EUROGRAPHICS 2019 / P. Alliez and F. Pellacini
(Guest Editors)

Volume 38 (2019), Number 2

Supplementary Material

He WanglJr , Soren Pirk! T , Ersin Yumer?

, Vladimir G. Kim®

, Ozan Sener? , Srinath Sridhar! , and Leonidas J. Guibas!

I'Stanford University, 2Uber ATG, 3 Adobe Research, *Intel Labs

Abstract

In this supplementary material, we provide additional details for the method proposed in the paper. We describe the explicit
representation of the interaction sequences which we used to generate interactions in Section 1. We also provide details on the
formal definition and estimation of Gaussian Mixture Models(GMMs) which are used to represent low level motions of objects.
Moreover, we show the statistics of our collected video data and explain how the data is annotated. Finally, we provide the
numbers of physical constraint violations as a quantitative measure of Action Plot RNN generation results.

1. Action File

The final result of our method is an animation that is either re-
constructed or generated. In this section, we explain the format for
storing interaction sequences generated by our algorithm. It can be
used to directly forward action sequences to the animation module
or to store the sequences for offline purposes. We create a text file,
representing the generated animations and call it action file. Each
action file is composed of two sections; the initial scene description
and the interaction sequence.

To initialize scenes, we store the locations of objects (in table
coordinate space) and their states. We represent action plots as a
sequence of actions in the action file. Each line in the interaction
sequence corresponds to an action that may cause changes of the
object arrangement or their states. We store the type of an action
(e.g. pour), the start and end time, the active object, and possible
a receiving object. Some actions might not include receiving ob-
jects, like for opening a book. In this case the receiving object is
denoted as undefined. The whole entry for one action includes the
class name, class index, start state, end state, and start and end po-
sitions for each object. We do not include the start and end position
of the receiving object as we define it as static for the period of the
performed action.

Fig 1 shows an example of an action file. We also visualize the
part of the animation generated by the file in Fig 2.

We generate action files for two different purposes: reconstruc-
tion and generation. For the training videos, action files are auto-
matically generated using the video processing module explained
in Section 5 of the paper. For generated interaction sequences, ac-
tion files are generated as an output from our action plot model.

T Equal contribution.

(© 2019 The Author(s)
Computer Graphics Forum (© 2019 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

#object, index, position x, position y, state
bowl, 0, 6.17324710021, 22.3913006964, 0
orange, 0, 16.0965807984, 22.6723686561, 0
orange, 1, 13.6330087587, 18.3454133162, 0
orange, 2, 18.236141743, 15.3901778681, 0
orange, 3, 20.814936995, 18.7214436402, 0

action, obj1, obj id1, obj2, obj id2,

... startTime, endTime, [start x, start y,

... end x, end y, start state, end state]x2

idle, undef, 0, undef, 0, 0.0, 4.8,0,0,0,0,0,0,0,0
move, hand, 0, undef, 0, 4.8, 6.4, 0, 0,18,15, 0, 0, O,
move, orange, 2, bowl, 0, 6.4, 7.3, 18,15, 6, 22, 0, 1
move, hand, 0, undef, 0, 7.3, 7.5, 6,22, 0,0, 0, 0,0

Figure 1: An example action file

2. Object Position Gaussian Mixture Models

The target position of a moving object, without a specific receiv-
ing object, depends on the following spatial and temporal factors:
the class of the object, the spatial arrangement of all the other ob-
jects, and the dynamics of the action, like speed and duration. We
model each factor as a Gaussian Mixture Model and multiply them
to obtain the final proposal distribution following the assumption
that each factor is independent.

Object Class GMM P, The object class factor, represented in
the form of a GMM, captures the distribution of the 2-D position
of an object in table coordinate space solely based on the object
class ¢; independent of other objects. To train the GMM we use the
tracked positions of all objects of a class in our dataset and apply
the expectation-maximization (EM) algorithm.

Since we detect each object as a bounding box, we need to
choose a point within the bounding box to represent its position.

He Wang et al. / Supplementary Material

Figure 2: The updated scenes corresponding to the actions in Fig.
1. Top left: animation scene at the end of action 1, {idle} (same
to initial scene); top right: animation scene at the end of action 4,
{move, orange, 2, bowl, 0}; bottom left: animation scene at the end
of action 7, {move, orange, 4, bowl, 0}; bottom right: animation
scene at the end of action 10, {move, orange, 0, bowl, 0}.

Figure 3: Log-likehood of the proposal distribution for the tar-
get position of the interacted phone. Top left: Log-likelihood
corresponding to the object class factor, logP,(x); top right:
the log-likelihood corresponding to the spatial arrangements,
Y jilogPe;c;; bottom left: log-likelihood corresponding to the
speed and duration, 10g Pypeeq ¢, (x); bottom right: log-likelihood of
the final proposal distribution, obtained via multiplying aforemen-
tioned distributions, used to sample a new position for the phone.

Although the center is a natural choice, it is error prone since the
bounding box estimate is not always perfect. Therefore, we use data
augmentation and add additional random data points around the
center corresponding to the uncertainty in bounding box estima-
tion. We add 50 more points by adding a random Gaussian noise
with variance of 1/4 of the bounding box height.

Finally, based on the observation of the data point distribution,
the number of components used in Gaussian Mixture is selected
using the AIC metric between 2 and 4.

Intra/Inter-Class Relative Distance GMM, P, ¢; A intra/inter-
class factor captures the relative spatial distribution of objects based
on their classes. It models both, the affinity of certain classes, like

10* (=

Annotated interaction instances

10°

T T O X VX X 0 03 QO U X Qo Qo © 0 0 W

c 0 o0 E 900 cgE 32 o0cc o S 9 cu®E C

& c ¢ Q £ o063 2805 5 9 228 8886
< a oo aldoaaa aa @ ool

c & ©

v 9 5 o 2 c 9 a8 9 2aa ¢ ’_Uﬂg-ﬂ-ﬂa

> T > Qo v o5 2o0cE s c o ¢ < o

o § ¢ o 3 292 >392 >0 % 2 g0 o0 g 29

£ 2 3 E 9 60T o 8 E o & ¢ oo >2 235
o 2 £ £ £ EE G 2 ¢ o
= 22 £

Figure 4: Number of interaction instances for every type in our
dataset.

cups and bottles, as well as repulsion motivated by the collision
avoidance. Similar to the object class factor, we also use data aug-
mentation as well as an AIC metric to select the number of Gaus-
sian components between 2 and 4.

Speed GMM, P, gyeea The speed factor captures the dynamics
of each object class in terms of the magnitude of the average speed
obtained during the action. Since the points chosen as a position
within the bounding box typically do not change during the inter-
action, we do not need the data augmentation for this model. Error
in estimation of the center cancels out, since average speed com-
putation includes subtraction of the start from the end position. We
also use a single Gaussian.

3. Video Annotations and Data Statistics

Action segmentation is commonly referred to solve the segmenta-
tion problem for every action in time and classify each constituent
segment. We manually annotate the action segmentation for all of
75 video clips in our dataset. For annotation consistency, a single
person from our authors annotated all the video sequences. The be-
ginning time of any action is always the moment that the object
starts moving while the end of action is the moment that the mo-
tion stops. "Idle" action is bound by the end time of the previous
action and the start time of the next action. Our dataset contains 22
different types of interactions. The number of each interaction type
annotated in our dataset is shown in Fig.4.

4. Quantitative Evaluation of Action Plot RNN Generation

Evaluating the generated animation is an open problem since there
is no metric which can capture the quality of the animation directly.
Using the ground truth information is not desired, as we want our
algorithm to deviate from the training data and generate as many
plausible and consistent animations as possible.

Although there is no perfect metric on the quality of the gen-

(© 2019 The Author(s)
Computer Graphics Forum (© 2019 The Eurographics Association and John Wiley & Sons Ltd.

He Wang et al. / Supplementary Material

Table 1: Constraints on the two action plots L,_| and L; in terms
of predicates defining prerequisites and effects. Here Op.[o] rep-
resents actions that operate on a single object, e.g. turn on phone,
read book, while Op.[o1, 0,] represents actions that operate on two
objects, e.g. pour bottle to cup.

Action Prerequisites Consequences
Idle O = 041,85t = S;—1
Move [o;] 0;_1 = or or None St =S8
Op. [or] 01 =0¢ update sy
Op. [01,1, 0; 2] 0r—1,1 =011 update s 1, 5;2

erated sequences, the generated sequence needs to follow physi-
cal laws and constraints. In other words, the generated sequence
should be physically plausible. For example, the generated se-
quence should not move an orange from an empty bowl, or should
not move a bottle without first grasping it. Although it is intractable
to list all such physical holistically, it is possible to list them for a
small set of actions and objects. Moreover, such approaches have
been widely used in semantic planning [KS92] literature since ac-
tion planning has similar requirements. We define set of prerequi-
sites per action class in terms of predicates of the current active
object o, and object states s, . Furthermore, we also define the
effect of the action on the world as well as states after the action
0i—1, St. We require o, and s;_; to satisfy the predicate on the
prerequisites, and o; and s; to satisfy the predicates on the effects.
We list the used predicates of physical laws in Table 1.

We measure the plausibility of our generated sequences by
counting the number of violations of the prerequisites in Table 1.
By counting the number of errors in a sequence of 100 gener-
ated actions of 100 action plots, we get an average error rate of
1.36% +1.09%.

References

[KS92] KAUTZ H., SELMAN B.: Planning as satisfiability. In Proceed-
ings of the 10th European Conference on Artificial Intelligence (New
York, NY, USA, 1992), ECAI '92, John Wiley & Sons, Inc., pp. 359-
363.3

(© 2019 The Author(s)
Computer Graphics Forum (© 2019 The Eurographics Association and John Wiley & Sons Ltd.

