven part COPINGNet (“COnstraint Projection INitial Guess Network™) which learns to
compute the correction guess.

3.1 Graph Encoding

COPINGNet is a graph network based architecture which we apply in order to compute initial
guesses for Ap and AX. In this regard, we need to incorporate the rods’ state into a graph de-
scription [13]]. A graph G = (V, E, U) usually consists of nodes (or vertices) V, edges E as well as
global features U. However, in our framework, global features U are not used. For example, gravity
could be a potentially meaningful global feature, but it also can be easily included as an external
acceleration. Hence, U = () and the graph can just be represented as G = G(V, E). In our case, the
rods’ segments within the scene are represented by the graph’s nodes while the interactions between
the rods’ segments are represented by the edges.

COPINGNet provides a graph-to-graph mapping: G — G°Ut, from an input graph Gj, € G™ to an
output graph Goue € G°“t. Nodes and edges of both graphs are equipped with specific features. In
the case of the input graph, the node features describe the state of the rods’ segments, i.e.

Vini = (X4, Qi 74, pi Uiy i, fo,s fr,, f2,)T € VT CRM,

in which the positions are denoted with x; € R3, the orientations with q; € H, the radii with
r; € R>9, the densities with p; € R>?, and the segment lengths with ¢; € R>°. Moreover, a
segment position indicator «; € [0,1] C R is included corresponding to a parameterization by
arc lengthq Binary segment flag fo, € {0,1}, “left” end flag f;, € {0,1} and “right” end flag
f2, € {0,1} are set to zero if the specific segment respectively the left or right segment of the rod
is fixed and to one otherwise. The nodes of G, are given as the set of Vi, = U?_;{Vin.;}, in which
n = |Vi,| denotes the number of segments in the scene. The nodes of G, contain the correction
values of the generalized coordinates, i.e.

Vout,i = Api € Vet - RS ,
and Vo = U?:1{Vout,i}~

While rod segments are represented as node features, it is natural to represent constraints between
rod segments as edge features:

eini = (wi,Y;,T;)T € E" C R,

in which the (rest) Darboux vector w € R? describes the static angle of two rod segments, and
Young’s modulus ¥ € R>% and torsion modulus 77 € R>? are corresponding to extension,
bending, and twist constraint parameters. The set of edges of the input graph is then given by
Ein = U {€in,i}, in which m = |E}j,| denotes the number of interactions between different seg-
ments. The correction of the Lagrange multiplier AX; € RS is stored in the output edges:

€out,i = AXN; € Eevt - RS .
The set of output edges is then given by Eopr = UM {eoyt,i }-

The connectivity information C' of each graph is stored in two vectors cgg4 and c,, containing the
sender node index and the receiver node index of each corresponding edge. This concludes the
specification of the input graph G, = G(Vi,, Ei,) and the output graph Goue = G(Vout, Fout) With
connectivity information C' = (cqd, Cry)-

3.2 Network Structure

In the following, we describe the structure of COPINGNet after we formalized its input and output in
the previous section. As illustrated in Figure[3] the network consists of an encoder network, multiple
stacks of GN-blocks, and a decoder network. The graph network from Battaglia et al. [13]] is used
as a basic element and denoted as a GN-block. Residual connection between blocks could improve
performance of neural networks in both CNN [18]], and graph neural network [26]. As in related
work [44], we employ the residual connection between the GN-blocks, but our encoder/decoder
network directly deals with the graph. The encoder network performs a mapping: G — G'atent
and is implemented using two multi-layer perceptrons (MLPs), MLPegge : E™ — El2tent € R! and

2For a single rod in the scene which consists of N segments of equal lengths, for the i-th segment, we obtain
a;=(i—-1)/(N—-1)fori € {1,2,...,n}.



Train/Val #Steps #Nodes N Young’s Modulus Y Initial Angle ¢¢ Rod Length /¢
256/100 50 U4(10,55) 10 Pa, a ~ U(4.0,6.0) U(0°,45.0°) U(1.0m,5.0 m)

Train/Val #Steps #Nodes NV Torsion Modulus G Helix Radius / Height Winding Number
256/100 50 U4(45,105)  10* Pa, a ~ U(4.0,6.0) U(0.4m,0.6 m)/U(0.4 m, 0.6 m) U(2.0,3.0)

Table 1: Specification of training and validation data sets for the two scenarios of an initially straight
bending rod (top) and an elastic helix (bottom). The data sets are comprised of a number of data
points (left) each describing the rod’s dynamics within ¢ € [0 s, 50A¢] discretized with a time step
size of At = 0.02 s. The number of nodes N is sampled from a discrete uniform distribution Uy
while the remaining parameters are sampled from a continuous uniform distribution /.

MLPpode : V" — Viatent € R in which [ denotes the latent size. They work separately and thus
Een = MLPeyge(Ein) and Ven = MLPyo¢e(Vin). Edge features Ei, from the input are constant for
a rod during the simulation and this results in constant encoded edge features E.n, which could be
recorded after the first run and used afterwards during inference. The edge feature e, ; contains
the material parameters which could vary by different orders of magnitude. Hence, we normalize
Young’s modulus and torsion modulus before feeding them into the network. After encoding, the
graph Gen(Ven, Een) € Glatent jg passed to several GN-blocks with residual connections. Each GN-
block also contains two MLPs. However, they use message passing taking advantage of neighbour-
hood nodes’/edges’ information [13]. A number of M GN-blocks enable the use of neighbourhood
information with distances smaller or equal to A/. The graph network performs a mapping within
the latent space: G'@e" — G'atent and after M GN-blocks, we obtain G, (Va,, E.,) € Glatent,
The decoder network performs a mapping: G'*" — G°Ut, which has a similar structure as the
encoder network. Two MLPs MLPegge : E2t" — E°Ut and MLP o4, : VM — VoUt compute

By = I\/ILPedge(E;_n) and Vy,: = MLPnode(Ve/n). A tanh-function at the end of MLP.4z. and
MLPpode is used restricting the output to the interval [—1,1] C R. COPINGNet learns the relative
correction values. The generated data set is normalized, and the maximum correction value of the
generalized coordinates and the Lagrange multipliers will be recorded as norms. The final correction
value is achieved by multiplying the relative correction values and the norms. This normalization
process damps the noise caused by the network and leads to a more stable performance. For sim-
plicity, all the MLPs in different blocks have the same number of layers, and the same width as
latent size [ within the latent layers. The input and output sizes of each MLP are consistent with the
corresponding node/edge feature dimensions.

4 Evaluation

We generate training and validation data sets based on two scenarios: an initially straight bending rod
and an elastic helix each fixed at one end oscillating under the influence of gravity. The specification
of these data sets is provided in Table[T] The PBD code is written in C++ [10] while the COPINGNet
is implemented in PyTorch. The training is performed on an NVIDIA® Tesla® V100 GPU. The
training time varies from 8 to 30 hours for different architecture parameters. A constant learning rate
of n = 0.001 was used and a mean square loss function was employed. Our approach generalizes
across different initial conditions, geometries, discretizations, and material parameters. It is able to
robustly generate various dynamical results as shown in the supplementary material (Figure|8).

Architecture. The evaluation of COPINGNet’s architecture, introduced in Section is presented
in Figure ] The performance is studied for different numbers of GN-blocks and MLP layers, and
different MLP widths (latent sizes). The measurements demonstrate that a larger number of GN-
blocks usually increases the performance while the performance improvement is not longer signifi-
cant for more than four GN-blocks. This is plausible and can be considered analogously to the size
of the stencil of a numerical integrator: a larger number of GN-blocks means that a specific node can
take advantage of information gained from neighbourhoods further away. Correspondingly, a larger
stencil can do so as well. However, increasing the size of the stencil usually does not result in more
accurate results once the critical size is reached. This can be observed here as well. In contrast, it can
be clearly observed that deeper MLP networks do not improve the performance. This is consistent
with other research on graph networks [44]. However, increasing the MLP width can increase the
network’s ability to generalize. It is shown that the highest performance is achieved with the largest
MLP width, especially in the case of the helix scenarios. Since increasing the number of GN-blocks
and MLP width will lead to longer inference time, we compromise this by choose medium numbers.
For further evaluations, we employ three GN-blocks, two MLP layers, and a MLP width of 32.
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Figure 4: Illustration of the evaluation of COPINGNet’s architecture (blue: benchmark architecture).
The result is averaged from 50 test simulations each running for 100 time steps.
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Figure 5: Illustration of the ratio of COPINGNet’s inference time t;nfe, and the vanilla CG solver’s
run time tcg (purple curves; right vertical axis) for the initially straight bending rod (left) and the
elastic helix (right) simulations. Moreover, the black curves show the CG iteration number ratio
while the red curves show the total speedup of the constraint projection when taking into account
COPINGNet’s inference time (left vertical axis). The pink curves show the total speedup of the
entire simulations. The orange and the green dashed lines indicate the lower and upper boundaries
of the nodes number’s sampling range. The result is averaged from 50 test simulations each running
for 100 time steps.

Discretization. We evaluate the influence of the system’s complexity defined by the number of
nodes discretizing a rod. Our approach specifically addresses the acceleration of the most expensive
part within PBD by providing an accurate initial guess of the constraint projection. In this regard,
the costs coming with the computations within the COPINGNet part have to be taken into account as
well. Figure 5] (purple curves) shows the ratio of COPINGNet’s inference run time compared to the
run time of the vanilla CG solver (initialized without COPINGNet) for different numbers of nodes.
We can clearly observe that the additional run time added by COPINGNet is getting more trivial
when the number of nodes is already relatively large. The measured ratio is used to indicate how
much speedup the constraint projection solver can gain by making use of COPINGNet. Taking into
account COPINGNet’s inference run time, we can analyse the total (net) speedup of the constraint
projection. This is illustrated in Figure[5 (black and red curves) showing that for a small number of
nodes, the guess computed by COPINGNet does not reduce the computational costs that much since
the inference costs can not yet be compensated. Once the number of nodes is increasing, a significant
speedup can be obtained of up to about 50% for the constraint projection. More precisely, it keeps
on increasing until about the middle of the data set sampling range. This is natural since neural
networks perform better when getting closer to their training data set distribution. However, our
approach also performs well when going far beyond the sampling range successfully demonstrating
its ability to generalize. Since the constraint projection is the most time-consuming part of the entire
simulation, specifically for a large number of nodes, the speedup of the whole simulation becomes
similar to the one of the constraint projection as shown in Figure[3](pink curves). For a small number
of nodes, assembling the linear system takes more time, which results in a smaller speedup.

Temporal Evolution. We analyze the required number of CG iterations for the vanilla constraint
projection compared to the one accelerated using COPINGNet over time as shown in Figure [6] We
clearly observe that we obtain a significant speedup in total. As stated in Table[T} our training data
contains dynamical simulations over 50 time steps. In this range, we naturally observe the highest
speedup. However, we obtain a significant speedup even after hundreds of time steps demonstrating
COPINGNet’s ability to generalize.

Long-term Stability. The previously described result shown in Figure [f] can also be con-
sidered as a demonstration for long-term stability. This is a consequence of PBD’s stability
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Figure 6: The ratio of the required iteration numbers within the CG solver carrying out the constraint
projection. For the initially straight bending rod (orange curve) simulation, the parameters ¢y = 0°,
N =30,/=3.0m,andY = 1.0 - 10° Pa are used. For the elastic helix (green curve) simulation,
the parameters HR = 0.5 m, HH = 0.5 m, HW =25, G = 1.0 - 105 Pa, and N = 60 are used.
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which is accurately preserved within our approach. This — r=10.10pa
is due to the fact that COPINGNet’s output serves as the B
initial guess of the iteratively enforced constraint projec- 6 T yTiooRe

tion. In contrast, if the constraint projection is completely
replaced by COPINGNet, significant stability issues can
be observed as error accumulation takes place. This is il-
lustrated in Figure [7| showing the temporal evolution of 0 % " p o 100
the relative change of the total rod length simulated (a) Time Frame Number

using COPINGNet supplying the initial guess for the con- Figure 7: Illustration of the relative
straint projection, and (b) using COPINGNet fully replac- change of the total rod length.

ing the conventional constraint projection step. An ini-

tially straight rod bending under the influence of gravity is simulated using the parameters ¢g = 0°,
N = 30, ¢ = 4.0 m, and varying Young’s modulus Y corresponding to dynamic sequences in which
the rod lengths should be approximately constant. While this is clearly the case in setup (a) even for
thousand frames as shown in Figure [6] the length can not be preserved at all in setup (b) as shown
in Figure [/| (colored curves correspond to (b); black visually overlapping curves to (a) for varying
Young’s modulus). After the 50 time steps covered within the training data set are exceeded, we
obtain a strongly implausible result demonstrating the superiority of setup (a).

—— Y=5.0-10°Pa
Y=1.0-10° Pa

Collisions. We further showcase that our approach can handle discontinuous events such as col-
lisions between individual rods and other objects. This is illustrated in Figure [T] showcasing the
collision of an elastic helix with the ground plane of the scene and the collision between a rod
falling on another rod which is fixed at both ends. Since collisions are handled “outside” the neu-
ral network part within our approach, they can be treated as described in the literature. Collision
detection is efficiently implemented using the hierarchical spatial hashing scheme according to Eitz
and Lixu [12]]. Rod-rod collisions are then treated with line-to-line distance constraints, and col-
lisions with the ground plane using half-space constraints. Moreover, frictional effects are imple-
mented according to Macklin et al. [29]]. For the scene comprising the collision of the elastic helix
(HR = HH = 0.5 m, HW = 2.5, G = 1.0 - 10° Pa, N = 50) with the ground plane, we mea-
sure a total speedup of approx. 10%. In the case of two colliding rods (¢9 = 0°, N € {20,30},
¢ € {4.0m,4.5m},Y = 1.0-10° Pa), a speedup of approx. 6% is measured.

5 Conclusion

We presented a novel approach for accelerating iterative solvers with GNs. Unlike existing end-
to-end learned approaches, our network-enabled solver ensures long-term stability inherited from
traditional solvers for physical systems. We evaluated the architecture of our GN and demonstrated
that it is able to generalize across different initial conditions, rod discretizations, and material pa-
rameters, and is even able to handle discontinuous effects such as collisions. Although, it is apparent
that our method extends to other physical systems modeled with PBD, we did not conclusively ex-
plore different network topologies, i.e. vertices with multiple neighbors, or various segment lengths
(e.g. by simulating vegetation such as trees). Our approach to accelerate iterative solvers with GNs
opens multiple avenues for future work. For one, it would be interesting to explore mechanical sys-
tems describing general deformable (e.g. textiles) or volumetric objects, which have been simulated
with PBD. Second, our approach can be applied to other iterative methods, such as in finite ele-
ments analysis or in the context of linear complementarity problems (LCP). This would allow us to
accelerate physical simulations, when iterative solvers are applied, without compromising stability.
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Supplementary Material

Dynamic Results

Figure [§] illustrates the temporal evolution of different scenarios (a) to (d) for the initially straight
bending rod, and (e) to (f) for the elastic helix. The default parameters of the initially straight
bending rod are ¢p9 = 0°, N = 30, / = 40 m, and Y = 1.0 - 10° Pa. In (a), we
modify ¢y € {0.0°,15.0°,30.0°,45.0°}. In (b), we modify N € {10,20,40,60}. In (c),
we modify ¢ € {1.0m,2.0m,3.0m,4.0m,5.0m,6.0m}. In (d), we modify ¥ € {2.0 -
10* Pa,5.0 - 10 Pa, 1.0 - 10°Pa, 2.0 - 10° Pa, 5.0 - 10° Pa, 1.0 - 106 Pa}. The default parameters
of the elastic helix are HR = 0.5 m (helix radius), HH = 0.5 m (helix height), HW = 2.5
(winding number), G = 1.0 - 10° Pa, and N = 60. In (e), we modify (HR,HH,HW) €
{(0.4m,0.4m,2.0m), (0.4m,0.4m,3.0m), (0.5m,0.5m,2.0m), (0.5m,0.5m,3.0m)}. In (f),
we modify N € {30, 60,80, 100}. In (g), we modify G € {2.0-10* Pa,5.0-10* Pa, 1.0-10° Pa, 1.0-
10 Pa}. For each experiment, the rod colors indicate the corresponding parameters in the following
order: blue, orange, green, red, purple, brown. These results are obtained by employing three GN
blocks, two MLP layers, and a MLP width of 32.
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Figure 8: Illustration of the temporal evolution of scenarios (a) to (d) for the initially straight bending
rod, and (e) to (f) for the elastic helix.
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