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Figure 1. GRIP generates realistic hand-object interaction poses (pink), given the easy-to-acquire body and object motion without fingers
(blue) – notice that the input hand pose is constant. GRIP animates the hands to be consistent with the body and object, producing realistic
poses in various scenarios like pre-/post-grasp hand opening, and single or bi-manual grasps. It also works with various object shapes and
sizes, and on different datasets like GRAB [47] (left) and InterCap [22] (right).

Abstract
Hands are dexterous and highly versatile manipulators

that are central to how humans interact with objects and
their environment. Consequently, modeling realistic hand-
object interactions, including the subtle motion of individ-
ual fingers, is critical for applications in computer graph-
ics, computer vision, and mixed reality. Prior work on cap-
turing and modeling humans interacting with objects in 3D
focuses on the body and object motion, often ignoring hand
pose. In contrast, we introduce GRIP, a learning-based
method that takes, as input, the 3D motion of the body and
the object, and synthesizes realistic motion for both hands
before, during, and after object interaction. As a prelimi-
nary step before synthesizing the hand motion, we first use
a network, ANet, to denoise the arm motion. Then, we lever-
age the spatio-temporal relationship between the body and
the object to extract two types of novel temporal interac-
tion cues, and use them in a two-stage inference pipeline to

generate the hand motion. In the first stage, we introduce
a new approach to enforce motion temporal consistency in
the latent space (LTC), and generate consistent interaction
motions. In the second stage, GRIP generates refined hand
poses to avoid hand-object penetrations. Given sequences
of noisy body and object motion, GRIP “upgrades” them to
include hand-object interaction. Quantitative experiments
and perceptual studies demonstrate that GRIP outperforms
baseline methods and generalizes to unseen objects and mo-
tions from different motion-capture datasets. Our models
and code will be available for research purposes.

1. Introduction

Digital humans that move and interact naturally with 3D
worlds have many applications in data creation, games, XR,
and telepresence. In particular, physically plausible hand-
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Figure 2. Overview of GRIP. We first denoise the arm motion using the ANet network. We then predict hand interaction motion in two
stages: (CNet) Given the hand-object spatial features, extracted using our Hand Sensors, body pose and trajectories in two consecutive
frames, CNet predicts both left- and right-hand poses. (RNet) Based on the predicted hand poses, we recompute the Proximity Sensor
feature and refine the hand poses with RNet to enhance interaction accuracy and reduce possible penetrations.

object interaction is critical for realism. Unfortunately, au-
tomatically generating hand motions consistent with the
world is challenging and no fully general solutions exist.

The problem is challenging since different object shapes
require different types of interaction and hand grasps, such
as a power grasp of an apple, a delicate three-finger pinch-
ing of a cup handle, and bi-manual grasp of binoculars.
Performing these actions is effortless for humans; however,
even small errors, such as hand-object penetrations or sub-
tly misplaced arms or fingers, can significantly affect the
perceived realism of generated grasps for virtual avatars.

Here we consider generating realistic grasps where a 3D
animation of the body and object is given, either from mo-
tion capture (MoCap), reconstructed from videos, or from
an animator. Motion capture data rarely contains hands as
they are difficult to capture, requiring small markers that
are often occluded and require high-resolution cameras. In
some cases, despite being tracked, hands and arms are very
noisy [22]. Objects, in contrast, are easier to track. Figure 1
(top) illustrates this scenario with body and object motion,
from GRAB [47] and InterCap [22], but only rigid hands.
The goal is to transform this data into a more natural ani-
mation by synthesizing the appropriate hand-object interac-
tion, as illustrated in Fig. 1 (bottom). With this approach
we can “upgrade” existing datasets to support research on
human-object interaction.

To this end, we introduce GRIP, which stands for
Generating Realistic Interaction Poses, a learned model
that generates realistic hand motions for interactions with
a variety of previously-unseen objects. Previous work in
this direction focuses only on static grasping [16, 47], re-
quires an initial hand pose that is then improved [57], or
only considers single-hand grasps [54, 57]. Going beyond
these approaches, our method directly infers dynamic hand
motion, both in a single-hand or bimanual scenario, condi-
tioned only on the object and body motion.

Our contributions are two-fold. First, we propose a set of
virtual “hand sensors” to extract rich spatio-temporal inter-

action cues between the body and the object. Specifically,
we introduce an Ambient Sensor that senses the object shape
and motion within the hands’ broader reaching region, as
well as a Proximity Sensor that captures fine-grained geo-
metric features and a more nuanced distance field between
the hand and object surface within the hands’ closer region.
While virtual sensors have been used in prior work, our
novel contribution is the innovative use of a distance-based
representation combined with interaction-aware attention
[48]. This unique combination significantly improves re-
sults and generalizes to unseen objects and motions.

Second, we propose an arm denoising network and a
novel two-stage hand inference pipeline to leverage these
features and generate realistic interaction motions. Since
arm motions from tracking or reconstruction can be noisy,
we first use an arm denoising network, ANet to refine arm
motion. For the hand inference, our goal is to achieve
near real-time performance, therefore, to avoid iterative op-
timization, like previous methods, we design two networks.
First, the Consistency Network (CNet) takes features from
both Hand Sensors and generates smooth and consistent
hand interaction motions. Achieving this is challenging, as
motions need to be realistic, temporally consistent, and nat-
ural. Naively applying temporal smoothness terms to the
final output hand motion, cf. [46, 48], will break the contact
consistency and lead to high-frequency changes in contact
areas. To overcome this, we propose a novel Latent Tem-
poral Consistency (LTC) solution. Specifically, we jointly
learn global and residual latent codes to represent two suc-
cessive frames and apply temporal consistency in the latent
space, as shown in Fig. 4. Then, to mitigate any inconsis-
tency between the two global latent codes, the key insight is
to decode them using a “shared” network to generate con-
sistent hand poses. We use LTC in both ANet and CNet to
ensure consistency in the motions.

The generated hand poses from CNet bring fingers very
close to the object surface, allowing the Proximity Sensor
to capture a more nuanced distance field. Therefore, in the



second stage, we recompute the Proximity Sensor features
and use a refinement network, RNet, to add subtle refine-
ments and resolve penetrations in the interaction frames.

GRIP is trained to generate both left- and right-hand mo-
tion simultaneously, enabling realistic modeling of single-
hand and bi-manual interactions. In contrast to other meth-
ods, which only focus on contact frames [16, 47], our model
is able to generate dynamic hand motions before, during,
and after the interaction with objects. Additionally, unlike
[57], which requires expensive optimization in the pose re-
finement step, our framework consists only of feed-forward
neural networks. By predicting realistic hand and finger
motions, GRIP can be used to increase the realism of an
avatar’s interaction in AR/VR applications, refine noisy
hand-object interaction motions (Fig. 6-left), enrich exist-
ing interaction datasets that do not contain realistic finger
motions (Fig. 6-right), or capture new datasets with dexter-
ous interactions but without explicitly tracking fingers.

We evaluate GRIP quantitatively and qualitatively on a
withheld test set from the GRAB dataset, with 5 unseen ob-
jects and motions. The results show that our method gen-
erates accurate hand motions involving object grasping and
manipulation. We also show that GRIP generalizes to other
MoCap datasets and larger objects, not present in GRAB, by
generating hand grasps for unseen objects from the MoGaze
[27] and InterCap [22] datasets (see Fig. 6). The quanti-
tative evaluation shows that GRIP outperforms baselines,
while our ablation studies explore the efficacy of our la-
tent temporal consistency, Hand Sensors, and other design
choices. Finally, we perform a perceptual study to evalu-
ate the quality of the generated hand interaction motions.
The results indicate that hand-object interaction sequences
generated by GRIP achieve a level of realism similar to
GRAB’s ground-truth motions.

2. Related Work
Despite the many advances in the field of motion synthesis
for human avatars, generating accurate hand motion is still a
challenging and unsolved problem. While many approaches
focus on improving static grasps [16, 47] with manually de-
signed heuristics [19, 20], more recent techniques consider
dynamic grasp generation [54, 57]. Such methods are still
limited, and we review the most relevant ones below.

Static Grasp Generation: Generating static grasps has
been widely studied in robotics, computer graphics, and
computer vision. Common approaches in graphics and
robotics use physics-based control to generate novel hand
grasps for a given 3D object. This includes using refer-
ence poses to optimize generated grasps [44], using hand
pose and force closure [12, 28], or pruning grasp candidates
through physics-based analysis [5, 31, 32, 36]. Some re-
cent methods take a data-driven approach and generate hand
grasps by training on large hand-object interaction datasets

[6, 7, 11, 23, 25, 26, 47, 59]. Most of these approaches
either estimate the grasping-hand pose directly [6, 7, 23],
based on model parameters [34, 38] or by employing an im-
plicit representation [25, 57]. Other approaches further re-
fine the initially generated grasps by using a neural network
[47] or by leveraging predicted contact maps [16, 23].

Dynamic Grasp Generation: Generating hand-object
grasping motions is more challenging than static grasp gen-
eration. Most previous methods approach this by gener-
ating contact constraints and by resolving them through
optimization-based methods [33, 36, 52, 53, 56]. Despite
being physically plausible, the generated hand motions lack
realism and are prone to interaction artifacts. More recently,
reinforcement learning (RL) has been used for hand-only
and full-body scenarios [2, 3, 37, 40, 41, 45]. Christen et
al. [10] employ physics simulation along with RL for dy-
namic grasp synthesis; however, their method requires ref-
erence hand-grasps and dynamic features of the object. A
key challenge of these methods is generalization to new ob-
ject geometries and hand configurations. Zhang et al. [54]
use a distance-based spatial representation between hands
and objects and train a network to generate right-handed
object manipulation motions. To avoid interaction artifacts,
[57] propose an object-centric spatio-temporal representa-
tion and refine it with a neural network. The refined rep-
resentation is then used in an optimization step to recover
the hand-interaction motion. Unlike our approach, most of
these methods treat each hand separately, making generated
hand-collaboration and bi-manual grasps unrealistic.

Object and Scene Interaction: Some early work uses
foot and hand contact annotations from MoCap datasets
with optimization-based methods to extend or retarget hu-
man motions to scenes [15, 24, 29, 30]. Alternatively,
deep reinforcement learning can be used to generate body-
scene [8, 39, 41] or hand-object [9, 10, 14] interactions.
Other methods use descriptors for dynamic interactions [42,
43], encode the joint motions of humans w.r.t. scene points
[1], or use Laplacian deformation between body and ob-
ject vertices to define a representation for modeling interac-
tions [21]. As geometry-based approaches are not robust to
real-world noise, some methods take a data-driven approach
to predict action and motion sequences [50] or to generate
key frames of motions and then complete them with data-
driven or optimization-based techniques [18, 48, 51].

Hand-Object Interaction Tracking: For graphics ap-
plications, hand motions have traditionally been animated
by artists [54]. While MoCap can be used to capture hand
motion datasets [6, 7, 13, 17, 49], such captures are tech-
nically challenging, limiting the amount of such data in the
world. For the MoGaze [27], KIT [35], and BEHAVE [4]
datasets, human motions are tracked during interaction with
objects, but the fingers and palm, are not explicitly captured.
Taheri et al. [47] capture accurate hand-object interactions



with a high-accuracy MoCap system, but this approach does
not scale. Zhang et al. [54] propose a method for real-time
hand motion synthesis, given the wrist and object motion.
However, this does not generalize to new object shapes and
full-body motions. InterCap [22] captures full-body and
hand interactions with objects, but hand poses are noisy.

Summary: Previous methods suffer from one or more
of generalization ability, computation time, an initial hand
pose requirement, or model only single-hand interactions.
Our data-driven method, GRIP, addresses these limitations
and efficently generates realistic motions for both hands in-
teracting with novel objects.

3. Method
Our goal is to add realistic hand poses to a body, based on
the relative motion of the body and object during an inter-
action. To correctly estimate the hand interaction motion,
we need to model how and when the object grasp happens.
These cues can be found in the object’s geometry and the
correlated body-object motion trajectories. For example, if
the distance between a wrist and the object is decreasing,
the hand is approaching the object, but if it becomes con-
stant and the object starts moving, we can infer it is grasped.

To represent such information, we design two virtual
“hand sensors”; (1) the Ambient Sensor obtains the ob-
ject’s geometric features and its spatial relation to the hands
and (2) the Proximity Sensor obtains a fine-grained distance
field from different hand regions to the object surface.

However, if the arm motion is noisy, these computed fea-
tures will also be inaccurate. Therefore, as a preliminary
step, we use an arm denoising network, ANet, as shown in
Fig. 2, which takes the noisy arm motion and refines it while
enforcing the temporal motion consistency.

Then, we propose a two-stage hand prediction frame-
work to generate hand motion, as illustrated in Fig. 2. In
the first stage, since we do not have an initial hand pose, we
use a mean hand to compute the features of the hand sen-
sors to predict both hand poses. To consider temporal in-
formation, we feed our model with the body poses and the
hand sensors’ features of the current and next frame, in ad-
dition to the hand-to-object distance and velocity in the next
n frames (typically 10, but this can be varied). In the sec-
ond stage, based on the predicted hand poses, we recompute
the Proximity Sensor feature and refine the predictions to
enhance interaction accuracy and reduce hand-object pen-
etrations. Details about each hand sensor and the neural
networks are provided below.

3.1. Body and Hand Representations

To model the body and hand motion, we use the
SMPL-X [38] model. It can represent fine-detailed mo-
tion and accurate physical interactions, which are critical
for object-interaction motions. Based on the body shape,

Figure 3. Visualization of our Hand Sensors (only right-hand for
simplicity). (A) Ambient Sensor points (blue) and their computed
distances to the closest object points (red). This captures the object
geometry and distance to the hands. (B) Proximity Sensor feature
computation for CNet’s inputs with mean-hand pose initialization.
(C) Recomputing the Proximity Sensor values for RNet, using the
hand poses generated by CNet. Note that the corresponding points
on the object change for each finger compared to (B).

β, and pose, θ, parameters, SMPL-X reconstructs the body
surface using linear blend skinning with a learned rigged
skeleton, J ∈ R55×3. The full set of SMPL-X parameters,
Θ = {θ ∈ R55×6,γ ∈ R3} includes both hands. Here,
we predict only the parameters of the hands: the right-hand
pose, θr ∈ R15×6 and the left-hand pose, θl ∈ R15×6 [58].
In addition, to efficiently represent the hand surface, we fol-
low [48] and sample 99 vertices on each hand; these are
denoted vl and vr, for the left and right hand, respectively.

3.2. Ambient Sensor

To sense the location and shape of the object, we uniformly
sample a set of 1024 points in a hemisphere that is rigidly
attached to each hand and centered at the base middle-finger
joint, as shown in Fig. 3-A. For each motion frame, we com-
pute the distance, d, from each of these points to the closest
vertex on the object surface. This allows us to capture de-
tailed information about the object shape and the relative
distance between the hands and the object. The former in-
forms the hand pose to adapt to certain shapes, while the
latter helps predict the state of the hand motion, such as the
pre-grasp and pre-release opening, and to keep consistent
contact during the interaction.

Unlike commonly used voxel grids [46, 54], which pro-
vide a binary and discrete spatial representation, our novel
Ambient Sensor provides a continuous representation as
it uses a distance-based representation. Furthermore, we
pass the distances, d, through the interaction-aware atten-
tion transformation (Eq. (1)) proposed by [48], with w = 5,
to emphasize points closer to the object surface

Iw(d) = exp (−w × d), w > 0. (1)

The ablation studies in Tab. 2 and comparison with
voxel-based ambient sensors show these unique combina-



tion captures rich spatial hand-object relations, improves re-
sults, and generalizes to unseen objects and motions.

3.3. Proximity Sensor

Although the Ambient Sensors capture important interac-
tion information, they do not encode the distance of specific
hand regions to the surface of the object; this is essential to
know the contact areas. Therefore, we use the sampled hand
vertices v and compute their closest distance to the object
surface. Since we do not have the hand pose in the begin-
ning, we initialize the hand with the mean pose from SMPL-
X [38] and compute the proximity features in the first stage
of prediction, as shown in Fig. 3-B. In the second stage, we
recompute Proximity Sensors’ values using the hand poses
generated from the first stage, as shown in Fig. 3-C.

In contrast to the Ambient Sensor, the Proximity Sensor
provides fine-grained geometric details. This more nuanced
information about interaction is essential to generate hand
poses with fewer penetrations and better contacts, particu-
larly when the hands are very close to the object’s surface.
Thus, for the Proximity Sensor, we apply the transformation
in Eq. (1) with a higher weight (w = 50) w.r.t. the Ambient
Sensor, to put emphasis on the vertices closer to the object.

3.4. Consistency Network (CNet)

CNet is a novel encoder-decoder neural network that takes
the body motion and hand sensor features of two consecu-
tive frames at time t and t + 1 to predict the hand poses of
both frames. The two frames will be used in our proposed
Latent Temporal Consistency (LTC) algorithm to enforce
temporal and contact consistency for the final prediction.
CNet additionally takes the average hand-to-object distance
d in the future n frames, from t to t+ n, where n = 10 by
default, as input to better disambiguate the grasp and release
moments. The detailed architecture of CNet is illustrated in
Fig. 4. The inputs to the network are:

X =
[
β ,θt:t+1,h

A
t:t+1,h

P
t:t+1, d̄t:t+n,

¯̇
dt:t+n

]
(2)

where t : t+ i denotes i motion frames in the future includ-
ing the current frame, θt:t+1 are the SMPL-X joint angles
without considering the global root joint, hA

t:t+1 and hP
t:t+1

are the hand Ambient Sensor and Proximity Sensor values
for both left and right hands, and d̄t:t+n and ¯̇

dt:t+n are the
average of hand-to-object distance and its rate of change for
sampled hand vertices in the n future frames.

Latent Temporal Consistency (LTC): In addition to
physically plausible hand-object contact, an important fac-
tor in the realism of interaction motions is consistent dy-
namics and contact areas between consecutive frames. To
enforce these, we smooth the motion in the latent space of
hand motions rather than in the output space, as we noticed
the latter adds high-frequency noise to the contact areas

Figure 4. CNet Architecture. We propose the LTC algorithm that
enforces consistency between two successive frames in the latent
space (see Sec. 3.4 for more details).

throughout the motion. As shown in Fig. 4, the encoder,
EC, maps the input X to two latent codes, zt, ztt+1 ∈ R256,
where zt denotes the global latent code for a hand pose in
the current frame and ztt+1 is the relative latent code for the
next frame with respect to the current frame. We compute
the global latent code for the next frame by adding the two
latent codes as zt+1 = zt + ztt+1; see Fig. 4. We then pass
each global latent code individually to a shared decoder,
DC, to get the outputs Ŷ . The shared decoder helps reg-
ulate inconsistency between the two global latent codes, as
it is represented and penalized in the final hand poses. The
output of CNet is:

Ŷ =
[
θ̂r
t:t+1, θ̂

l
t:t+1, ĥ

P
t:t+1,

]
(3)

where θ̂r
t:t+1, θ̂l

t:t+1 ∈ R15×6 are right-/left-hand poses in
the current and next frame, and ĥP

t:t+1 are the inferred Prox-
imity Sensor values; the latter ones have been shown to in-
crease realism and lower errors [48].

Generating hand poses in the current and next frame al-
lows for defining consistency and smoothness losses be-
tween them. Evaluations in Tab. 2 show that the motions
generated with our LTC algorithm achieve a lower error and
better consistency compared to baselines with no enforced
consistency or with consistency in the output space.

We use fully-connected dense residual blocks with skip
connections for both the encoder and decoder, and train
CNet end-to-end. The training loss is defined as

L = λvLv + λhP LhP + λθLθ, (4)

where Lv = ∥v − v̂∥1 is a loss on the hand vertices
v, Lθ = ∥θ̂l − θl∥2 + ∥θ̂r − θr∥2 is on the joint rota-
tions of both hands and LhP = ∥ĥP − hP ∥1 is on the
hand-to-object distances, both directly estimated from the
network and derived from the estimated hand poses.

3.5. Arm Denoising Network (ANet)

For the hand sensors in CNet to capture rich information
between the hand and the object, the motion of these two



Figure 5. Comparing CNet and RNet generated grasps. Re-
sults show that RNet effectively refines the penetration and “non-
contact” artifacts (red circles) of the CNet results.

should be very accurate and without noise. Therefore, as
shown in Fig. 2 (left), we train ANet to first refine the arm
motion before passing to CNet. It takes as input both arms’
pose in the current frame, θla and θra, and the noisy poses
of the future frame, θla

p and θra
p , and gives the denoised

arm poses. We use a similar architecture to CNet, and en-
force the consistency between the denoised poses in the la-
tent space of the network using LTC. For more details about
ANet please see Sup. Mat.

3.6. Refinement Network (RNet)

The motions generated by CNet are in the right ballpark but
can be refined further to improve realism and remove pos-
sible penetrations. To this end, we train a refinement net-
work, RNet. We use the generated hand poses from CNet to
recompute Proximity Sensor features, hP

θ , similar to CNet
inputs (see Fig. 3-C). Then RNet takes hP

θ and the hand
poses, θ̂l and θ̂r, and outputs the refined hand poses. To
keep the motion dynamics, generated from CNet, we train
RNet to refine hand poses only in the interaction frames and
not to change the pose when hands are far away from the ob-
ject surface. In addition to the CNet output, we train RNet
on perturbed training data to simulate noisy inputs. Training
losses are similar to those used for CNet in Eq. (4). RNet
consists of 3 fully-connected residual layers with skip con-
nections in between, for an architectural overview, more de-
tails, and the data processing pipeline please see Sup. Mat..

4. Experiments
4.1. Evaluation Metrics

We use the standard “Mean Per-Joint Position Error”
(MPJPE) and “Mean Per-Vertex Position Error” (MPVPE),
which represent the Euclidean distance between the ground-
truth and estimated hand joints and vertices, respectively.
Intersection Volume (IV): This measures the intersection
volume between the hand and the object to assess the real-
ism, i.e., the physical plausibility, of the generated grasps.
Contact Consistency (CC): This evaluates the consistency
of contacts for the grasping frames of generated grasp mo-
tions, i.e., the finger sliding on the object surface. We use
ground-truth motions to select grasp frames, and, for gener-
ated motions, compute the deviation distance from the con-
tact areas on the object.

Figure 6. Our generated grasps (pink circles) for large objects from
InterCap [22] and MoGaze [27] , and comparison with the original
grasps from these datasets.

4.2. Qualitative Evaluation

Results show that CNet generates reasonable and smooth
hand grasps, but sometimes with artifacts like hand-object
interpenetration. After applying the refinement network,
RNet, the results look more realistic and physically plausi-
ble. In Fig. 5 we show examples of generated grasps using
CNet and after applying the RNet refinement.

Figures 1 and 7 show several representative hand mo-
tions generated with GRIP, including pre-/post-grasp hand
opening, single-hand grasps, and bi-manual grasps for dif-
ferent unseen object shapes. Overall, the generated hand
motions are reasonable, smooth, and consistent. For more
results, please see Sup. Mat.
Performance on Other Datasets: GRIP is trained on the
GRAB dataset, which only has small hand-held objects.
High-quality data of hand-object interaction with large ob-
jects is rare. Despite training on small objects, our vir-
tual hand sensors help generalize to larger objects, as they
only sense the interaction areas locally and not the whole
object. To highlight GRIP’s generalization capability, we
show generated interaction poses for unseen large objects
from the InterCap [22] and MoGaze [27] datasets in Fig. 6
and Fig. 1-right, and compare them with the original hand
poses. For more results, see Sup. Mat.
Cross-Object Grasp Transfer: We show that GRIP can be
used to transfer grasping motions from one object to another
one, for the details and results please see Sup. Mat.

4.3. Ablation Study

Latent Temporal Consistency (LTC): To evaluate the im-
portance of our proposed temporal consistency algorithm
for interaction motions, we compare our network with two
baselines, namely: (1) a network without enforced consis-
tency (w/o Consist.) and (2) a network with consistency ap-
plied directly on the generated hand poses (output Consist.).
As seen in Tab. 2-bottom our LTC method that smooths the
latent space representation not only reduces the CC error,
but also results in lower errors in MPVPE and MPJPE.

Hand Sensors: To evaluate the effect of our Ambient Sen-
sor and Proximity Sensor, we train different baselines of
GRIP by removing these features, (w/o Ambient) and (w/o
Proximity), and additionally compare them to Voxel-based



Figure 7. GRIP results. We show various generated grasps, in single and bimanual scenarios, for different objects shapes. The input (flat,
non-articulated) hands are shown with blue meshes, and GRIP’s generated hands (articulated) with pink meshes.

Metric ManipNet GRIP (w/o RNet) GRIP Ground truth [47]

Hand-Object Grasp ↑ 3.68± 1.05 4.09± 0.89 4.11± 0.85 4.12± 0.90

Hand Motion Smoothness ↑ 3.8± 0.93 3.88± 1.06 3.91± 1.04 3.98± 1.03

Contact Consistency ↑ 3.54± 0.99 4.02± 1.01 4.09± 0.95 4.13± 0.95

In-Hand Manipulation ↑ 3.57± 0.99 3.96± 1.01 3.97± 0.99 4.01± 1.00

Average ↑ 3.65± 1.00 3.99± 1.00 4.02± 0.96 4.06± 0.97

Table 1. Perceptual evaluation of GRIP results, without and with
RNet, compared with the ManipNet [54] results and ground truth
[47]. The participants rate the realism of the generated grasps from
1 (unrealistic) to 5 (very realistic). The table reports the mean ±
std, computed for all valid study participants. Results show that
GRIP generated grasps are more realistic than ManipNet and that
RNet improves the grasps of CNet.

representation. We compare MPVPE, MPJPE, and CC be-
tween the generated hand motions and the ground truth. Re-
sults in Tab. 2-top show that our distance-based hand sen-
sors provide rich interaction information to the network that
leads to lower errors and consistent motions.

RNet: In Tab. 2 we evaluate our refinement network, RNet,
by comparing the results of GRIP with RNet (fullmodel) and
without it (w/o RNet). The table verifies that the refinement
step helps reduce the hand MPJPE and MPVPE errors and
enhance motion consistency.

Number of Future Frames: In Tab. 4-right we compare
different variants of GRIP to show the effect of using a dif-
ferent number of future motion frames on the accuracy of

Method ↓
MPVPE (mm) ↓ MPJPE (mm) ↓ CC (mm) ↓

R-Hand L-Hand R-Hand L-Hand R-Hand L-Hand

Hand Sensors Ablation
GRIP (w/o Ambient) 9.56 6.72 7.08 4.99 15.03 9.48
GRIP (w/o Proximity) 9.62 6.82 7.11 5.09 15.64 9.10

Latent Temporal Consistency (LTC) Evaluation
GRIP (w/o Consist.) 8.17 6.18 5.99 4.53 13.01 7.66
GRIP (output Consist.) 9.31 7.11 6.81 5.31 13.21 8.18
GRIP (Voxel-grid) 8.36 6.54 6.60 4.75 11.35 6.87

GRIP (w/o RNet) 8.19 6.58 6.10 4.95 11.44 7.03
GRIP (fullmodel) 7.88 6.17 5.85 4.62 10.56 6.25

Table 2. (Top) We show the effect of our “Hand Sensors” by com-
paring variants of GRIP without our sensors’ features; GRIP re-
sults in lower errors. (Bottom) The effect of the LTC algorithm is
explored by comparing GRIP against a network without LTC (w/o
Consist.) and one with consistency on the output poses (output
Consist.). The GRIP-generated motions have lower errors.

the generated hand poses. The table verifies using more fu-
ture frames (up to 10 frames) lets the network generate more
accurate poses. This is a trade-off between a real-time per-
formance (row 1) and a higher accuracy with some latency
(rows 2-4). Empirically, we observe that performance satu-
rates for more than 10 frames, in accordance with [48]. For
details on the inference runtime, please see Sup. Mat.



Metric ↓ Model ↓ GRAB-T GRAB-T GRAB-R GRAB-R

(0.01) (0.02) (0.3) (0.5)

MPVPE (mm)
TOCH 16.0 → 11.8 31.9 → 13.9 6.30 → 11.5 10.3 → 11.0
GRIP 17.4 → 10.3 34.2 → 13.1 6.21 → 4.62 10.5 → 6.72

MPJPE (mm)
TOCH 16.0 → 9.93 31.9 → 12.3 4.58 → 9.58 7.53 → 9.12
GRIP 16.9 → 9.70 33.8 → 12.8 4.26 → 3.21 7.64 → 4.18

Table 3. Comparison of GRIP (ANet and RNet) performance
with TOCH [57] on the perturbed test-sets from GRAB. Follow-
ing TOCH, we perturb the hand pose (-R) and translation (-T) by
adding Gaussian noise. The numbers in parentheses (top) show
the noise magnitude. The table reports the metrics before and af-
ter using each method.

4.4. Perceptual Study (Comparison to ManipNet)

We evaluate the hand motions generated from CNet and
RNet with a perceptual study on Amazon Mechanical Turk
(AMT) and compare them with ManipNet results and the
GT motions. For GRAB’s test-set motion sequences, we
use GRIP to generate the interacting hand poses. We then
create videos of the generated motions from CNet, the re-
fined motions from RNet, and the corresponding ground
truth. To compare with ManipNet, we extracted their mov-
ing meshes from their demo and rendered them in the same
format as GRIP results.

The participants rate the realism of the hand motions
based on 4 criteria: (1) hand-object grasp, (2) hand mo-
tion smoothness, (3) contact consistency, and (4) in-hand
manipulations. Each motion is evaluated by at least 10 dif-
ferent participants. The ratings are on a 5-level Likert scale,
where 1 means unrealistic and 5 means very realistic. We
use a catch trial similar to [47, 48] to identify invalid ratings
and remove them; Tab. 1 shows the evaluation results.

The study shows that the GRIP-generated hand motions
are very realistic and close to the ground-truth ones. In addi-
tion, the scores are slightly higher when motions are refined
by RNet, especially for Contact Consistency (CC), which
shows the effectiveness of our LTC algorithm. Furthermore,
we see a lower rating for ManipNet results compared to
our results. Additionally, in Tab. 2 we show the computed
penetration errors for ManipNet, which is 13% higher than
ours. While the test data is different (simpler for Manip-
Net), these results confirm several limitations of ManipNet
such as single-hand inference, poor generalization to new
objects, and no full-body setting. GRIP addresses these is-
sues, making it easy to apply in real-world scenarios. For
representative grasps and failures please see Sup. Mat..

4.5. Comparison to TOCH

To evaluate the performance of ANet and RNet, we com-
pare them to TOCH [57] on refining perturbed test-sets
from GRAB. To do this, similar to [57], we perturb the
motions by adding Gaussian noise, with different magni-
tudes, to the pose (GRAB-R) and translation (GRAB-T) of

Grasp Penetr. Cont. GRIP MPVPE
Synthesis (cm3) ↓ Ratio ↑ # Future (mm) ↓

1. GrabNet [47] 2.65 1.00 Frames R-Hand L-Hand
2. GrabNet-SMPL-X 7.33 0.87 1. 0 9.21 8.18
3. ManipNet 2.68 0.98 2. 3 8.94 7.78
3. GRIP (w/o-RNet) 3.18 0.96 3. 5 8.34 7.29
4. GRIP (w/ -RNet) 2.38 1.00 4. 10 7.88 6.17

GRAB (GT) 1.95 1.00

Table 4. (Left) Penetration and contact-ratio metrics for two
GrabNet baselines and GRIP models. (Right) Evaluating the
trade-off for the real-time performance and accuracy of GRIP by
comparing different numbers of future frames.

both hands. To keep the original motion dynamics, gener-
ated from CNet, RNet is trained to only refine hand-pose
(i.e., rotation perturbations), therefore we refine perturbed
translation using ANet and perturbed rotations using RNet.
We provide the full-comparison results in Tab. 3. Results
show that the combination of ANet and RNet performs bet-
ter in refining noisy hand interactions.

4.6. Baselines

To evaluate GRIP’s performance, in Tab. 4-left we compare
the penetration volume (cm3) and contact ratio [55] of two
GrabNet variants and ManipNet with our models. namely:
(1) “GrabNet” [47], which generates MANO grasps, (2) a
trained “GrabNet-SMPL-X” variant, which generates full-
body SMPL-X grasps, (3) ManipNet, (4) GRIP (w/o RNet),
and (5) GRIP (w/ RNet). Results show that our full model
(row 5) performs better than baselines in generating realis-
tic grasps. Please note that our model generates the motion
of both hands during object interaction with realistic transi-
tions between no-grasp poses, pre-grasp openings, grasp-
ing, and releasing of objects, while ManipNet generates
single-hand motions, and GrabNet variants only generate
static grasps of one hand.

5. Conclusion
We propose GRIP, a data-driven method that directly gen-
erates realistic interaction motions for both hands given the
animated body and target object. Our method’s novelties
include (1) an arm denoising network and a two-stage hand
prediction approach using two networks for coarse and fine
grasping, (2) the combination of two novel distance-based
hand sensors, and (3) a latent-space temporal consistency
modeling. As a result, compared with previous methods,
GRIP is able to refine noisy interaction motions and then
predict hand poses from scratch, generalize to novel object
shapes, adapt to bi-manual interactions, and generate real-
istic hand poses with temporal consistency. These benefits
will allow GRIP to be used for capturing new datasets of
human-object interaction without the difficulty of tracking
the hands, to add hands to previous datasets [27, 35], and to
synthesize hands for avatars in video games and AR/VR.



Limitations and Future Work: Although the inference
time for GRIP is very fast, it relies on mean hand-to-object
distance in the future 10 frames to guide the prediction of
grasps. This causes a fixed 10-frame latency in interac-
tive applications. It may be possible to learn to anticipate
movement and reduce this delay. Extending the method to
human-scene interaction would be interesting.
Acknowledgements: This research has been started during
Omid Taheri’s internship at Adobe Research and is a col-
laboration with the Max Planck Institute for Intelligent Sys-
tems. It was partially supported by Adobe Research and the
International Max Planck Research School for Intelligent
Systems (IMPRS-IS),, and the German Federal Ministry
of Education and Research (BMBF). We thank Tsvetelina
Alexiadis for the Mechanical Turk experiments.
Disclosure: MJB has received research gift funds from
Adobe, Intel, Nvidia, Meta/Facebook, and Amazon. MJB
has financial interests in Amazon, Datagen Technologies,
and Meshcapade GmbH. While MJB is a consultant for
Meshcapade, his research in this project was performed
solely at, and funded solely by, the Max Planck Society.

References
[1] Rami Ali Al-Asqhar, Taku Komura, and Myung Geol Choi.

Relationship descriptors for interactive motion adaptation.
In Symposium on Computer Animation (SCA), pages 45–53,
2013. 3

[2] Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal
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GRIP: Generating Interaction Poses Using Spatial Cues and Latent Consistency

Supplementary Material

In this supplemental material, we provide additional in-
formation about GRIP as mentioned in the main paper;
this includes details of the method, more qualitative results,
grasp analysis, and the details of the cross-grasp transfer
application.

6. Data Preparation
The GRAB dataset [47] is used to train our GRIP model.
It is a MoCap dataset that accurately captures whole-body
motions involving the manipulation of 3D objects. The
body is parameterized with SMPL-X [38]. The motions
are performed by 10 participants on 51 objects with differ-
ent shapes and sizes. We withhold 5 objects for the test-set
and use the rest for training and validation of the networks.
CNet data: CNet generates hand interaction motion based
on the body and object motion in a sequence. We use all
the training and test sequences from GRAB for training and
testing CNet, respectively. In addition to hand-object grasp
frames, we consider other motion frames of each sequence
to generalize to pre-grasp and post-grasp hand poses. In to-
tal, we use 1335 motion sequences, performed on 51 3D ob-
jects. To split the dataset, we use the motions performed on
“mug”, “apple”, “camera”, “binoculars”, and “toothpaste”
as the test set,“fryingpan”, “toothbrush”, “elephant”, and
“hand” as the validation set, and the rest as the training set.
In total, we have 329K, 52K, and 24K motion frames for
the training, testing, and validation set, respectively.
RNet data: RNet refines the motions generated from CNet,
therefore, we use the output of CNet as the main data source
for RNet. In addition, to model more severe penetration
and interaction artifacts, we prepare a synthetic dataset by
perturbing the ground-truth data in GRAB. For this, we add
Gaussian noise with a standard deviation of 0.3 to the axis-
angle rotation representation of the hand poses.
ANet data: ANet is trained to refine noisy arms motion.
To prepare the training data, we add Gaussian noise to the
shoulder and elbow joints of the ground-truth motion data.
The noise is added to the axis-angle rotation of the joints
and has 0.01 and 0.03 standard deviations for the shoulder
and elbow joints, respectively.

7. Arm Denoising Network (ANet)
For an architectural overview of ANet see Fig. S.8. As in-
put, A-Net takes the arm motion and hand sensor features
of the current Ground Truth frame along with five noisy fu-
ture frames. As output it gives the denoised arm poses for
the five future frames, following [48]. To ensure motion
consistency between the successive frames of the denoised

motions, we use the LTC algorithm similar to CNet, as ex-
plained in the main manuscript (Sec. 3.4). For this, the
encoder, EA, maps the input to five latent representations
for each arm pose, as shown in Fig. S.8. Then we apply the
latent temporal consistency algorithm by adding the resid-
ual latent codes, zti , to the global latent code, zt. Finally, we
use a shared decoder, DA, to decode the denoised motions.
Both encoder and decoder have 4 fully-connected residual
layers with skip connections in between.

8. RNet Network
For the architecture overview of RNet please see Fig. S.9.
RNet takes, as input, hand poses and proximity sensor val-
ues of a motion frame and, as output, generates the refined
hand poses for both left and right hand. The network con-
sists of 4 residual blocks with skip connections and an out-
put linear layer.

9. Grasp Transfer (Application)
To test whether our method generalizes well to different ob-
ject shapes and motions, we use GRIP to transfer the input
interaction motion from a source object to a target object.
Given a sequence of body and object motion without hand
poses, we replace the source object with a target object that
is roughly of the same size. We then compute the hand sen-
sor features for the new object geometry and use GRIP to
generate hand interaction poses for the new object.

Qualitative results show that our method is able to gener-
ate realistic hand motions for the target object and general-
izes well to the new object’s shape and motion. In Fig. S.10
we show two examples of the grasp transfer application.
The top row shows that the hands adapt well to the target
object geometry, “elephant”, and the bottom row shows a
change in the grasp type (e.g., thumb contact area) due to
the smaller size of the target object, “sphere”. This is useful
for synthetic data generation because a single motion cap-
ture sequence can be repurposed to generate many different
synthetic human-object interactions. This is also useful for
FX where actors are captured handling a “dummy” object
that is replaced by a 3D graphics object; this is a common
scenario in film production.

10. Runtime
Due to its pure learning-based pipeline, GRIP is able to
generate hand poses rapidly. We find that a full forward
pass of our method (without ANet) on a single V100-16GB
GPU, including the CNet inference, recomputing proxim-



Figure S.8. Architecture overview of ANet. Similar to CNet, we use the LTC algorithm to ensure motion consistency of the denoised arm
motions. For this, the encoder maps the input to a global latent code in the current frame and relative latent codes in the future frames.
Then a shared decoder is used to generate the denoised motions.

Figure S.9. Architecture overview of RNet. As input, it takes hand poses and proximity sensor values, and generates the refined hand
poses. The network consists of 4 residual blocks with skip connections and an output linear layer.

ity sensor values, and RNet forward pass, takes 0.022 sec-
onds, which is equivalent to 45 fps. Therefore, GRIP can
be used to synthesize hands for avatars in interactive appli-

cations like video games and mixed reality settings, which
are mostly running at 30 fps. Please notice that our network
still relies on mean hand-to-object distance in the future 10



Figure S.10. Grasp transfer from a source object to a target one. Given a sequence of body and object motion without hand poses, we
replace the source object with a target one and use GRIP to generate hand interaction poses for the new object. The top row shows grasp
transfer from “camera” to an “elephant” geometry, and the bottom row shows grasp transfer from an “apple” to a small “sphere”. Notice
how the hands adapt to the new object shape (top row) and the change in the grasp type (bottom row).

frames, which causes a fixed 10-frame latency (1/3 of a sec-
ond) in real-time applications. This is the trade-off to have
more accurate poses with latency instead of real-time per-
formance with lower accuracy, as shown in Tab. 4-right in
the main paper.

11. Physics Simulation

Our main goal is to generate visually plausible hand-object
interaction motions, however we also evaluate the physical
plausibility of our results, which may be important for the
real-world applications. Following prior methods [19, 20,
25], we evaluate the generated grasps in a Bullet physics
simulation. We fix the body position and apply gravity to
the object. A small object displacement (<1 mm) after 5
physics simulation steps is counted as a “stable” grasp. For
all generated grasps, CNet and RNet have 93% and 97%
stability, respectively. This suggests that the synthesized
hand poses are not just visually pleasing but also physically
realistic.

12. Performance on Large Objects

In Fig. S.11 we show more qualitative results of our method
performance to generate hand grasps for large objects. Note

that these objects have extended 3D structure compared
with all the training objects in the GRAB dataset. What is
important to note here is that our hand sensors are not dis-
tracted by the extended objects due to their locality. Thus
GRIP is able to generate plausible grasps for such objects.

13. Qualitative Results

In Fig. S.12 we show more qualitative results generated
on unseen objects, using GRIP. The top row shows input
body and object motion, and the bottom row shows gener-
ated hand poses. We show close-ups of the generated hand
poses, in single and bimanual scenarios, to show the accu-
racy of the generated grasps. In Fig. S.13 we provide re-
sults for successive frames of a motion sequence to show
the consistency of the generated hand poses over time. Ad-
ditionally, the results show that our method is able to refine
the noisy arm poses from the InterCap dataset.

In Fig. S.14, we show representative scores for the Ma-
nipNet grasps from our user study. These results con-
firm several limitations of ManipNet which GRIP addresses
these, making it easy to apply in real-world scenarios.



Figure S.11. GRIP’s performance to generate hand grasps for large objects. We generate hand poses on the unseen large objects from
Intercap (left) and MoGaze (right) datasets. These objects have larger 3D structures compared to the 3D objects during training, however,
our hand sensors are not distracted by the extended objects due to their locality. Thus, GRIP is able to generate plausible grasps for such
objects.

Figure S.12. Generated results with GRIP for unseen objects. (Top row) input body and object, (bottom row) generated hand poses. We
show close-ups of the generated hand poses in single and bimanual scenarios, to show the accuracy of the generated grasps.

14. Grasp Analysis

To further evaluate the quality of the generated grasps from
GRIP, we compare the aggregated contact heatmaps from
our method with GRAB [47]. For each motion frame
in the test set, we compute the contact vertices on both
hands based on their distance to the object surface, simi-
lar to GRAB. We then aggregate the contact maps across all
frames to compute the overall contact heatmap. Figure S.15
(top) shows the contact heatmap from GRAB and (bottom)
shows the heatmaps for GRIP. Areas with a high likelihood

of contact are shown with “hot” (red) colors and with a low
likelihood of contact are shown with “cool” (blue) colors.
We see that GRIP contact maps follow a similar pattern to
GRAB, and have higher contact likelihood on the fingertips.
The similarity suggests that generated grasps exhibit similar
contacts as real grasps.



Figure S.13. Generated hand motions using GRIP. (Top row) input body and object motion. (Bottom row) generated hand poses. We
provide results for successive frames of the same motion to show the consistency of the generated motions over time.

Figure S.14. representative scores for ManipNet [54] grasps from our user study.



Figure S.15. Comparison of the contact heatmaps from GRAB and GRIP. We compute contact vertices on both left and right hand and
aggregate them across all frames. Results show that GRIP contact maps are similar to GRAB, which is indicative of the realism of the
generated hand grasps.


