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Abstract

Recent advancements in the text-to-3D task leverage
finetuned text-to-image diffusion models to generate multi-
view images, followed by NeRF reconstruction. Yet, exist-
ing supervised finetuned (SFT) diffusion models still suffer
from multi-view inconsistency and the resulting NeRF arti-
facts. Although training longer with SFT improves consis-
tency, it also causes distribution shift, which reduces diver-
sity and realistic details. We argue that the SFT of multi-
view diffusion models resembles the instruction finetuning
stage of the LLM alignment pipeline and can benefit from
RL finetuning (RLFT) methods. Essentially, RLFT meth-
ods optimize models beyond their SFT data distribution by
using their own outputs, effectively mitigating distribution
shift. To this end, we introduce Carve3D, a RLFT method
coupled with the Multi-view Reconstruction Consistency
(MRC) metric, to improve the consistency of multi-view dif-
fusion models. To compute MRC on a set of multi-view im-
ages, we compare them with their corresponding renderings
of the reconstructed NeRF at the same viewpoints. We vali-
date the robustness of MRC with extensive experiments con-
ducted under controlled inconsistency levels. We enhance
the base RLFT algorithm to stabilize the training process,
reduce distribution shift, and identify scaling laws. Through
qualitative and quantitative experiments, along with a user
study, we demonstrate Carve3D’s improved multi-view con-
sistency, the resulting superior NeRF reconstruction qual-
ity, and minimal distribution shift compared to longer SFT.
Project webpage: https://desaixie.github.io/
carve-3d.

1. Introduction

In recent times, notable advancements have been made
in the text-to-3D domain, driven by lifting images gener-
ated by 2D diffusion models [9, 40, 42, 48, 51, 55] to 3D.
Numerous methods [24, 28, 46, 58] have demonstrated that

a set of multi-view images is adequate for generating di-
verse and detailed 3D models, effectively mitigating the
Janus (two-face) problem. Thus, ensuring the 3D consis-
tency across these multi-view images is crucial for 3D gen-
eration, as inconsistencies can inevitably introduce artifacts,
such as broken geometries, blurring, or floaters, in the NeRF
reconstruction. However, the lack of an established multi-
view consistency metric has led researchers to rely on quali-
tative inspections, which are both inefficient and unreliable,
highlighting the ongoing issues with inconsistency in cur-
rent methods.

Existing multi-view diffusion models [24, 27, 28, 46, 58]
primarily utilize supervised finetuning (SFT) with datasets
derived from rendering perfectly consistent multi-view im-
ages of 3D assets [12, 13]. While SFT can achieve some
degree of multi-view consistency, it presents a dilemma:
prolonged SFT enhances this consistency but also induces
a distribution shift that diminishes diversity and realism of
the results [24]. Such dilemma has been observed in the
research of large language models (LLMs). While SFT
changes the output distribution of pre-trained LLMs from
text completion to answering instructions, such distribu-
tion shift to the instruction dataset also introduces halluci-
nation [44], preventing longer SFT. InstructGPT [36], the
paper behind ChatGPT 3.5 [35], introduces RL finetuning
(RLFT) to further align the SFT model without causing
additional distribution shift. Drawing an analogy between
instruction-finetuned LLMs and multi-view diffusion mod-
els, RLFT emerges as an essential step following the SFT
stage. By adopting RLFT, we aim to enhance the consis-
tency of multi-view diffusion models without introducing
the biases from a SFT dataset (Figure 1).

We introduce Carve3D, a RLFT framework paired with
our Multi-view Reconstruction Consistency (MRC) metric,
to improve the consistency of multi-view diffusion models
(Figure 2). MRC compares the output multi-view images
from a diffusion model, which serve as inputs for NeRF re-
construction, with images rendered from the NeRF at iden-
tical camera viewpoints. We use the sparse-view Large Re-
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Figure 1. Carve3D steadily improves the 3D consistency of the
multi-view diffusion model and the resulting quality of the NeRF
and the mesh, without sacrificing its diversity or realism. Here
we show results of the finetuned multi-view diffusion model over
three epochs on three testing prompts (three blocks separated by
dotted line), including the generated multi-view images (top), the
reconstructed NeRF and extracted mesh (bottom) and the prompt
(middle). The inconsistencies in the multi-view images, e.g. the
facing direction of the shopping cart, the position of the octopus
arms, and the position of the pencils, lead to artifacts in the NeRF
and the mesh, highlighted by the red boxes.

construction Model (LRM) [17, 24] to achieve fast, feed-
forward NeRF reconstruction from a few multi-view im-
ages. To quantify image similarity, we adopt LPIPS [56] as
it is more effective and robust for MRC. We further normal-
ize LPIPS with respect to the bounding boxes of foreground

objects to prevent trivial reward hacking through size reduc-
tion of the foreground object. To validate the reliability of
MRC, we conduct extensive experiments with controlled in-
consistency levels; starting from a set of perfectly consistent
multi-view images rendered from a 3D asset [12], we man-
ually introduce distortion to one of the views to create in-
consistency. Our MRC metric provides robust evaluation of
consistency of multi-view images, offers a valuable tool for
assessing current multi-view generation methods and guid-
ing future developments in the field.

With MRC, we employ RLFT for multi-view diffu-
sion models. In the RLFT process, we use a set of cu-
rated, creative text prompts to repeatedly generate diverse
multi-view images with random initial noises and use their
MRC reward to update the diffusion model (Figure 2).
Such diversity- and quality-preserving finetuning cannot be
achieved with SFT, as it is infeasibly expensive to cre-
ate a dataset of diverse ground-truth multi-view images for
these prompts. We make the following improvements to
the RLFT algorithm [5]. In addressing the common issue
of training instability in RL, we opt for a purely on-policy
policy gradient algorithm [53], diverging from the widely
adopted, partially on-policy PPO [45] algorithm. We in-
corporate KL divergence regularization [15, 36] to maintain
proximity to the base model and prevent distribution shift.
Moreover, we scale up the amount of compute to achieve
optimal rewards by applying the scaling laws for diffu-
sion model RLFT, identified from extensive experiments –
a topic that has not yet been extensively covered in existing
studies [5, 15].

Through quantitative and qualitative experiments, as
well as human evaluation, we demonstrate that Carve3D:
(1) achieves improved multi-view consistency and NeRF
reconstruction quality over the base multi-view diffusion
model, Instant3D-10K [24], as well as Instant3D-20K and
Instant3D-100K, which utilize more SFT steps, and (2)
maintains similar prompt alignment, diversity, and realistic
details from the base Instant3D-10k, preventing the degra-
dation in Instant3D-20k and Instant3D-100k. We extend
our consistency evaluation to additional multi-view diffu-
sion models using MRC, revealing the universal presence of
multi-view inconsistency when relying solely on SFT. Our
work is the first application of RLFT to the text-to-3D task,
especially with diffusion models at the SDXL [39] scale us-
ing a 2.6B-parameter UNet. We hope this work will bolster
the research on RLFT for alignment in the computer vision
community.

2. Related Works

2.1. 3D Generation with 2D Diffusion Models

NeRF is a neural representation of 3D assets [8, 31, 33].
It infers the direction-dependent radiance at an arbitrary
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Figure 2. Overview of Carve3D. Given a prompt sampled from the curated prompt set, we run the denoising process to obtain the final
denoised image, which contains four multi-view images tiled in a 2-by-2 grid. MRC reward is computed by comparing (a) the generated
multi-view images with (c) the corresponding multi-view images rendered at the same camera viewpoints from (b) the reconstructed NeRF.
Then, we train the model with policy gradient loss function, where the loss is derived from the reward and log probabilities of the model’s
predicted noise, accumulated across all denoising timesteps. Using only a set of prompts, this RLFT process finetunes the diffusion model
with its own outputs, without relying on ground truth multi-view images.

volumetric position with neural models. Many text-to-3D
methods rely on NeRF to produce 3D objects.

While text-to-image diffusion models are trained on 5
billion data [43], the largest public 3D dataset only contains
10 million 3D assets [12, 13] with little text annotation. This
gap in the diversity and quality of 3D data has restricted the
quality of current 3D diffusion models and their ability in
handling complex prompts [19, 34]. To circumvent this lim-
itation, another line of work focuses on lifting 2D images
to 3D, thus leveraging the remarkable semantic understand-
ing and high-quality generation capabilities of 2D diffusion
models [39, 42]. These methods [9, 40, 48, 51, 55] typ-
ically employ 2D diffusion models to provide supervision
at the novel views for optimizing 3D objects represented as
NeRF or by 3D Gaussian Splatting [21]. Building on this
concept, multiple works [24, 26–28, 46, 58] have proposed
generating multi-view images using a finetuned 2D diffu-
sion model, providing a more comprehensive visual prior
and preventing the multi-face (Janus) problem. However,
as the finetuning datasets of multi-view images are rendered
from the same 3D dataset [12, 13], the limited quality and
diversity remains a challenge, preventing running SFT to
convergence [24]. By adopting RLFT, we do not depend
on ground truth multi-view images and thus optimize the
model beyond the distribution of their SFT dataset.

A key challenge in utilizing multi-view images is achiev-
ing 3D consistency, ensuring that the geometry and ap-
pearance of an object is uniform across different views.
While numerous methods have attained notable multi-view
consistency by supervised finetuning 2D diffusion mod-
els [24, 27, 28, 46, 58], their evaluation has been empirical,
lacking explicit metrics. An approach known as 3D consis-

tency scoring [52] measures the consistency of output views
by optimizing a NeRF trained on these views. However,
this method requires dense input view sampling for cross-
validation, making it unsuitable for evaluating sparse views.
To overcome this limitation, we propose the MRC metric.
MRC evaluates multi-view consistency by comparing input
images with renderings of the generated 3D objects from
corresponding views. We employ LPIPS, a perceptual im-
age distance metric [56], to quantify the image differences.
Additionally, we validate the reliability of MRC by con-
ducting extensive experiments under controlled inconsis-
tency levels. The robustness of MRC allows us to conduct
RLFT on multi-view diffusion models, which significantly
enhances their multi-view consistency.

3D models can be derived from either single or multi-
view images by optimizing the SDS distillation loss [40,
51]. However, the optimization process is notably time-
consuming, requiring multiple hours to generate a single
3D asset. In contrast, LRM [17], trained on the exten-
sive 3D dataset Objaverse [12], can efficiently reconstruct
NeRF models from a single image in a feed-forward man-
ner. In this work, we focus exclusively on text-to-3D using
feed-forward sparse-view NeRF reconstruction, specifically
employing sparse-view LRM [24]. This choice is driven
by its significantly faster performance compared to SDS-
based optimization methods and its superior quality rela-
tive to feed-forward text-to-3D diffusion models [19, 34].
We choose Instant3D [24] as our base multi-view diffu-
sion model, owing to its light-weight SFT that preserves the
strong semantic understanding and high-quality image gen-
eration capabilities of SDXL [39], similar to the instruction
finetuning stage in InstructGPT [36].
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2.2. RLFT of LLMs and Diffusion Models

RL has been widely used to finetune large pre-trained
models in NLP [2, 3, 22, 36] and CV [5, 11, 15, 38, 41, 57],
due to its advantage over SFT. SFT directly fits a model
to the distribution of the SFT dataset containing inputs and
ground-truth target data, which unavoidably causes some
degree of distribution shift [44]. On the contrary, based on
an objective function and a dataset containing only inputs,
RLFT optimizes a model beyond the limitation of a SFT
dataset by using its own outputs and effectively mitigates
distribution shift [7].

RLFT of LLMs LLMs like GPT-3 [6] are pre-trained on
the next-word prediction task on an internet-scale corpus.
While the autoregressive pre-training is a powerful self-
supervised objective that allows LLMs to extract substantial
knowledge from the internet-scale unlabeled dataset, pre-
trained LLMs can only perform the corresponding text com-
pletion task. The pre-training lacks an objective that allows
LLMs to respond to text prompts. In InstructGPT [36], the
paper behind ChatGPT 3.5, a two-stage finetuning solution
is proposed to align GPT-3 to answer instructions accord-
ing to human preferences. In the first stage, InstructGPT
employs SFT with a small dataset of hand-crafted prompt-
answer pairs. While SFT changes the model’s output dis-
tribution from text completion to answering instructions,
it also introduces hallucination [44]. This is because the
output distribution drifts too much towards the instruction-
following dataset, and the model tries to imitate the be-
havior in the data and always provide plausible answers
even when the model is uncertain about the answer [44].
To address this issue, InstructGPT opts for a light-weight
SFT stage and relies on RLFT in the second stage, using a
human-preference reward model. This approach provides
general alignment to human values and causes minimal hal-
lucination [44], because RLFT does not rely on a poten-
tially biased dataset containing fixed ground-truth answers,
but instead learns the general concept of human-preference
through the reward model. The success of InstructGPT [36]
and its analogy to the distribution shift problem in multi-
view SFT [24] motivate us to pursue RLFT for 2D diffusion
models.

RLFT of Diffusion Models Witnessing the success of
RLFT methods in LLMs [2, 3, 22, 36], recently, a few
RLFT algorithms have been proposed for text-to-image dif-
fusion models. RWR [23] is the first work to bring the hu-
man feedback reward finetuning idea to diffusion models.
While RWR only finetunes stable diffusion [42] via a sin-
gle log probability of the entire denoising process, multi-
step RLFT can be facilitated by treating the denoising pro-
cess as a multi-step MDP, as demonstrated in DDPO [5] and

DPOK [15]. Our RLFT is based on DDPO [5], while our
KL-divergence regularization is similar to DPOK [15] and
InstructGPT [36]. Furthermore, RWR, DDPO, and DPOK
all finetune SD-1.5 [42], while we finetune a much larger
diffusion model based on SDXL. We also study training
stability, a notorious challenge in both traditional RL and
RLFT [7, 59], and scaling laws [20] for RLFT.

3. Multi-view Reconstruction Consistency
In this section, we propose the Multi-view Reconstruc-

tion Consistency (MRC) metric, for quantitative and robust
evaluation of the consistency of multi-view images, which
we define to be the degree of geometry and appearance uni-
formity of an object across the views.

3.1. Evaluate Consistency via NeRF Reconstruction

NeRF [31] is widely adopted as the 3D representation
for learning text-to-3D tasks. A 3D model represented by
NeRF can be reconstructed from the view images of the ob-
ject and their corresponding camera poses. The quality of
a NeRF notably depends on the consistency of the provided
images images [31, 52] – inconsistent views lead to artifacts
in the NeRF, which includes floaters, blurring, and broken
geometry. To address this challenge, we introduce a metric
for assessing the consistency among multiple views.

The intuition behind MRC comes from the relation-
ship between multi-view consistency and the reconstructed
NeRF. As shown in Figure 3, when the multi-view images
are consistent, they can produce a well reconstructed NeRF,
preserving almost all the visual cues from the input im-
ages; therefore, the views rendered from the NeRF at the
same camera viewpoints will look the same as the original
views; conversely, when the multi-view images are incon-
sistent (e.g., intentionally introduced inconsistency in Fig-
ure 3), they will produce a NeRF with broken geometry and
floater artifacts; thus, the NeRF rendered views will look
different from the original views. Building upon this ob-
servation, we propose the MRC metric, defined as the im-
age distances between the original multi-view images and
the views of the reconstructed NeRF rendered at the same
viewpoints, as illustrated in Figure 2.

3.2. Implementation

We formulate the implementation of MRC as three parts:
fast sparse-view NeRF reconstruction, measuring image
distance between the input images and the rendered images,
and a normalization technique for the image distance. The
pseudo code for our MRC implementation is shown in List-
ing 1 in Appendix.

Fast Sparse-view Reconstruction We conduct NeRF re-
construction with sparse-view Large Reconstruction Model
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Figure 3. Qualitative correlation between MRC and inconsistency with increasing intensity, introduced by inpainting with increasing mask
sizes. Left: the four ground truth views. Right: the 4th view is inpainted with increasing area sizes, i.e. 0×0, 50×50 and 110×110 pixels.
The top row is the image after inpainting and the bottom row is the image rendered from the NeRF reconstructed with the top inpainted 4th
view and the other 3 original views. We mark the inpainting area with blue and red boxes. Since the lion’s right paw in the inpainted 4th
views look different from the other three original views, its geometry is broken in the NeRF rendered views. This difference is captured in
MRC’s image dissimilarity metric.

Figure 4. Quantitative correlation between MRC and inconsis-
tency with increasing intensity, for the object shown in Figure 3.
As inconsistency intensity rises, MRC also monotonically in-
creases.

(LRM) proposed in [17, 24]. Different from dense view
NeRF reconstruction [8, 31, 33], sparse-view LRM recon-
structs a NeRF with only 4-6 view images. Also, with its
feed-forward reconstruction, it can achieve a speed two or-
ders of magnitude faster than previous optimization-based
reconstruction methods. MRC leverages all multi-view im-
ages for both NeRF reconstruction and 3D consistency eval-
uation. Although the NeRF is reconstructed based on the
visual prior of the input multi-views images, the render-
ing from the same views still exhibits notable differences
if there is inconsistency inside the input, as shown in Fig-
ure 3.

Image Distance Metric In Section 3.1, the consistency
problem is reduced from 3D to a 2D image dissimilar-
ity problem. To measure the image dissimilarity between
the input views and their corresponding NeRF rendered
views, we utilize the perceptual image distance metric,

LPIPS [56]. LPIPS exhibits smoother value changes with
respect to the consistency of multi-view images compared
to PSNR, SSIM, L1, and L2, as shown in Figure 14 in Ap-
pendix). Such smoothness is derived from the non-pixel-
aligned computation in LPIPS, as opposed to the other im-
age distance metrics that are more pixel-aligned. Also, the
smoothness is a crucial aspect for MRC to serve as the re-
ward function in RLFT, because non-smooth, high-variance
reward functions makes the RLFT training more challeng-
ing.

Bounding-box Normalization Current multi-view diffu-
sion models [24, 28, 46, 58] target single object generation
with background. Consequently, if computing LPIPS on
the entire image, trivially reducing the object’s relative size
(as illustrated in Appendix Figure 9’s car example) can
exploit MRC, as the majority of images will be the white
background. Therefore, we propose normalizing our metric
with respect to the object’s size. Specifically, we identify
the smallest square bounding box of the foreground object
in the input view image. Then we crop both the input im-
ages and the rendered images with that bounding box, resize
them to a fixed resolution, and evaluate the LPIPS. This nor-
malization effectively prevents the reward hacking of MRC
by diminishing foreground object sizes, as shown in Fig-
ure 9 in Appendix.

3.3. Metric Experiment

The two key objectives for introducing the MRC met-
ric are (1) to assess the consistency of any multi-view gen-
erative model and (2) to enable RLFT for improving the
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consistency of multi-view diffusion models. Thus, the pro-
posed consistency metric should ideally present two respec-
tive properties: (1) MRC should monotonically increase
as inconsistency increases; (2) the MRC vs. inconsistency
curve should be smooth.

To validate the effectiveness and robustness of MRC, i.e.
whether it satisfies the two properties, we conduct evalua-
tion on sets of multi-view images with controlled level of
inconsistency. Starting from a set of perfectly-consistent
ground truth views rendered from a 3D asset from Obja-
verse [12], we manually introduce inconsistency to one im-
age. We select a portion of this image and inpaint it with an
image-to-image diffusion model1. Therefore, we get differ-
ent levels of distortion on one image, determined by the size
of the inpainting area, that corresponds to different levels of
inconsistency of the set of images.

Figure 3 shows the qualitative result on one object of our
MRC metric experiment. With increased inpainting area
size, the NeRF rendered view also shows larger image dif-
ference, which is then captured by MRC’s image distance
metric, LPIPS. Figure 4 presents the quantitative curve of
the same experiment. MRC indeed shows a monotonically
increasing pattern as the views become more inconsistent.
As shown in Figure 14, MRC constantly exhibits mono-
tonically increasing pattern, and it is also smoother than
the other MRC variants using PSNR, SSIM, L1, and L2.
For metric experiments on other distortion types, see Ap-
pendix D.

4. RLFT for Multi-view Consistency
In the previous section, we proposed a fast and reliable

multi-view consistency metric, and in this section we de-
scribe how it can be used to finetune a multi-view diffusion
model. We propose RLFT for enhancing the consistency of
2D multi-view diffusion models, using the negative MRC as
the reward function (Figure 2). Building upon DDPO [5],
we opt for its pure on-policy policy gradient algorithm over
the default partially on-policy version for substantially im-
proved training stability. To maintain proximity to the base
model, we incorporate KL divergence regularization similar
to [15, 36]. In addition, we scale up the RLFT to achieve
higher rewards by studying the scaling laws [20] of diffu-
sion model RLFT through extensive experiments.

4.1. Preliminaries on DDPO

Markov Decision Process To use RL for finetuning, we
need to formulate the task as a Markov Decision Process
(MDP). In a MDP, an agent interacts with the environ-
ment at discrete timesteps; at each timestep t, the agent
is at a state st, takes an action at according to its policy

1We use Adobe Photoshop’s Generative Fill [1] without text prompt to
add inpainting distortion, which is based on a diffusion model.

π(at|st), receives a reward rt, and transitions to the next
state st+1. Following denoising diffusion policy optimiza-
tion (DDPO) [5], the denoising process of a diffusion model
is formulated as a multi-step MDP:

st = (c, t, xt),

at = xt−1,

π(at|st) = pθ(xt−1|c, t, xt),

r(st, at) =

{
r(x0, c) if t = 0,

0 otherwise,

r(x0, c) = −MRC(x0)

where each denoising step is a timestep, c is the context, i.e.
the text prompt, xt is the image being denoised at step t,
pθ is the diffusion model being finetuned, xT is the initial
noisy image, x0 is the fully denoised image, and r(x0, c) is
the negative MRC (Listing 1 in Appendix) computed on the
fully denoised image.

Policy Gradient In order to optimize the model with re-
spect to the reward function, a family of RL algorithms,
known as policy gradient methods, are commonly adopted,
such as REINFORCE [53] and Proximal Policy Optimiza-
tion (PPO) [45]. DDPOSF is based on the vanilla policy
gradient algorithm, REINFORCE [53], also known as the
Score Function (SF). On the other hand, DDPOIS builds
upon PPO [45] and conducts multiple optimization steps per
round of data using an importance sampling (IS) estimator
and importance weight clipping.

As a common practice to reduce the variance of the pol-
icy gradients [32], DDPO [5] uses the advantages, which are
rewards normalized to have zero mean and unit variance, in-
stead of directly using the rewards. Specifically, the mean
and standard deviation statistics of the rewards are tracked
for each prompt c:

Ar(x0, c) =
r(x0, c)− µr(c)

σr(c)
(1)

DDPO’s normalizing advantage replaces the value model
that is more widely adopted in PPO-based RLHF meth-
ods [36, 50, 54]. This is similar to the recent work [25],
which shows that the value model creates unnecessary com-
putation cost that can be replaced with a simpler advantage
formulation.

By using the advantage term (Equation (1)) in place of
the reward, the DDPOSF policy gradient function is:

ĝSF = E

[
T∑

t=0

∇θ log pθ(xt−1|c, t, xt)Ar(x0, c)

]
(2)

where the expectation is taken over data generated by the
policy πθ with the parameters θ. The log probability
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Figure 5. Reward curves on the testing set with 4 different random
seeds for IS and SF versions, where negative MRC is used as the
reward. The IS version produces reward curves with high variance,
including two runs that fail to improve the reward and collapse. In
contrast, the SF version stably produces reward curves with low
variance.

a pug wearing a bee costume

Figure 6. When we only plot KL divergence without incorporating
KL regularization, we observe qualitative correlation between the
KL value and the prompt alignment degradation. Despite being
distant in the finetuning process, epoch 15 and epoch 45, which
have lower KL divergence to the base model, generates prompts
better aligned with the prompts. On the other hand, epoch 30,
which has much higher KL divergence to the base model, gener-
ates results with broken identity, i.e. the body of the pug is miss-
ing.

log pθ(xt−1|c, t, xt) can be easily obtained since the pol-
icy is an isotropic Gaussian distribution when using the
DDIM sampler [5, 47]. The DDPOIS (Equation (6) in
Appendix) function has an additional importance sampling
term than Equation (2).

Black et al. [5] choose DDPOIS as the default policy
gradient function, because it exhibits better sample effi-
ciency than DDPOSF (Fig. 4 of [5]). Such choice is con-
sistent with the use of PPO [45] in LLM RLHF litera-
ture [2, 3, 36, 50, 54].

4.2. Improvements over DDPO

While RLFT using the default DDPOIS coupled with
MRC can enhance the 3D consistency of multi-view diffu-

sion models, it still faces challenges regarding training sta-
bility, the shift of output distributions, and an unclear train-
ing scale setting to achieve optimal rewards with minimal
distribution shift. To address these issues, we propose three
improvements over DDPO [5] in this section. Given the
universal nature of these challenges in RLFT, our enhance-
ments may offer broader applicability across various tasks.

4.2.1 Pure On-policy Training

Training stability is a major challenge in both RLFT [7,
59] and traditional RL [14]. With the default DDPOIS,
our training process is evidently unstable, as shown in Fig-
ure 5. Training experiments with different random seeds
or a slight change of hyperparameters can lead to different
reward curves and qualitative results. This complicates the
training result evaluation as we cannot distinguish mean-
ingful improvement or deterioration from the variance in-
troduced by random seed.

We argue that such high variance is derived from the
multi-step update in DDPOIS [5], originally proposed in
PPO [45]. While it theoretically allows for better sample
efficiency similar to off-policy methods [45], it also causes
the training to be more unstable and the reward curves to be
more variant, because it uses data collected with the older
policy to update the newer policy. Due to the undesirable
consequences of training instability, we adopt the pure on-
policy variant DDPOSF, discarding the multi-step update
from PPO (Equation (6) in Appendix). As shown in Fig-
ure 5, DDPOSF significantly improves the training stability
of our RLFT, while maintaining a comparable sample effi-
ciency as the default DDPOIS.

Diverging from DDPO [5] and most LLM RLHF lit-
erature [2, 3, 36, 50, 54], we choose REINFORCE [53]
(DDPOSF) over PPO [45] (DDPOIS) for its superior training
stability. We provide two hypotheses behind our surprising
finding in Appendix B.3, including the difficulty of the task
reward function and the size of the model being finetuned.
The favored use of REINFORCE [53] over PPO [45] could
apply to broader scenarios that meet these two conditions.
We leave the verification of our hypotheses as future work.

4.2.2 KL Divergence Regularization

In RLFT methods, distribution shift (also known as re-
ward overoptimization) can lead to low-quality results, such
as cartoon-like, less realistic style [5] or oversaturated col-
ors and unnatural shape [15], despite achieving high re-
wards. In our case, we observe this as degradation of diver-
sity, texture details and prompt alignment after prolonged
RLFT with the MRC reward. Previous methods [15, 36]
suggest mitigating reward overoptimization by incorporat-
ing a penalty on the KL divergence between the log proba-
bilities of the outputs from the base and the finetuned mod-
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els. In our case, the base model is Instant3D-10K [24]
without any additional finetuning. By plotting the KL di-
vergence values during finetuning, we also find that KL di-
vergence correlates to the reward overoptimization problem
(Figure 6), suggesting us to adopt KL divergence regular-
ization.

Following the widely adopted implementation in LLM
RLHF [36, 54], we incorporate KL penalty into the reward
function. Subtraction of the log probabilities is commonly
used to approximate the full KL divergence [50, 54]:

KL (log pθ(x0|c, T, xT )|| log pθbase(x0|c, T, xT ))

=

T∑
t=0

log pθ(xt−1|c, t, xt)− log pθbase(xt−1|c, t, xt)

T + 1
(3)

where pθbase is the base model. We will denote this approx-
imated KL divergence term as KL(x0|c, xT ) for clarity in
presentation.

KL divergence values starts at 0 and unavoidably in-
creases as finetuning proceeds, making it hard to determine
an optimal coefficient for the penalty term. To enable a
steady KL divergence regularization throughout the finetun-
ing process, we propose to normalize the KL divergence
penalty term. This normalization ensures that the gradient
consistently favors low-KL-divergence, high-reward sam-
ples, even in the early stages when KL divergence is still
low compared to the later stages. We extend DDPO’s [5]
per prompt stat tracking to also track the mean and standard
deviation statistics of the KL divergence term in order to to
normalize it:

AKL(x0, c) =
KL(x0|c, xT )− µKL(c)

σKL(c)
. (4)

Our advantage terms now consist of both the normalized
reward and the normalized KL divergence. Our final policy
gradient function, used in our experiments, is a combination
of Equations (2) and (4)

ĝSF,KL = E

[
T∑

t=0

∇θ log pθ(xt−1|c, t, xt)

· (αAr(x0, c)− βAKL(x0, c))

]
(5)

where α and β are the coefficients for the reward advantage
and the KL advantage, respectively.

4.2.3 Scaling Laws for RLFT

The training of RL is highly sensitive to the chosen scale
setting [14], impacting various results, including the final
converged reward. Through the scaling laws identified from
extensive experiments, we scale up the amount of com-
pute (equivalent to scaling up the batch size in our case)

Figure 7. Scaling law for Carve3D’s diffusion model RLFT algo-
rithm. When we scale up the amount of compute for RLFT, the
model improves its reward smoothly under the optimal data size.
The amount of compute scales linearly with respect to the batch
size. The reward curves also become more stable (less variant)
with a larger batch size. The reward curves are reported up to
epoch 50.

to achieve the optimal reward. Although our scaling exper-
iments are only conducted with the multi-view consistency
task, our insights into the scaling laws of diffusion model
RLFT are general and can be beneficial in broader scenar-
ios.

Compute and Batch Size The reward curves from our
experiments demonstrate a positive scaling law of the
model’s reward at epoch 50 with respect to the amount of
compute (Fig. 7); the scaled up compute brings smooth im-
provement to the model’s reward, under the optimal data
sizes at each batch size. Note that the amount of compute
scales directly with respect to the batch size.

Data Size The model’s reward does not directly scale with
the data size but there exists a more complicated relation-
ship between them. As shown in Figure 7, the optimal data
size at each batch size grows as the batch size get larger,
indicating that both factors need to be scaled up in tandem;
after the optimal data size, naively continuing to scale up the
data size actually reduces the model’s reward. Surprisingly,
even when trained on a prompt set as small as a size of 10,
the model still shows generalization to the testing prompts.
We choose data size of 30 with batch size 768 in our final
experiments as it achieves the highest reward in our analy-
sis.

Training Epochs With the pure on-policy DDPOSF (RE-
INFORCE [53]), the model steadily and smoothly im-
proves its rewards throughout the finetuning process, mean-
ing that more training epochs constantly lead to higher
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Figure 8. We conducted a user study with 20 randomly selected
testing prompts and the corresponding outputs from both the base
and fine-tuned model. 15 participants took part in the study, with
a majority favoring the 3D consistency of our fine-tuned model.
Opinions are evenly split on which has better prompt alignment.

reward. However, from our qualitative results, we also
observe worse distribution shift, e.g. the degradation of
prompt alignment and texture details, as training epoch in-
creases. Due to the correlation between KL divergence
and the quality degradation (Figure 6), we stop the fine-
tuning early when a predefined KL divergence threshold
is reached. This threshold is empirically chosen based on
qualitative results. For fair comparisons, we report the re-
ward curves up to epoch 50 in Figure 7. See Appendix B.1
for the definition of epoch in RLFT, which is different from
its definition in supervised learning.

5. Experiments

In this section, knowing that Carve3D’s RLFT steadily
improves the MRC reward on the training set (Figure 5),
we aim to answer the following questions:

1. Does Carve3D’s improved MRC generalize to the
testing set?

2. Qualitatively, is Carve3D more consistent than the
base model? And comparing to longer SFT?

3. Qualitatively, does Carve3D sacrifice the diversity,
prompt alignment, and texture details of the base
model?

We quantitatively and qualitatively compare Carve3D with
three versions of Instant3D [24], with 10K, 20K, and 100K
SFT steps respectively. Instant3D-10K is both the default
model in [24] and also our base model. For fair qualitative
comparisons, results from each model are generated from
the the same initial noise. Since 20K and 100K versions of
Instant3D and Carve3D are all finetuned from Instant3D-
10K, their output tend to represent the same object when
given the same initial noise (e.g. Figures 1 and 6).

Avg MRC on Testing Set ↓
MVDream 0.1222

Instant3D-10k (Base) 0.0892

Instant3D-20k 0.0795

Instant3D-100k 0.0685

Carve3D (Ours) 0.0606

Table 1. Carve3D (RLFT with MRC reward on Instant3D-10k),
achieves substantially better MRC than baselines, which corre-
sponds to better multi-view 3D consistency. We evaluate these
text-to-multiview diffusion models on the DreamFusion testing
set, containing 414 text prompts. We generate 4 outputs for each
prompt, and the average MRC is computed over the 1656 outputs.
For each output, we use the same randomly sampled initial noise
for all models to ensure the comparison is fair.

5.1. Comparison with Base Model and Longer SFT

Quantitative Comparison and Generalization As
shown in Table 1, when evaluated on the testing set,
Carve3D achieves substantially improved MRC over
the base model. More SFT steps indeed provides better
multi-view consistency and achieves better MRC, with
Instant3D’s 100K version performing the best and 10K
version performing the worst. However, Carve3D still
outperforms even the most consistent 100K version of
Instant3D by a notable gap. This suggests that the explicit
multi-view consistency objective in MRC, paired with our
RLFT algorithm, can improve the model’s consistency
more efficiently than SFT. Furthermore, our RLFT provides
generalization of the improved multi-view consistency, al-
though only finetuned on 30 prompts. Such generalization,
also observed in [5, 36], is likely derived from the strong
knowledge from the base model.

Multi-view Consistency and NeRF Artifacts Figure 12
shows the improved multi-view consistency and the result-
ing NeRF reconstruction quality. While the multi-view im-
ages generated by the base model may be inconsistent, caus-
ing artifacts such as floaters and broken geometry, Carve3D
can fix such inconsistency in the multi-view images and
produce NeRF with clean geometry, free of artifacts. In
Figure 11, Carve3D continues to show superior multi-view
consistency and reduced NeRF artifacts, but such improve-
ment is less and further less obvious when compared to the
20K and 100K version of Instant3D [24], which aligns with
the qualitative results in Table 1.

Prompt Alignment and Texture Details By virtue of
our RLFT with KL-divergence regularization (Section 4.2),
which prevents distribution shift, and curated low-reward
prompts, which describes complex objects (Appendix C.1),
Carve3D preserves the prompt alignment and the texture
details of the base model, as shown in Figure 12. On the
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other hand, longer SFT causes additional distribution shift
in Instant3D [24] from the base SDXL [39] towards the SFT
training set [12]. As shown in Figure 11, Instant3D-20K
and Instant3D-100K exhibits degradation in diversity, real-
ism, and level of detailed textures. This quality degradation
with longer SFT is also observed in [24].

Diversity As shown in Figure 13, Carve3D can preserve
the diversity of the base model. This owes to our RLFT pro-
cess, which repeatedly samples different initial noises for
the diffusion model to generate diverse results (Figure 2).

5.2. Evaluating Existing Methods

At the time of writing, MVDream [46] is the only text-to-
multi-view diffusion model with released code and model
weights. As shown in Table 1 and Fig. 11, its outputs have
notably worse multi-view consistency, realism, and level of
details than all three Instant3D variants and Carve3D. This
supports our claim in Section 1 that current multi-view dif-
fusion models that solely rely on SFT still suffer from the
inconsistency problem and could benefit from RL finetun-
ing.

5.3. User Study

In addition to the quantitative and qualitative compar-
isons in Section 5.1, we conducted a user study to further
understand the qualitative results of Carve3D’s RLFT when
perceived by human. To run the study we randomly se-
lected 20 unseen testing prompts. For each text prompt,
we generated a pair of data from both the base and the fine-
tuned models with the same initial noise. Then, we pro-
vided both the tiled 4-view image and the turntable video
of the reconstructed NeRF to participants and asked them
the following two questions: (1) Which result is more 3D-
consistent? and (2) Which result is better aligned with the
prompt? As shown in Figure 8, 68.33% of participants be-
lieve that Carve3D’s generated results are more 3D consis-
tent than that of the base model [24]. Given that the multi-
view consistency in the base model has already been much
improved with SFT 2, the nearly 37% gain in human prefer-
ence introduced by Carve3D on randomly selected testing
prompts is impressive. Furthermore, the Carve3D finetuned
model exhibits similar prompt alignment, as participants’
votes are evenly distributed among ours, base model, and
“same”. The preservation of alignment can be attributed to
the KL divergence regularization (Section 4.2) as well as
early stopping the RLFT according to KL divergence (Sec-
tion 4.2.3).

2Please see https://jiahao.ai/instant3d/ for base model’s 3D consistency

6. Conclusion

In this paper, we propose Carve3D, an RL finetuning
method to improve the reconstruction consistency of 2D dif-
fusion models. The reward of Carve3D relies on MRC, a
novel metric that measures the reconstruction consistency
by comparing input multi-view images with the renderings
of the reconstructed NeRF at the same viewpoints. The ef-
fectiveness and robustness of MRC are also validated by
showing its correlation with intentional distortions. Lastly,
we conduct experiments and a user study to show that
Carve3D significantly improves the reconstruction consis-
tency of multi-view images and the resulting quality of the
NeRF. These enhancements are achieved without sacrificing
the prompt alignment, texture details, or prompt alignment
of the base model.

Our MRC metric can serve as a valuable tool for eval-
uating any multi-view generative methods and guiding fu-
ture developments in the field. Although we only demon-
strate our RLFT with MRC on one multi-view diffusion
model [24], it can be directly adapted to other text-to-multi-
view diffusion models; such adaptation only requires tun-
ing a few hyperparameters related to the scaling laws for
diffusion model RLFT (Section 4.2.3). Our surprising find-
ing behind the choice of REINFORCE [53] over PPO [45]
for better training stability could also be applied in broader
RLFT scenarios.

As AI models grow more powerful, it becomes more im-
portant to evaluate and improve their safety and reduce their
bias. RLFT has been widely used for LLM alignment as it
allows models to be finetuned with hard-to-specify objec-
tives and its results are generalizable without undermining
the base model’s knowledge. As the first work to use RLFT
for text-to-3D and on diffusion models at the SDXL scale,
we hope Carve3D can inspire more alignment research in
the computer vision community.
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A. Appendix Summary
In the appendix, we cover additional details of DDPO

and RLFT (Appendix B, the training data details (Ap-
pendix C.1), training details (Appendix C.2), additional
MRC metric experiments (Appendix D), ablation studies
(Appendix E), and future work (Appendix F).

B. Additional Details of DDPO and RLFT
B.1. Definitions

Following [5, 36, 45, 54], an epoch is defined as one
round of data collection (sampling), which may consists
multiple PPO update steps (training), as discussed in Equa-
tion (6) and Sec. 4.2. This definition of “epoch” is differ-
ent from the meaning in supervised learning which usually
refers to go through all data once. Since we opt for us-
ing pure on-policy training (vanilla policy gradient), as dis-
cussed in Section 4.2, we only do one training step per sam-
pling step, and thus our sampling batch size and training
batch size are equal.

B.2. DDPOIS Policy Gradient Function

By using the advantage term (Equation (1)) in place of
the reward, the DDPOIS policy gradient function is:

ĝIS = E

[
T∑

t=0

pθ(xt−1|c, t, xt)

pθold(xt−1|c, t, xt)

· ∇θ log pθ(xt−1|c, t, xt)Ar(x0, c)

]
(6)

where the expectation is taken over data generated by the
policy πθold with the parameters θold.

B.3. Hypotheses on Stability and Sample Efficiency

Diverging from DDPO [5] and most LLM RLHF lit-
erature [2, 3, 36, 50, 54], we choose REINFORCE [53]
(DDPOSF) over PPO [45] (DDPOIS) for its superior training

stability. We provide two hypotheses behind our surprising
finding.

(1) Training stability is more vital than sample efficiency
when the task reward function is more challenging. When a
reward function is more variant with respect to the model’s
output, it becomes more difficult for the model to discover
the pattern of high-reward outputs and to improve its re-
wards. The high-variance prompt alignment reward curves
in Fig. 5 of DDPO [5] indicates the challenging nature of
the prompt alignment task as opposed to the smooth reward
curves for the aesthetics and compressibility tasks in Fig. 4
of DDPO [5].

(2) The RLFT sample efficiency is less important for a
large model which requires less finetuning steps, as demon-
strated in studies of LLM instruction finetuning [10]. Simi-
larly, our RLFT on a 2.6B-parameter UNet from SDXL [39]
only takes 55 epochs, as opposed to DDPO’s [5] RLFT on a
860M-parameter UNet from SD 1.4 [42] using 200 epochs.
Therefore, the potential sample efficiency gain provided by
the multi-step update of PPO [45] gets outweighted by the
training stability provided by REINFORCE [53].

The favorableness of REINFORCE [53] could apply to
broader scenarios that fits these two conditions. We leave
the verification of our hypotheses as future work.

C. Implementation Details

C.1. Training Data

An advantage of RLFT over SFT is that, we can man-
ually create a high-quality text prompts training set, while
creating a dataset of diverse ground truth multi-view im-
ages for these high-quality text prompts is prohibitively ex-
pensive for SFT. By relying on samples generated by the
model itself to compute the reward and the loss, RLFT can
optimize a model beyond the limitation of a dataset and
preserves the diversity and the style of the base model. In
Carve3D, our training prompts preparation process involves
two strategies.

Training Data Curation Instead of randomly sampling
prompts from a dataset, we employ a data curation strategy
where prompts with lowest rewards are selected. Specif-
ically, we run inference of the base model on a prompt
dataset, generating four results per prompt, compute the
MRC rewards for each result, and sort the prompts accord-
ing to their average reward. This is derived from obser-
vation that, for certain prompts, the model generates nearly
optimal outputs with rewards close to the rewards of ground
truth views of a 3D asset [12] (Figure 4). Thus, the cu-
rated lowest-reward prompts have substantial room for 3D
consistency improvement and prevent learning stagnation.
This approach not only brings more efficient training but
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def compute_mrc(ori_views, ori_cam_poses, lrm, lpips, resize_res):
nerf = lrm(ori_views, ori_cam_poses)
nerf_views = nerf.render(ori_cam_poses)
square_bbox = compute_square_bbox(ori_views) # bounding box coordinates for each view
x_min, y_min, x_max, y_max = square_bbox
ori_views_bbox = [resize(o[:, y_min:y_max + 1, x_min:x_max + 1], resize_res) for o in

ori_views]↪→

nerf_views_bbox = [resize(n[:, y_min:y_max + 1, x_min:x_max + 1], resize_res) for n in
nerf_views]↪→

mrc = lpips(ori_views_bbox, nerf_views_bbox).mean()
return mrc

Listing 1. Pseudo code for our MRC implementation. ori views and ori cam poses are the multi-view images to be evaluated and their
camera poses. lrm is the sparse-view LRM [17, 24]. lpips the the LPIPS [56] metric. resize res is a fixed resolution to which we resize the
bounding box patches.

also provides a more generalized improvement in 3D con-
sistency to the testing set.

Creating New Training Prompt Set The prompt dataset
from DreamFusion [40], which contains 414 prompts and
is commonly used as testing set. To employ the Dream-
Fusion prompt set also as our testing set, we create a new
prompt dataset with ChatGPT4 [35]. Following our training
data curation strategy, we first sort the DreamFusion [40]
prompts according to their rewards attained by the base
Instant3D [24] model. We provide the sorted prompt set
to ChatGPT4, and ask it to summarize the characteristics
of the low-reward prompts by looking at the low-reward,
median-reward, and high-reward prompts. ChatGPT4 sum-
marizes low-reward prompts to possess properties of “com-
plex and creative”. We then ask it to generate 100 low-
reward prompts that are both complex and creative, and an-
other 100 low-reward prompts that are “complex but not too
creative”. For each set, again, we sort the prompts accord-
ing to their rewards, and select those with the lowest re-
wards to be our training prompt set. Our best results are
obtained with the “complex but not too creative” set.

C.2. Training Details

All of our RL finetuning experiments are run on 6
AWS EC2 P4de nodes with 8 NVIDIA A100-SXM4-80GB
GPUs, a total of 48 GPUs. We use batch size of 768, which
is 2x compared to that of DDPO. One experiment takes 16.5
hours to reach 55 epochs. The number of finetuning epochs
is determined by our KL-divergence early-stopping mecha-
nism, which we empirically choose to be 3.2e−4 according
to the level of reward overoptimization shown on qualitative
results.

We use minibatches of size 8 during sampling and 4 dur-
ing training due to the limited GPU memory. The total
batch size of 768 is evenly distributed among each GPU,
so that the per GPU batch size is 16. The model samples

two minibatches of size 8 on all GPUs to reach the total
batch size. Similarly, the model accumulates gradients over
four minibatches of size 4 on all GPUs, before synchroniz-
ing the gradients and performing an optimizer step. We use
a per prompt stat tracker with windows of size 76, so that
it roughly tracks all the rewards per prompt ever 3 epochs.
This is much larger than DDPO’s default tracking window
of size 32 for better training stability. The coefficients for
the advantage terms in Equation (5) are α = 1 and β = 0.2.

The rest of our RL finetuning setup follows DDPO [4, 5].
We use the AdamW [29] optimizer with a fixed learning
rate 3e − 4, β1 = 0.9, β2 = 0.999, ϵ = 1e − 8 and a
weight decay of 1e−4. The high learning rate is paired with
Low Rank Adaptation (LoRA) [18] finetuning with rank 4,
which significantly reduces the memory and computation
requirements for finetuning. We freeze all networks in the
base model and set their precision to fp16, and only fine-
tune the LoRA weights of the unet under fp32 via mixed
precision training.

Our base text-to-multiview diffusion model setup fol-
lows Instant3D [24], which uses the same architecure as
SDXL [39]. It produces images of resolution 1024x1024,
which contains four images of resolution 512x512 tiled in
a 2-by-2 fashion. Instant3D requires 100 denoising steps
during inference, doubling the required computation than
the default 50 steps for SDXL. It uses Classifier Free Guid-
ance [16] with a scale of 5.0

Our code is mainly based on DDPO’s [5] official imple-
mentation, the ddpo-pytorch [4] Github repository, which
uses Hugginface diffusers [49] and PyTorch [37] libraries.
Our KL divergence regularization implementation is in-
spired by the codebases of DeepSpeedChat [54], TRL [50],
and DPOK [15]. We thank the authors of these repositories
for releasing the high-quality implementations and promot-
ing open-sourced research. We are going to release the code
for computing MRC and our improved DDPO implementa-
tion. However, due to the fact that Sparse View LRM and
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Figure 9. Alation study on the boundingbox normalization of
LPIPS for MRC evaluation. Top: with normalization, the 3D ob-
jects keep similar size after finetuning. Bottom: without normal-
ization, the sizes of 3D objects are greatly reduced after RL fine-
tuning.

Instant3D do not plan to release their code, we have to leave
these as empty, abstract functions in our released code.

D. Additional MRC Metric Experiments

Distortion Types Here, we show the full results for the
metric experiments for the inpainting distortion (Figure 14)
discussed in Section 3.3 and Figs. 3 and 4. We also conduct
metric experiments with other distortions types: azimuth ro-
tation (Figure 15, and elevation rotation (Figure 16). In az-
imuth and elevation rotation, for one out of the four views,
we rotate the object with an azimuth or elevation rotation
by 3.6 or 4 degrees, before rendering that view, and also use
the original camera extrinsic matrix as the input to Sparse
View LRM. The quantitative results matches our expecta-
tions, where MRC (LPIPS) monotonically decreases as we
intentionally add more distortion.

LPIPS vs. Other Image Similarity Metrics Here, we
compare substituting LPIPS with L1, L2, PSNR, and SSIM
in the metric experiments on all distortion types. In the in-
painiting distortion experiments (Figure 14), which is the
most representative of diffusion model’s inconsistencies,
LPIPS is more linear than other pixel level image metrics.
In azimuth and elevation distortion experiments (Figures 15
and 16), all image metrics shows monotonically decreas-
ing pattern, while pixel-level image metrics are more linear.
This is expected as the distortion is pixel-aligned and more
structured.

Figure 10. Ablation study on KL divergence regularization. Top:
KL Divergence between the base model and the finetuned model
on testing set. Bottom: mean MRC reward on testing set. Our
KL divergence regularization does not sacrifice the model’s effi-
ciency on improving the reward. Without KL divergence regular-
ization, the finetuned model’s KL divergence to the base model on
the training and the testing set grows faster, which results in de-
graded object identity and reduced texture details.

E. Ablation Studies
Bounding Box Normalization As shown in Figure 9,
when the bounding box normalization is removed from
MRC, the model would trivially increase the reward by re-
ducing the size of the foreground object on the white back-
ground. This would lead to the model generating images
containing only the white background, after longer finetun-
ing. With bounding box normalization, the model would
learn the harder task of improving the reconstruction con-
sistency of the multiview images.

KL Divergence Regularization As shown in Figure 10
Our KL divergence regularization does not sacrifice the
model’s efficiency on improving its reward. Without KL
divergence regularization, the KL divergence grows much
faster. As discussed in Section 4.2, this leads to degraded
object identity and loss of texture details.

F. Limitations and Future Work
Carve3D is limited by the reconstruction quality of

Sparse View LRM [17, 24]. Because its reconstruction is
not perfect, this leads to non-zero MRC metric on GT views
as shown in Figures 14 to 16. Due to this limitation of
Sparse View LRM, Carve3D RL finetuned model can pro-
duce less high-frequency details than the base model in or-
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der to lower the image distance to the NeRF rendered views.
This might be solved by using a future sparse view recon-
structor that can preserve more details or training a dedi-
cated model for computing MRC.

Further increasing data size and batch size to improve
generalization of the improved reconstruction consistency
is possible. However, in this work, we are limited by the
high computation cost of SDXL [39], Instant3D’s 100 de-
noising steps, and the high number of samples needed in
DDPO. A few concurrent works could address this chal-
lenge. It is possible to substantially reduce the computa-
tion cost by switching to Consistency Models for one/few-
step inference (e.g., LCM-LoRA [30]). In addition, we can
also switch from DDPO to direct backpropagation of reward
(e.g. Align-Prop [41], and DRaFT [11]) to reduce the num-
ber of samples needed. We leave these extensions as future
work.

4



A DMC Delorean car

MVDream Instant3D-10k Instant3D-20k Instant3D-100k Carve3D

a beautifully carved wooden knight chess piece

Blender failed

a bumblebee sitting on a pink flower

a drum set made of cheese

Figure 11. Qualitative comparison of MVDream, Instant3D with 10k, 20k, and 100k SFT steps, and Carve3D (five columns) on four
prompts (four blocks separated by dotted line). In each block, we show their generated multi-view images in the 2-by-2 grid (top), re-
constructed NeRF and extracted mesh (bottom) when given the prompt (middle). When compared to the base Instant3D-10K: Carve3D
maintains the detailed texture and provides improved multi-view consistency and higher quality NeRF; in contrast, the models with pro-
longed SFT of 20K and 100K steps exhibit worse level of details and realism, while only providing slightly improved consistency.
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a frazer nash super sport car

Instant3D (Base) Carve3D (Finetuned)

a red eyed tree frog, low poly

a group of dogs eating pizza

a chihuahua wearing a tutu

a ficus planted in a pot

an egg cracked open with a 
newborn chick hatching out of it

a group of dogs playing poker

a group of squirrels rowing crew

a spanish galleon sailing on the open sea

a shiny red stand mixer

Instant3D (Base) Carve3D (Finetuned) Instant3D (Base) Carve3D (Finetuned)

a green tractor

a wide angle zoomed out DSLR photo of A red 
dragon dressed in a tuxedo and playing chess. 

The chess pieces are fashioned after robots

Figure 12. Qualitative comparison of Instant3D (the base model) and Carve3D (the model finetuned from Instant3D) on 12 prompts (in 12
blocks separated by dotted line). In each block, we show the their generated multi-view images in the 2-by-2 grid (top), the reconstructed
NeRF and the extracted mesh (bottom) when given the prompt (middle). We draw red boxes on the NeRF and the extracted mesh to
highlight the artifacts in the NeRF and the mesh, resulting from the inconsistencies in the multi-view images. Carve3D maintains the
detailed texture and provides improved multi-view consistency and higher quality NeRF than the base Instant3D.
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A completely destroyed car

A dog made out of salad

A plush dragon toy

An airplane made out of wood

Instant3D (Base) Carve3D (Finetuned)

Figure 13. Diverse results from original Instant3D (left) and our Carve3D (right) on 4 prompts (in 4 blocks separated by the dotted line).
In each block, we show the their generated multi-view images in the 2-by-2 grid (top), the reconstructed NeRF and the extracted mesh
(bottom) when given the prompt (middle). Our RLFT does not compromise the diversity of the base Instant3D model, while improving the
consistency.
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Figure 14. Quantitative correlation between five variants of MRC (our default LPIPS, as well as PSNR, SSIM, L1, and L2) and incon-
sistency introduced by inpaint distortion with increasing intensity on four objects. We take negative of the similarity metrics (PSNR and
SSIM) for easy comparisons to the distance metrics (LPIPS, L1, and L2). LPIPS constantly exhibits monotonically increasing pattern with
respect to the increased inconsistency, while other image metrics do not.
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Figure 15. Quantitative correlation between five variants of MRC (our default LPIPS, as well as PSNR, SSIM, L1, and L2) and inconsis-
tency introduced by azimuth rotation distortion with increasing intensity on four objects. We take negative of the similarity metrics (PSNR
and SSIM) for easy comparisons to the distance metrics (LPIPS, L1, and L2). All metrics constantly exhibits monotonically, steadily
increasing pattern with respect to the increased inconsistency.
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Figure 16. Quantitative correlation between five variants of MRC (our default LPIPS, as well as PSNR, SSIM, L1, and L2) and incon-
sistency introduced by elevation rotation distortion with increasing intensity on four objects. We take negative of the similarity metrics
(PSNR and SSIM) for easy comparisons to the distance metrics (LPIPS, L1, and L2). All metrics constantly exhibits monotonically,
steadily increasing pattern with respect to the increased inconsistency.
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