
DeepTree: Modeling Trees with Situated Latents
XIAOCHEN ZHOU, Purdue University, USA
BOSHENG LI, Purdue University, USA
BEDRICH BENES, Purdue University, USA
SONGLIN FEI, Purdue University, USA
SÖREN PIRK, Adobe Research, USA

Fig. 1. Illustration of our DeepTree (DeepTree) generation approach: we use a common procedural model to generate a dataset of different species (a). As part
of our algorithm, we train a neural network pipeline (b) to predict the topological and geometric properties of branching patterns based on a situated latent
space. This means that branch features are predicted locally and by only considering a single node (c). Given a node, our network pipeline is able to predict
branchlets, the branching structures of the immediate successors of a node – thereby mimicking the developmental process of a tree model (d, e). Eventually,
our algorithm will automatically terminate when a complex tree model has been generated (f). Branchlets are shown with colors in (c), (d), and (e).

In this paper, we propose DeepTree, a novel method for modeling trees
based on learning developmental rules for branching structures instead of
manually defining them. We call our deep neural model “situated latent”
because its behavior is determined by the intrinsic state -encoded as a latent
space of a deep neural model- and by the extrinsic (environmental) data that
is “situated” as the location in the 3D space and on the tree structure. We
use a neural network pipeline to train a situated latent space that allows us
to locally predict branch growth only based on a single node in the branch
graph of a tree model. We use this representation to progressively develop
new branch nodes, thereby mimicking the growth process of trees. Starting
from a root node, a tree is generated by iteratively querying the neural
network on the newly added nodes resulting in the branching structure of
the whole tree. Our method enables generating a wide variety of tree shapes
without the need to define intricate parameters that control their growth and
behavior. Furthermore, we show that the situated latents can also be used to
encode the environmental response of tree models, e.g., when trees grow
next to obstacles. We validate the effectiveness of our method by measuring
the similarity of our tree models and by procedurally generated ones based
on a number of established metrics for tree form.

CCS Concepts: • Computing methodologies→ Generative and devel-
opmental approaches; Shape analysis; Computer vision problems.

Additional Key Words and Phrases: Botanical Tree Models, Deep Learning,
Shape Modeling, Generative Methods

1 INTRODUCTION
Vegetation is ubiquitous in almost all environments, ranging from
vast outdoor landscapes to indoor spaces. Consequently, models
of trees and plants serve as essential assets in applications such as
games and movies, mixed reality, architecture and urban planning,
agriculture, and forestry, or even the training of autonomous agents.
For many applications, it is of utmost importance to define plant
models with a high degree of geometric detail to produce high-
quality renderings or model interactions with plant models, e.g.,
to plan a path around them. Procedural models have proven to
effectively capture the wide variety of plant forms found in Nature
and efficiently generate large sets of models.

Procedural and developmental modeling of vegetation in CG has
been used in diverse ways, often combined with other approaches,
such as modeling the environmental response of trees [32], the re-
construction of tree models from images or point sets [8, 19, 23],
inverse procedural modeling [45], by focusing on interactive mod-
eling with user-defined sketches [24], or by leveraging neural net-
works that compose trees of procedurally generated branching pat-
terns [22]. The breadth of these approaches is a testament to the
complexity of realistically modeling plants. However, despite the
progress, generating trees with procedural models remains an open
and challenging research problem.

1

Zhou, et al.

Our key inspiration comes from Nature’s ability to compress and
encode structural and behavioral properties into a highly compact
form, such as DNA. Bud development is intrinsically determined
by the DNA, and extrinsically by the environment (light, gravity,
nutrients), and the position in the tree hierarchy [1, 49]. The bud
development is a response to these factors; it can grow to a new
location, create lateral buds, become dormant etc. The ability of the
DNA to encode complex interactions that lead to shape as an emer-
gent 3D structure (gene expression) is one of the key open problems
in science [17]. Inspired by this problem, we seek to develop a gener-
ative model that would capture the resulting shape of the behavior.
While engineering such behavior is challenging because each tree
node experiences varying conditions, deep learning is suitable for
learning and encoding the bud’s response to such conditions.
We propose a novel deep neural model that we call “situated

latent” because its behavior is determined by the intrinsic state -
encoded as a latent space of a deep neural model- and by the extrinsic
(environmental) data that is “situated” as the location in the 3D space
and on the tree structure. We use a large dataset of 3D tree models to
train a pipeline of neural networks on branchlets – atomic branching
structures consisting of a node and its immediate children. We learn
a situated latent space, a representation that makes predictions for
branch growth based on where a branch node is located in the
growth space of a tree model. Once trained, the neural networks can
predict the topology (number of children) and geometry (position
and the branch width of children) for a single input node. The deep
neural model is a compact representation that encodes the tree
response based on the environment (extrinsic) and the positional
information within the tree structure (intrinsic). Similar to the DNA,
we encode the entire tree and its environmental response as a single
compact deep neural representation.
A new tree is generated iteratively by executing the network

on individual nodes of the branching structure. Starting from the
root node, the single network is executed for each node, and it pre-
dicts the number and positions of its children. The predicted child
nodes are added to the branch graph, and in the next iteration, the
network predicts their immediate children again. Similar to proce-
dural modeling algorithms that are also implemented recursively
or iteratively, this allows producing complex branching structures
only with a few iterations. While DeepTree learns the response of
branchlets, it is not a reconstruction method as the generated trees
are non-deterministic and only share low-level common properties
of the entire training set.
Our results show that the situated latent space can encode and

generate diverse branching patterns of multiple tree species by
successfully predicting branch growth’s primary and secondary
attributes (e.g., branching angles, internode length, branch width,
etc.). The network also predicts the termination of branches (no
immediate children) for twigs toward the outer regions of the tree
crown, which then terminates the development of a model. More-
over, we show that the situated latent space can also be used to
encode the environmental response of trees, i.e., the adaptation of
branching structures according to tropisms and obstacles in the
model’s environment.

We are not aware of any deep neural models capable of generating
3D biological tree shape. Therefore, we validate the effectiveness of

our method in encoding tree form by comparing tree models gener-
ated with a state-of-the-art procedural model, and our qualitative
results show that our method generates branching structures with
almost identical geometric properties. We measure the similarity
of branching structures based on histograms over the geometric
properties at different levels of fully developed tree models. We also
use a recently proposed perceptual metric to assess the quality of
generated tree models further.

Examples of a procedurally generated tree and a DeepTree model
are shown in Fig. 1. The DeepTree model is generated by iteratively
querying a neural network on the current set of terminal nodes.
The network predicts new branch nodes – thereby mimicking the
growth process – that are then added to the branch graph. A complex
tree model can be generated with a few iterations.

In summary, our contributions are: (1) we propose a novel method
for learning to predict the topological and geometric properties of
branchlets based on a novel neural network pipeline; (2) we show
that the learned situated latent space can be used to iteratively
generate tree models, which provides a novel way to encode and
generate tree form; (3) we validate our method through state-of-the-
art qualitative and quantitative metrics.

2 RELATED WORK
Due to the importance of vegetation in several application domains,
modeling trees and plants has received significant research atten-
tion over the past decades (see review [35]). The goal of the early
approaches was to focus on faithfully modeling the morphology
of branching structures. Approaches include fractals [2], repetitive
patterns [31], environmentally sensitive automata [10], and particle-
systems [43]. L-systems [41] – as one of the most fundamental
procedural approaches – enable to define the tree growth as a set of
parallel production rules and has been shown to allow for capturing
a wide variety of plant forms, even when considering the environ-
mental response of plants [26]. However, while L-systems are a
powerful mechanism for generating plant form, defining production
rules to generate complex trees is an elaborate task that requires
a substantial amount of knowledge, which often renders their use
for applications impractical. Early procedural models [51] aim to
address these shortcomings by combining rule-based approaches
with geometric modeling and user interaction [21]. However, they
are more specialized and do not support modeling the same range
of branching patterns. Finally, the goal of inverse procedural model-
ing [45, 46] is to automatically find the parameter values of proce-
dural models of plants through optimization schemes or to find the
production rules [11].

Recent procedural methods for plants emphasize more principled
representations [18, 57] or the underlying biological processes of
plant development. Stava et al. [45], for example, add biological
priors to their procedural model to provide more nuanced control
for shape-defining parameters. Other methods focus on the self-
organization of plants [32], their environmental response [26, 39],
the competition for resources [4, 10], or modeling features of spe-
cific types of plants [53]. The availability of more powerful graph-
ics hardware-enabled approaches that use procedural models of
plants to simulate the animation of growth [15, 37], their physical
response to wind [12, 38] and fire [36], advanced material properties

2

DeepTree: Modeling Trees with Situated Latents

Fig. 2. Overview: We use branchlets of tree models generated with a common procedural model to train our neural networks (a). To generate a tree, we
iteratively use our neural network pipeline to predict the topology and geometry of new nodes. A classification network predicts the number of new children
for a node that triggers a cascade of regression networks predicting the signatures of each child by using the output of the previous regression network (e.g.,
Regressor 2 uses the parent node signature as well as the output signature of Regressor 1). Starting with the root node, we maintain a list of active nodes. We
pop an active node from the list in each iteration and trigger the neural networks to predict its children. The children are then added to the branch graph and
the list of active nodes (b, c). The generation of a tree model stops when the classification network predicts zero children for an active node, which happens
individually for different branches (d).

of wood [50, 59], or to find efficient representations of tree mod-
els [28]. More recently, module-based tree representations -similar
to our branchlets- have gained popularity to enable simulating
complex vegetation-related phenomena, such as wildfires [14] or
climatic gradients [33].
Sketch-based and data-driven approaches often use procedural

models by guiding the generation according to the defined input data
to generate convincing branching structures. User-defined sketches
provide the intriguing advantage that plants can be modeled with
direct control to meet artistic requirements [6, 16, 30, 52]. Longay
et al. [24] propose an advanced framework to efficiently produce
complex tree models that can even run on mobile hardware. Data-
driven approaches, on the other hand, focus on solving a reconstruc-
tion task to generate plant models to faithfully match a captured tree
that can either be represented as one or several images [5, 27, 47, 48],
videos [20], or point clouds [23, 55]. More recently, it has also been
recognized that neural networks are a powerful means to guide
procedural modeling by learning bounding volumes to aid the recon-
struction from single images [19] by decomposing point clouds [22]
into semantically meaningful patterns, or by learning parameters
for the placement of plants [29]. Moreover, synthesizing large data
collections from a few examples appears to be an increasingly im-
portant pursuit [3]. Finally, some approaches also focus on defining
trees based on partially defined branching structures – procedurally
generated – to enable a level of detail schemes [58] or the processing
of large collections of plants [25].

The work of Estrada et al. [9] follows a similar objective to ours.
Their approach also uses a parametric tree-growth model to regu-
larize topology estimation for tree-like structures. However, despite
these advances, none of the existing approaches for trees and plants
uses neural networks to encode the rules and parameters for locally
encoding branching patterns for botanical tree models.

3 OVERVIEW
Our goal is to learn all possible combinations of branching patterns
as they occur from the perspective of a single node in a branch graph.
Instead of defining these patterns manually based on parameters
and rules, we employ a set of neural networks that learn to predict
the child nodes based on the developmental (growth stage, trunk
vs. twig, etc.) and environmental context (obstacles, light, gravity,
etc.) of a parent node in the branch graph. We train the networks on
branchlets, a tree node, and its immediate children (Fig.2, a). A node
is defined by all its attributes that we refer to as node signature. The
node signature serves as input to our network pipeline, and the
output is the signatures of up to three child nodes that are then used
for the generation of the next nodes.

The DeepTree neural network pipeline consists of a classification
network that predicts the topology of a branchlet, i.e., how many
children a node needs to have. We train individual regression net-
works for each child node that predict the attribute values of the
child node’s signature, i.e., their thickness, length, and growth di-
rection. The input of the first regression network is the signature
of the active parent node, and it predicts the signature of the first
child. We then query the second regression network to predict the
signature of the second child. This network receives the signature
of the active parent node and the predicted signature of the first
child from the previous step as input. This process is continued for
the number of children the classifier predicted.
The key idea behind our method is that the networks learn to

predict meaningful attributes of child nodes only based on where
the parent node – along with all its signature attributes – is located
within the tree model. Training the network with branchlets enables
the network to learn a latent space that encodes which topological
and geometric configurations are reasonable for certain locations
in the tree’s growth space. As an example, for the illustrated tree
graph (Fig. 2, a), the networks first need to predict the trunk – each
node only has one child – for the first few iterations. The further
the generation of a tree model progresses, the more the networks

3

Zhou, et al.

Fig. 3. Network architecture: our neural network pipeline consists of a classification network to predict 0-3 children for a given node (a). Depending on the
number of children, we use a cascade of regression networks (c) to predict output signatures for each child. Each regression network is defined as an MLP
(b). For each network, we use the current node’s signature, the local voxel space for the node, and the global voxel space as inputs. We add a point encoder
network to obtain a feature from local point sets and to enable predicting branchlets for reconstruction tasks.

need to predict more diverse and finer branching patterns up to the
point where only small twigs are generated (Fig. 2, b-d). Eventually,
the network also has to predict the termination of branches, which
stops the generation of a tree model (Fig. 2, d).
The objective of our pipeline is not to reconstruct a given tree

model. Instead, our goal is to propose an alternative method for
defining the rules and parameters commonly used for generating
branch graphs with procedural models. A procedural model gen-
erates a distribution of tree models based on value ranges defined
for the various parameters. A parameter value is obtained at each
growth step by sampling from the range. For complex procedural
models, the ranges of parameter values can also vary over time. For
example, to capture the impact of gravitropism, branching angles
may vary from a more narrow parameter range for the trunk to a
wider one for the thinner branches in the tree crown. Our method
aims to learn these distributions of branching patterns and how
they vary across a tree model. We use neural networks to imitate
the developmental process locally.

4 DEEP MODELING OF BRANCHING STRUCTURES
Here we introduce our framework, including a formal definition of
the used representation of trees, node signatures, the used neural
networks, and the implementation of the environmental response
of tree models.

4.1 Tree Representation
We represent tree models as a directed acyclic graph 𝐺 = {𝑁, 𝐸},
where 𝑁 are the nodes and 𝐸 the edges. Given an oriented edge 𝑒𝑖 =
(𝑛𝑠 , 𝑛𝑡) with a starting node 𝑛𝑠 and the end node 𝑛𝑡 , a hierarchical
relationship is generated. The node with no predecessor is the root
node 𝑛𝑟𝑜𝑜𝑡 . Branches are defined as chains of a varying number of
edges 𝐶 = {𝑒1, 𝑒2, . . . , 𝑒𝑚}; the length of a chain is denoted as𝑚.
We assign to each node the Hack [13] ordering number 𝑜 (also called
Gravellius ordering) that assigns 𝑜 = 0 to the trunk and one order
higher for each branch recursively (hierarchical ordering). Formally,

Fig. 4. Illustration of our tree representation: a branchlet is defined as a
node with its immediate successors (0-3 children). Branchlets can have
different geometries, depending on where they are located within a tree
model.

a node is defined as a tuple of attributes

𝑛 =
(
𝑝, 𝑡, 𝑑𝑟 , 𝑑𝑠 , 𝑞𝑝 , 𝑙𝑝 , 𝑜,𝑚𝑝 , 𝑎, 𝑣, 𝑠

)
, (1)

where 𝑝 represents the 3D position of a node in Euclidean space, 𝑡 is
the branch thickness, 𝑑𝑟 is the distance of a node to the root node
in the node hierarchy, 𝑑𝑠 is the distance to the start of the branch
(chain),𝑞𝑝 is the normalized quaternion representing the orientation
of the node w.r.t. the parent node, 𝑙𝑝 is the length of the edge to
the parent node,𝑚𝑝 is the number of children of the parent node.
Additionally, we add the global attributes: age 𝑎, gravitropism 𝑣 , and
species 𝑠 , where 𝑎 and 𝑠 are integers. We refer to the tuple 𝑛 as the
input signature of a node, which is used as the input of our neural
networks.

A branchlet is defined as a set of edges of a node and its children
𝐵 = {(𝑛𝑖 , 𝑛𝑖+1), ..., (𝑛𝑖 , 𝑛𝑖+𝑐)}. The number of children of a node is
denoted 𝑐 = 1, . . . , 3. A branchlet can also have no children 𝐵 =

{(𝑛𝑖 , ∅)}, which is required for terminal nodes. In Fig. 4, we show
renderings of branchlets with different topological and geometric
properties and where they are located within a tree model.

4

DeepTree: Modeling Trees with Situated Latents

4.2 Neural Network Pipeline
Most procedural modeling algorithms aim to produce a graph𝐺 to
define the properties of a given tree species, which is accomplished
by defining the parameters and rules for generating node topology
and geometry. For example, one may define the angle at which a
branch grows away from its parent branch as a range of values that
are then sampled randomly when the procedural model is evaluated
to generate a tree model.

Learning Topology: Contrary to common procedural approaches,
our goal is to learn the generation of branchlets – the branching
pattern for a single node 𝑛 ∈ 𝑁 of a branch graph𝐺 . To successfully
generate local branching patterns, we need to simultaneously pre-
dict the number of children (topology) and their geometric attributes
(e.g., position, thickness, and branching angle). Jointly learning the
topological and geometrical properties of a branch graph is challeng-
ing as most deep network architectures do not support generating
outputs of arbitrary lengths, and the regression of high-dimensional
outputs is difficult. Therefore, we learn the number of children and
their geometric features separately. To predict the topology of a
branchlet, we train a classification network to predict the number
of children a given parent node should have as probabilities. More
specifically, we aim to learn the mapping:

𝑓𝑐𝑙𝑎𝑠𝑠 (𝑛) : 𝑁 → X, (2)

where 𝑥 ∈ X denotes a tuple of probabilities 𝑥 = (𝑝1, 𝑝2, 𝑝3) for
each child node of 𝑛 ∈ 𝑁 . The probabilities determine whether or
not to grow a child node. The goal of this network is only to predict
the topology of a branchlet.

Learning Geometry: To learn the geometric properties of a child
node, we define the tuple 𝑢 = (𝑞, 𝑡, 𝑙), where 𝑞 denotes a normalized
quaternion representing the direction of a child nodew.r.t. the parent
node, 𝑡 is the branch thickness of a node, and 𝑙 the length of the
edge between the parent node and the child node. We refer to the
tuple 𝑢 as the output signature of a node and use it as the label for
training the regression networks.
To generate the children of a parent node, we need to predict

the geometric properties of up to three tuples 𝑢1, 𝑢2, 𝑢3 for each
potential child node. We use a cascade of up to three regression
networks to predict these tuples. The first network receives only
the input signature of a parent node as the input and is defined as:

𝑓 1𝑟𝑒𝑔 (𝑛) : 𝑁 →U1, (3)

where 𝑢1 ∈ U1 is the output tuple of the first child for a given
node 𝑛. For the subsequent children, the second and third network
also receive the predicted output signatures of the previous steps.
Consequently, the networks for the second and third child can be
defined as:

𝑓 2𝑟𝑒𝑔 (𝑛,𝑢1) : 𝑁 →U2, (4)

𝑓 3𝑟𝑒𝑔 (𝑛,𝑢1, 𝑢2) : 𝑁 →U3, (5)

where 𝑢2 ∈ U2 denotes the output tuple of the second child, and
𝑢3 ∈ U3 is the output tuple of the third child for node 𝑛 respectively.
Please note that while we did not experiment with predicting more
than three child nodes for each parent node, the architecture can be
extended as outlined here.

ALGORITHM 1: Geometry Generation.
Input: Root node 𝑛𝑟𝑜𝑜𝑡
Output: Tree graph 𝐺 .

1 Procedure:
2 Add 𝑛𝑟𝑜𝑜𝑡 to 𝐺 .
3 Add 𝑛𝑟𝑜𝑜𝑡 to list of active nodes 𝐿.
4 while |𝐿 | > 0 do
5 | 𝑛𝑎 ← Pop node from L.
6 | 𝑥 ← Predict probability of each child 𝑓𝑐𝑙𝑎𝑠𝑠 (𝑛𝑎).
7 | 𝑢1 ← Predict output signature of child 1
8 | with 𝑓 1𝑟𝑒𝑔 (𝑛𝑎).
9 | 𝑢2 ← Predict output signature of child 2

10 | with 𝑓 2𝑟𝑒𝑔 (𝑛𝑎, 𝑢1).
11 | 𝑢3 ← Predict output signature of child 3
12 | with 𝑓 3𝑟𝑒𝑔 (𝑛𝑎, 𝑢1, 𝑢2).
13 | for 𝑝𝑖 ∈ 𝑥 do:
14 | 𝛼 ← Generate a random number in the range [0, 1].
15 | if 𝛼 > 𝑝𝑖 :
16 | Make node 𝑛𝑖 with 𝑢𝑖 and add to 𝐺 .
17 | Push 𝑛𝑖 to 𝐿.
18 | end
19 | end
20 end

4.3 Iterative DeepTree Generation
We iteratively apply our network for the nodes of the branch graph
of a tree model to generate the 3D tree structure. Given the signa-
ture of a node 𝑛, the classification network predicts the number of
children that need to be generated for this node. We then use the
cascade of regression networks to predict up to three child nodes.
The output of each of the regression networks is an output signature
containing the quaternion 𝑞, the thickness 𝑡 , and the length 𝑙 , for
each child node of 𝑛. Given the position 𝑝 of a node, we can compute
the position of each child node as

𝑝𝑐ℎ𝑖𝑙𝑑 = 𝑝 + 𝑙 · 𝑑𝑓 𝑟𝑜𝑛𝑡 . (6)

The growth direction 𝑑𝑓 𝑟𝑜𝑛𝑡 and the up direction 𝑑𝑢𝑝 are:

𝑑𝑓 𝑟𝑜𝑛𝑡 = 𝑹 × 𝑑𝑖𝑛𝑖𝑡_𝑓 𝑟𝑜𝑛𝑡 ,
𝑑𝑢𝑝 = 𝑹 × 𝑑𝑖𝑛𝑖𝑡_𝑢𝑝 , (7)

where 𝑅 is the rotation matrix computed from the quaternion 𝑞. The
vectors of the initial directions 𝑑𝑖𝑛𝑖𝑡_𝑓 𝑟𝑜𝑛𝑡 and 𝑑𝑖𝑛𝑖𝑡_𝑢𝑝 are [0, 0,−1]
and [0, 1, 0] respectively. The vectors 𝑑𝑓 𝑟𝑜𝑛𝑡 and 𝑑𝑢𝑝 are used to
generate the branch mesh. The thickness is stored with the child
node and later also used to generate the branch mesh.
To generate a new tree model, a user defines the signature of

the node 𝑛𝑟𝑜𝑜𝑡 . The root node is added to a list of active nodes 𝐿.
As long as the list holds nodes, an active node 𝑛𝑎 is popped from
the list. The classification network then predicts which of the three
children should be generated; the result is returned as the tuple
𝑥 = (𝑝1, 𝑝2, 𝑝3). If a child node needs to be generated for 𝑛𝑎 , the
cascade of regression networks predicts the tuple 𝑢𝑖 for each child.

5

Zhou, et al.

Fig. 5. Eight different tree species modeled with the procedural model of Stava et al. [45] (left) and with our DeepTree approach (right). The learned situated
latent spaces allow us to generate the topological and geometric details to model a wide variety of different tree species.

The child nodes are added to the branch graph, and the list of active
nodes and the network pipeline can be queried for each node in
the subsequent iterations. The generation of a branch terminates
when the classification network predicts zero children for a node.
Pseudocode for our algorithm is shown in Alg. 1 and an illustration
of the iterative construction of a tree model is shown in Fig. 2.

4.4 Environmental Response
We use a voxel space to learn how trees grow around obstacles in
their environment [10]. We represent obstacles as bounding boxes
and generate an occupancy grid 𝑌 that encodes where obstacles
are located in the environment. We generate the occupancy grid by
testing the bounding boxes against the voxels. We use the computed
occupancy grids in two different ways. First, we obtain the 3× 3× 3
neighborhood of cells for each node as 27 binary occupancy values
denoted as 𝑍 . We then add them to our node signature 𝑛 = 𝑛 ∪ {𝑍 }.
As shown in Fig. 3 (a-b), we can use these values as additional in-
put for our classification and regression networks (magenta boxes).
Second, to obtain a global feature of the environment, we use an
additional encoder consisting of three 3D convolutional layers. The
global voxel space is a one-hot 3D vector where obstacle voxels are
marked as one and empty voxels as zero; it has a size of 323 voxels.
The tree’s root is set in the middle of the voxel space. We extract the

global feature through the additional encoder and added it to the
local feature before the dense layers for the output heads of the net-
works. Adding the global feature of the environment to our neural
networks allows us to generate environmentally sensitive tree mod-
els that can be placed arbitrarily into the environment. In contrast to
more complex models of environmental sensitivity [26, 32, 39], this
approach provides a lightweight way to generate realistic branching
structures for tree models placed in the vicinity of obstacles.

4.5 Point-based Modeling
To provide additional con-
trol for the reconstruction
and sketch-based genera-
tion of tree models, we
have equipped our neural
network architecture with
an additional point-cloud
encoder network (Fig. 3
a-b). We locally sample
points from a point cloud
of a procedurally generated tree model to train our architecture for
tree reconstruction with point clouds. For each node of a branchlet,
we define a sample radius 𝑟𝑠 to compute a sphere around a node

6

DeepTree: Modeling Trees with Situated Latents

Fig. 6. Modeling age and gravitropism: by adding priors for age and gravitropism to our node tuple 𝑛, our neural network pipeline is able to model realistic
branching structures. Here we compare a procedurally generated Oak tree at different developmental stages (a-d) and the corresponding DeepTree generated
ones (e-h). Our method can also capture the differences in branching patterns when considering different environmental factors, such as gravitropism. The
procedurally generated tree models (i-l) show the same structural properties as the DeepTree generated ones (m-p).

(inset figure). Given a point cloud of a tree, we select all points
within the sphere; the obtained local point set is denoted as 𝑃 . We
then associate the local point set to our input signature 𝑛 = 𝑛 ∪ {𝑃}
and use it as input to our architecture to obtain a point feature.
The point feature is then added to the signature embedding for the
classification and regression networks. This training setup aims
to condition the prediction of child node attributes based on the
captured local point sets. The implementation of our point encoder
follows PointNet [42]. For most of our experiments, a radius of
𝑟𝑠 = 2.0 provides the best results for reconstructing the tree models.

5 IMPLEMENTATION
Our framework is implemented as two components: the first is an
interactive framework to efficiently generate large collections of tree
models with the procedural model from [45]. Second, we use Pytorch
for developing and training our classification and regression neural
networks. Below we describe how we used these two components
of our framework to generate training data and how we trained our
neural network pipeline.
The deep learning model was trained on a single Nvidia RTX

A5000, and it took 6 hours for the regressor and 4 hours for the

classifier. Our rendering was performed on a desktop computer
equipped with an Intel(R) Core(TM) i9-9900K and Nvidia 3090 RTX.

5.1 Dataset Preparation
We used the 29-dimensional parameter space of the procedural
model from Stava et al. [45] to model eight distinct tree species:
Beech, Corkscrew, Maple, Oak, Pine, Tulip, Walnut, and Willow
(Fig. 5, left). An explanation of the parameters of the procedural
model, along with the used parameter values, can be found in the
Appx. Tab. 4 and Tab. 6. We then generate 500 unique tree models
for each species and normalize their positions (attribute 𝑝) into a
unit cube. We split these tree models into 400 for training and 100
for validation. The validation data is used for identifying optimal
hyperparameters for our neural network architectures (e.g., learning
rate, number layers, etc.). The procedural model and our DeepTree al-
gorithm only generate branch graphs. We generate a mesh out of
generalized cylinders based on the branch graph and the stored
thickness values to render images of trees with high visual quality.
The voxel space that we use for representing the environment has
32 × 32 × 32 voxels. We compute the bounding box of each obstacle
in the environment (e.g., walls) and check whether they occupy the
corresponding voxels. This results in a 3D occupancy grid.

7

Zhou, et al.

Fig. 7. Ablation study of the classification network: here, we show the impact of different attribute configurations of our node signature as an ablation study.
Training only with the attribute position (𝑝) generates a dense branching structure, and the network fails to terminate (a). Even if additional attributes such
as the root distance (𝑑𝑠) and the number of children of the parent node (𝑚𝑝) are added, the model still fails to terminate (b). c) and d): only after adding
additional attributes, such as the thickness (𝑡) or branch order (𝑜), the model generates more convincing branching structures, although some branches are
still generated into the ground. Please note that we only use the per-node attributes for this experiment and not the set of global attributes such as species (𝑠),
age (𝑎), and gravitropism (𝑣). The tree species we used for this experiment is Beech (Fig.5).

Fig. 8. Ablation study of regression networks: the selection of node at-
tributes for training the regression networks can profoundly impact the
generated branch graphs. Only using a few attributes leads to slim and
sparse branching structures (a, b). Adding more attributes to the input sig-
nature, such as the position or the order (c, d), will lead to more realistic
branching patterns. For this experiment, we used a classification network
with all parameters. The model with all node attributes is shown in Fig.7 (e).

To train the point cloud network, we generate view-dependent
(partial) point clouds for our procedurally generated tree meshes. To
generate the point scans, we mimic a LiDAR scanner that we place
on a 10m×10m ground plane outside the bounding box of a tree that
is located at the origin of the plane.We then cast rays toward the tree
by sampling points on a sphere located at the scanner position. Each
ray is tested against the surface mesh of a procedural tree model
of our dataset. This procedure generates partial point scans of our
tree models with 8k-35k points. We then sample this point cloud for
each branchlet to obtain a local point cloud with a maximum of 512
points as described in Sec. 4.5.

5.2 Training
We train the classification and regression neural networks of our
pipeline based on branchlets. We generate the branchlets by decom-
posing the generated branch graph 𝐺 . Any node in the tree graph
(with 0-3 children) can serve as a branchlet. We traverse each graph
in our training dataset and select each node along with its imme-
diate children to generate a set of branchlets B. A parent node of
a branchlet with all its attributes becomes the input signature. We
then compute the quaternion 𝑞 and the length 𝑙 based on how child

nodes are connected to the parent node of the branchlet and store
these attributes along with the thickness value 𝑡 as the output signa-
ture that is used as a label for training the regression networks. For
training the classification network, we simply obtain the number of
children attached to the parent node as the label.
Classification Network Training: we train our classification net-

work for 150 epochs jointly on the 3,200 tree models of all species.
As illustrated in Fig. 3, our classification network has three output
heads. The last layer uses a sigmoid activation function. For each
head, we aim to simultaneously predict the probability of whether a
particular child needs to be generated (0=child is omitted, 1=child is
added). We train for this objective with an MSE loss, where the label
for adding a child is 1 and 0 to omit a child node. Depending on the
species the network is trained on we obtain a child classification
accuracy of 83 - 93%.
To train this network more robustly, we use data augmentation.

We add random noise to the position with a mean of zero and std
of 0.0001. Additionally, we ensure a balanced sampling of nodes
of the same properties. Considering that nodes with a different
number of children appear with different frequencies (e.g., most
nodes may have one child), we balance the number of nodes of
each type during training to avoid network overfitting. For example,
nodes at the trunk are rarely present in our dataset compared to the
many twig nodes in the tree crown. Balancing the nodes helps to
avoid overfitting. Training the classification network takes about
four hours.
Regression Network Training: each regression network is trained

individually for 200-300 epochs on the 3,200 tree models of all
species. We trained the regression networks for up to 12 hours.
Each regression network has two output heads: the first generates
outputs for thickness and length. We train this head with an MSE
loss. The second head predicts a quaternion and is trained with
a cosine similarity loss. To avoid overfitting, we also add random
noise to the position for training the regression networks with a
mean of zero and std of 1e-4. Depending on the species the network
is trained on, we obtain an MSE of 1.2e-4 - 3e-4 (branch length and
thickness) and a cosine similarity of 0.04 - 0.20 (quaternion). The
networks are trained with the Adam optimizer, a learning rate of

8

DeepTree: Modeling Trees with Situated Latents

Fig. 9. Regrowth: our method can be used to regrow tree models to thereby adapt them to changing environmental conditions. A fully developed tree model
(a) generated with our method is pruned and can be developed anew (b) to a fully grown tree model (c) by iteratively applying our DeepTree pipeline to the
outermost nodes in the branch graph. If the tree model is placed in the vicinity of an obstacle (d) and then regrown (e), our method supports generating
environmentally sensitive tree models.

Fig. 10. Modeling with environmental sensitivity: when provided with the environment as occupancy grids, our situated latent space is able to generate
convincing branching structures to mimic the growth response of trees to obstacles in their vicinity (a-d). Similar to existing approaches, such as Pirk et al. [39]
(e), our method is also able to generate environmentally-aware branching structures.

Fig. 11. Reconstruction of tree models from point cloud data: we sample our procedural trees to generate point clouds. We then train our neural networks
with local point clouds and use them to reconstruct unseen tree models from the validation dataset.

1e-4, and a batch of 512. An illustration of our network architectures
– also including the used number of units in each layer – is shown
in Fig. 3. Please note that each of the used regression networks in
the cascade of networks (Fig. 3, c) is trained individually.

5.3 Rendering
We use the generated branch graph from the procedural model and
DeepTree to compute a surface mesh of branches from generalized
cylinders. Leaves are represented as textured quads placed along
with the outermost branches with additional procedural parameters

for their placement (e.g., phyllotaxis) [7]. All models were rendered
with a path tracer written with the Nvidia OptiX 7.4 API [34] tracing
512 rays per pixel.

6 RESULTS, EVALUATION, AND APPLICATIONS
Here, we discuss experiments on how our framework can be used
to generate tree models of different species, ages, or tropisms. We
also discuss applications for our method and show how we validate
our framework based on geometric and perceptual metrics.

9

Zhou, et al.

6.1 Results
Fig. 5 shows a qualitative comparison of eight procedurally gener-
ated tree species and the same eight species generated withDeepTree.
Our method can capture the wide variety of distinct features across
the eight tree species, including the fine nuances in shape and geo-
metric detail. Generating these species with a procedural model is
a significant modeling effort that requires manually specifying the
procedural model and carefully fine-tuning all the parameters for
each species. In contrast, our method learns the branching patterns
of all species from data by training our network pipeline.
The results shown in Fig. 6 indicate that our neural network

pipeline and the training of situated latent spaces enable capturing
the growth response of tree models and the impact of gravitropism.
By adding global priors for age 𝑎 and gravitropism 𝑣 to the node
tuple 𝑛, our pipeline can faithfully generate the structural details
for modeling different age stages (e-h) and varying degrees of grav-
itropism (m-p). Compared to the procedurally generated branching
structures (a-h) and (j-l), our method can generate branching pat-
terns with almost identical topological and geometric features.

We conducted ablation studies to analyze the impact of different
attributes in our node tuple 𝑛 during training of the classification
and regression networks. Fig. 7 demonstrates the impact of using
more or fewer parameters during the training of the classifier. For
the result shown in Fig. 7 (a), we only used the position 𝑝 attribute
for our classification network. Training the network only on this
attribute prevents the network from terminating, which results in
very dense and unrealistic branching patterns. Adding the distance
to the branch root 𝑑𝑠 and the number of child nodes of the parent
node 𝑚𝑝 by itself also does not enable training of more realistic
branching structures (Fig. 7 b) as the model still fails to predict the
correct number of children. However, by adding the branch thick-
ness 𝑡 , the network starts to successfully predict the termination
of branches, which leads to more realistic, still dense branching
structures (Fig. 7 c). When also using the other attributes, the model
starts predicting branchlet topologies and geometries that lead to
realistic branching patterns (Fig. 7 d, e). Please note that for (a) and
(b), we manually stopped the iterative generation of the models as
the neural networks would not automatically terminate. In Fig. 8,
we show a similar ablation study for the regression networks. For
this experiment, we used a classification network with all node
attributes (Fig 7, e). Only using a few attributes for training the
regression networks leads to slim and sparse branching structures
(a, b). Adding more attributes generates more realistic branching
patterns (c, d).
The result in Fig. 9 shows the usefulness of our method for con-

tent creation. After we generate a fully developed tree model with
our method (a), we can prune and regenerate the branch graph (b)
to another fully developed tree model (c). If the model is placed next
to an obstacle and then regenerated, it adapts to its new environ-
ment (d) and develops an adapted and realistic branch graph (e).
Generating a new tree model by pruning a branch graph can be re-
peated indefinitely. However, please note that each generated model
is unique – our method cannot regenerate precisely the same model.

Fig. 12. Reconstruction of a real tree from captured point cloud data: Deep-
Tree was trained on synthetic data and generated plausible tree models
from real point clouds.

Fig. 13. Comparison to AdTree [8, Fig 11 e]: we use an existing point cloud
from their paper (a-b) and show their reconstruction (c). DeepTree generates
a similar tree model (d-f).

Fig. 10 shows that our situated latent spaces can encode the envi-
ronmental response of a tree model. By adding the local and global
occupancy features, the neural network pipeline can be trained
to model the growth response of tree models to obstacles in their
environment. For this experiment, we also generated a dataset of
500 scenes (400 training, 100 validation) where obstacles were ran-
domly placed in the vicinity of the procedurally generated trees.
The procedural model accounts for the obstacles by computing the
availability of light in its environment – branches then grow into
regions where more light is available. By training with tree models
and the occupancy grid from the scene, the neural network pipeline
is able to mimic the modeling of the environmental response. Fig. 10
(a)-(d) compares our results to the method of Pirk et al. [39] (e),
where environmental sensitivity is modeled based on an inverse
algorithm. Our DeepTree learning-based approach can generate a
similar response of adapted branching structures for trees grown in
the vicinity of obstacles.

10

DeepTree: Modeling Trees with Situated Latents

Fig. 14. Different viewpoints of tree models show that DeepTree generates
tree models without dominant artifacts (e.g., half-reconstructed model) and
captures tree phyllotaxis.

Table 1. Tree model compression: our framework can regenerate the same
tree model from a root node by setting the same random seed. We show
the memory footprint of the root node (Seed Size = 52B) along with the
weights required for our neural networks (NN Size) and compare it with the
average memory footprint of a single tree model, which can either be stored
as a skeletal graph (Graph Size) or surfaces mesh (Mesh Size). We show the
average and standard deviation of the size comparison for the graph and
mesh size, having the seed and the NN as the base. The graph size is, on
average, 1.58× larger, and the mesh size is about 20.81×.

Species Seed + NN Size Graph Size # Nodes Mesh Size # Vertices

Beech 913 kB 1.85 MB 5.7k 24.08 MB 115k
Corkscrew 913 kB 1.20 MB 3.7k 15.66 MB 75k
Maple 913 kB 1.36 MB 4.2k 17.68 MB 85k
Oak 913 kB 0.78 MB 2.4k 10.18 MB 49k
Pine 913 kB 1.81 MB 5.5k 23.86 MB 114k
Tulip 913 kB 1.84 MB 5.6k 24.27 MB 115k
Walnut 913 kB 0.74 MB 2.3k 10.97 MB 53k
Willow 913 kB 1.60 MB 4.9k 20.96 MB 101k

Size (avg,std) [1,0] [1.58,0.46] - [20.81,5.78] -

6.2 Applications
Fig. 11 shows a tree reconstruction result. We use our training data
set to generate point clouds of procedurally generated tree models.
We then train our neural network pipeline on local point clouds to
provide the network with a point feature (Sec. 4.5). Training with
the point feature allows us to generate branching structures that
follow the scanned points, which also works for point clouds of real
trees, as shown in Figs. 12 and 13.
We show multiple views of the same tree models in Fig. 14 to

demonstrate that our method generates plausible tree models from
all view directions. Once trained, our framework enables the gen-
eration of tree models of a specific tree species. Moreover, Deep-
Tree generalizes the branchlet and not the entire tree. Thus, each
generated model is different. This makes our approach suitable for
generating large datasets of new models, as shown in the selection
of randomly sampled tree models in Fig. 18. Fig. 15 shows that our
method can replicate the growth of more constrained tree shapes.

For this result, we generated a dataset of 500 tree models for each
of the shown shapes, including cone (a), cube (b), and ring (c).
Finally, in Tab. 1 we show that our method can also be used

for compressing generated tree models. We compare the memory
footprint of a tree model generated by our method to common
representations for tree models, such as skeletal graphs and surface
meshes. DeepTree can deterministically re-generate the same tree
model by using the same random seed and replacing the stochastic
probability with a given number. As we only need to store the root
node and the weights for our neural networks, our method allows
us to compress tree models with a lightweight memory footprint
that is even smaller than most skeletal graphs.

6.3 Evaluation
We are not aware of any deep neural generative model for 3D tree
geometry. Therefore we compare our algorithm to the state-of-the-
art procedural model of [19, 45].We used 500 procedurally generated
tree models (P) for each species, and we generated another 500 trees
usingDeepTree (DT).We then compare their geometry and perceived
level of realism.

Geometry: We validate the geometric structure of the trees gen-
erated by our DeepTree approach by comparing their geometric
properties to the ground truth, and the results are shown in Fig. 17
and Tab. 6 (Appx.). The overall branch length varies by 11% for all
trees, the number of generated branches by 18%, branching distance
by 12%, the number of generated nodes by 11%, and the angles (in
order from the trunk) by 6%, 4%, and 6%. The variations are minor,
and it is essential to note that there is a great difference in visual
importance for the presented features, e.g., the angle of the branches
coming from the trunk has a strong effect on the overall tree shape,
the branching angle of the small branchlets is not so important. This
observation is further supported by the perceptual metrics.

Perceptual Metrics: While the geometric comparison shows that
our trees have geometric traits comparable to the ground truth, we
also want to answer whether the generated trees are perceived as
realistic by humans. While a standard and tedious approach to this
validation is to run a user study, we validate the generated trees by
recently introduced deep neural perceptual metrics ICTree [40] that
estimate the visual realism of the 3D tree models. ICTree has been
trained by a response of 4,000 human subjects, and it provides a
value between zero to one that corresponds to the perceived visual
realism of the input tree. The authors introduced view-independent
ICTreeF and image-based ICTreeI metrics. We use the ICTreeF that
uses geometric tree properties.
Tab. 2 shows the average and the standard deviation of the per-

ceived realism of the ground truth and the generated trees. The
overall perceived realism metrics of all generated trees is 0.47± 0.11
that is 4.3% different from the ground truth of 0.49 ± 0.11.

Runtime Performance: Tab. 3 shows the comparison of the runtime
performance of procedurally generated tree models and DeepTree.
The reported numbers represent the average measurements of each
method for ten models for each species. we report the measured time
that the two algorithms take to generate the branching structure
of a tree model. As shown, our method outperforms the procedural

11

Zhou, et al.

Fig. 15. Ourmethod can also replicate the growth process of form-controlled
tree models. For this result, we trained on a dataset of tree models that were
grown into meshes of cones (a), cubes (b), and rings (c).

Fig. 16. Three failure cases: if the used neural networks are not properly
trained our method tends to generate branching structures with too thin
and too long branches. Here we show examples of Oak (a), Tulip (b), and
Maple (c) trees.

algorithm for tree models of the same species and similar complex-
ity. While the procedural model is implemented with a recursive
algorithm to construct the branch graph, our method queries the
neural network pipeline of classification and a cascade of regression
networks to generate the branch graph iteratively.

Network Comparison. To validate our cascaded neural network
architecture (Fig. 3c), we compare it with a simpler architecture that
jointly trains the classification and regression networks. The archi-
tecture for this experiment is the same as shown in Fig.3a, except
that we add two additional heads on top of the joined embedding to
generate thickness and length as well as the quaternion. We trained
both architectures on all species with the same setup for loss func-
tions and data processing. With the cascaded network architecture,
we are able to obtain a classification result of 83 - 93%, an MSE
of 1.2e-4 - 3e-4, and a cosine similarity of 0.04 - 0.20, whereas, for
the joint model, we obtain a classification result of 89% - 90%, an
MSE of 0.28 - 0.51, and a cosine similarity of 1.03 - 0.51. While the
classification head is trained with similar accuracy, the regression
results are inferior. The jointly trained network immediately pre-
dicted erroneous branching that caused the termination of the tree
generation.

Table 2. ICTree perceptual validation of the ground truth and generated
trees (mean and std for the entire dataset).

Species Ground Truth DeepTree

Beech [0.47, 0.10] [0.49, 0.09]
Corkscrew [0.48, 0.11] [0.48, 0.12]
Maple [0.49, 0.11] [0.46, 0.12]
Oak [0.50, 0.11] [0.48, 0.12]
Pine [0.50, 0.11] [0.48, 0.11]
Tulip [0.49, 0.11] [0.45, 0.10]
Walnut [0.49, 0.11] [0.47, 0.10]
Willow [0.49, 0.11] [0.46, 0.10]

All trees [0.49, 0.11] [0.47, 0.11]

Table 3. Runtime performance comparison of procedurally generated
trees (P) obtained with the method of [45] and DeepTree generated trees
(DT). The runtime is reported in seconds and only includes the time required
to generate the branch graph.

Species Method Runtime # Nodes # Branches

Beech P 23 3376 777
DT 2.7 5672 1634

Corkscrew P 26 2872 751
DT 2.1 3041 566

Maple P 25 2928 861
DT 1.9 2951 817

Oak P 27 4261 1084
DT 2.1 6238 1738

Pine P 26 3506 1000
DT 1.9 3168 839

Tulip P 26 3050 726
DT 1.8 3360 773

Walnut P 27 5638 589
DT 2.0 4975 677

Willow P 30 4796 1304
DT 2.0 4975 1691

7 DISCUSSION AND LIMITATIONS
Our focus was on exploring the capabilities of neural networks to
predict branching structures by only training them on local branch-
ing patterns. Training a neural network this way learns a situated
latent space - a representation that can encode the necessary topo-
logical and geometric information to mimic branch growth. As we
have shown, a trained situated latent space can serve as a power-
ful representation capable of generating a wide range of complex
branching patterns and encoding the environmental response of
trees to obstacles in their environment.
Using situated latent spaces, our approach is orthogonal to ap-

proaches that aim to learn graph structures end-to-end. In contrast
to these approaches, our method is driven by the idea of only encod-
ing local distributions, e.g., local variations of branching patterns.
This is inspired by Nature’s ability to encode structural and behav-
ioral properties as DNA, where the DNA serves as a blueprint for
generating complex structures. DeepTree is a step in this direction
that intriguingly shows that locally learned representations can
provide an interesting modeling alternative.

Our work is also similar to graph neural networks (GNNs) in that
we also focus on predicting the topological and geometric prop-
erties of graphs. Research toward GNNs has recently gained a lot

12

DeepTree: Modeling Trees with Situated Latents

Branch length
(BL)

Branch number
(BN)

Branching distance
(BD)

Node number
(NN)

0

5000

0

5

10

0

2

0

5

0

2000

0

5

0

5

10

0

2

0

2

0

10

20

0

2000

0

10

0

5

0

5

10

0

1000

0

5

0

2

0

5

10

0

5000

0

10

0

0.5

0

0.5

0

1

0

0.2

0

1

Angle
Parent vs chil1

Angle
Parent vs child2

Angle
Parent vs child3

ICTree

0

0.5

1

0.6

0.8

1

0

1

2

0.8

0.9

1

0.2

0.25

0.3

0

0.5

1

0.6

0.8

1

0

1

2

0.6

0.8

1

0

0.2

0.4

Beech Corkscrew Maple Oak Pine Tulip Walnut Willow

0

2

0

2000

0

5

0

2

0

5

10

500

1000

0

10

0

2

0

10

20

0

1000

0

10

0

0.2

0

0.2

0

0.5

1.2

1.4

1.6

0

0.5

1

0

0.5

1

1.2

1.4

1.6

0.4

0.5

0.6

0

0.5

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

5

10

Fig. 17. Geometric and perceptual comparison of the ground truth (GT) (left bar) and the trees generated by DeepTree (DT) (the right bar).

of momentum, and many approaches aim to predict graphs and
their properties in different ways [44, 54, 56, 60]. GNNs leverage
the connectivity of vertices to their neighbors in a graph by si-
multaneously predicting vertex properties and their connectivity
information. Most of these methods focus on making predictions
for local properties in graphs to solve classification tasks. Our work
aims to simultaneously estimate the topology and the geometric
properties of graph nodes. Regressing multiple geometric attributes
remains a challenging problem that we addressed by training a
cascade of individually trained regression networks.
Our method is currently limited in three ways: first, we rely on

using data generated by a procedural model. We decided to show-
case our method on procedurally generated tree models as this is
the only way to generate a large dataset to train our neural network
pipeline successfully. To the best of our knowledge, large collec-
tions of reconstructed models from scans or images do not exist.
However, as long as the tree models are generated from branching
graphs, which is also common practice for reconstruction algorithms
and manual artistic modeling, our method can still work with the
same degree of sophistication. Moreover, DeepTree is a data-driven
method, and the training data determines the set of generated trees.
While we can generate variations via environmental changes, mod-
ifying the parameters of the intrinsic model is not possible. The
second limitation is that our method is currently unable to model
tree-tree or branch-branch interactions. Procedural models can dis-
tinguish between the intrinsic plant environment (the plant itself)
and the extrinsic (obstacles). However, as we rely on a coarse voxel

space to encode the environment, we cannot solve intricate tree-
tree or branch-branch collisions during tree generation. Finally, we
observed that our method has difficulties correctly predicting the
termination of branches for some node configurations, which gen-
erates artificial-looking branching structures (Fig. 16). While this
leads to unrealistic branching structures for some tree models, we
observed that this is highly correlated with the size of the dataset
and the training duration.

8 CONCLUSIONS AND FUTURE WORK
We have advanced tree modeling in computer graphics by intro-
ducing DeepTree, a deep-learning-based method for automatic and
adaptive tree form generation. DeepTree is inspired by Nature’s abil-
ity to encode the development of structural and behavioral features
as DNA and decides the shape generation on a local level based
on the signature of a single node and the environment. Instead of
manually defining parameters and rules – as is commonly done
in procedural modeling – our method learns branching patterns
locally as they can be observed for a single node in a branch graph.
We have shown that a situated latent space that is evaluated for a
single node in a tree graph, somewhere in the growth space of a
tree model, can generate complex tree models with similar topo-
logical and geometric features as contemporary procedural and
developmental modeling techniques.
We have shown that our method can generate a diverse set of

branching structures from different species. Adding additional infor-
mation to each node’s signature (e.g., a species identifier) shows that
our method can even be trained in a generalized manner, i.e., we

13

Zhou, et al.

Fig. 18. Random sampling: a set of tree models of the same species generated by our neural network pipeline shown from the front (top row) and top (bottom).

can jointly train our networks on multiple species and successfully
generate tree models. Furthermore, by encoding the environment,
we have shown that our situated latent space can even support
mimicking the environmental response of tree models when they
grow next to walls or other trees.
A novel way of encoding tree form opens multiple avenues for

future work. First, it would be interesting to explore how a situated
latent space can be used to support the authoring of branching struc-
tures. In our current framework, we only automatically use our net-
work pipeline. However, we could also control our network pipeline
by user-defined sketches or adapt it to dynamically changing scenes.
Second, our current architecture does not avoid inter-branch col-
lisions. To this end, it would be interesting to explore additional
global or semi-global encodings for the generated branches when
querying the networks for producing new nodes. For example, en-
coding the neighboring nodes of a node could provide an additional
feature for producing branching structures that do not collide. It
also seems promising to use our proposed algorithm of iteratively
querying a neural network pipeline to generate other objects, e.g.,
road networks or buildings.

ACKNOWLEDGMENTS
We want to thank Liangliang Nan for providing a point cloud for
the tree model from Fig. 12.

REFERENCES
[1] G. Acquaah. 2009. Principles of plant genetics and breeding. John Wiley & Sons.
[2] M. Aono and T.L. Kunii. 1984. Botanical Tree Image Generation. IEEE Comput.

Graph. Appl. 4(5) (1984), 10–34.
[3] O. Argudo, C. Andújar, andA. Chica. 2020. Image-Based Tree Variations. Computer

Graphics Forum 39, 1 (2020), 174–184.
[4] B. Benes and E. U. Millán. 2002. Virtual Climbing Plants Competing for Space. In

Proceedings of the Computer Animation (CA ’02). IEEE Computer Society, USA,
33.

[5] D. Bradley, D. Nowrouzezahrai, and P. Beardsley. 2013. Image-based Reconstruc-
tion and Synthesis of Dense Foliage. ACM Transactions on Graphics 32, 4, Article
74 (2013), 74:1–74:10 pages.

[6] X. Chen, B. Neubert, Y.-Q. Xu, O. Deussen, and S. B. Kang. 2008. Sketch-Based
Tree Modeling Using Markov Random Field. ACM Transactions on Graphics 27, 5,
Article 109 (Dec. 2008), 9 pages.

[7] O. Deussen, A. Dowden-Williams, and B. Lintermann. 2005. Digital Design of
Nature: Computer Generated Plants and Organics. Springer Berlin Heidelberg.

[8] S. Du, R. Lindenbergh, H. Ledoux, J. Stoter, and L. Nan. 2019. AdTree: Accurate,
detailed, and automatic modelling of laser-scanned trees. Remote Sensing 11, 18
(2019), 2074.

[9] R. Estrada, C. Tomasi, S. C. Schmidler, and S. Farsiu. 2015. Tree topology estima-
tion. IEEE Trans. Pattern Anal. Mach. Intell. 37, 8 (Aug. 2015), 1688–1701.

[10] N. Greene. 1989. Voxel Space Automata: Modeling with Stochastic Growth
Processes in Voxel Space. SIGGRAPH Comp. Graph. 23, 3 (1989), 175–184.

[11] J. Guo, H. Jiang, B. Benes, O. Deussen, X. Zhang, D. Lischinski, and H. Huang. 2020.
Inverse Procedural Modeling of Branching Structures by Inferring L-Systems.
ACM Transactions on Graphics 39, 5 (sep 2020), 1–13.

[12] R. Habel, A. Kusternig, and M. Wimmer. 2009. Physically Guided Animation of
Trees. 28, 2 (2009), 523–532.

[13] J. T. Hack. 1957. Studies of longitudinal stream profiles in Virginia and Maryland.
Vol. 294. US Government Printing Office.

[14] T. Hädrich, D. T. Banuti, W. Pałubicki, S. Pirk, and D. L. Michels. 2021. Fire in
Paradise: Mesoscale Simulation of Wildfires. ACM Trans. Graph. 40, 4, Article
163 (July 2021).

[15] T. Hädrich, B. Benes, O. Deussen, and S. Pirk. 2017. Interactive Modeling and
Authoring of Climbing Plants. Comput. Graph. Forum 36, 2 (2017), 49–61.

[16] T. Ijiri, S. Owada, and T. Igarashi. 2006. Seamless Integration of Initial Sketching
and Subsequent Detail Editing in Flower Modeling. 25, 3 (2006), 617–624.

[17] P. Khatri and S. Drăghici. 2005. Ontological analysis of gene expression data:
current tools, limitations, and open problems. Bioinformatics 21, 18 (2005), 3587–
3595.

[18] Š. Kohek and D. Strnad. 2015. Interactive Synthesis of Self-Organizing Tree
Models on the GPU. Computing 97, 2 (feb 2015), 145–169.

[19] B. Li, J. Kałużny, J. Klein, D. L. Michels, W. Pałubicki, B. Benes, and S. Pirk. 2021.
Learning to Reconstruct Botanical Trees from Single Images. ACM Transaction
on Graphics 40, 6, Article 231 (2021), 15 pages.

[20] C. Li, O. Deussen, Y.-Z. Song, P. Willis, and P. Hall. 2011. Modeling and Generating
Moving Trees from Video. ACM Transactions on Graphics 30, 6, Article 127 (2011),
127:1–127:12 pages.

[21] B. Lintermann and O. Deussen. 1999. Interactive Modeling of Plants. IEEE Comput.
Graph. Appl. 19, 1 (1999), 56–65.

[22] Y. Liu, J. Guo, B. Benes, O. Deussen, X. Zhang, and H. Huang. 2021. TreePart-
Net: Neural Decomposition of Point Clouds for 3D Tree Reconstruction. ACM
Transaction on Graphics 40, 6, Article 232 (2021), 16 pages.

[23] Y. Livny, S. Pirk, Z. Cheng, F. Yan, O. Deussen, D. Cohen-Or, and B. Chen. 2011.
Texture-lobes for Tree Modelling. ACM Transactions on Graphics 30, 4, Article 53
(2011), 53:1–53:10 pages.

[24] S. Longay, A. Runions, F. Boudon, and P. Prusinkiewicz. 2012. TreeSketch: inter-
active procedural modeling of trees on a tablet. In Proc. of the Intl. Symp. on SBIM.
107–120.

[25] M. Makowski, T. Hädrich, J. Scheffczyk, D. L. Michels, S. Pirk, and W. Pałubicki.
2019. Synthetic Silviculture: Multi-Scale Modeling of Plant Ecosystems. ACM
Trans. Graph. 38, 4, Article 131 (July 2019), 14 pages.

[26] R. Měch and P. Prusinkiewicz. 1996. Visual models of plants interacting with
their environment. In Proc. of SIGGRAPH. ACM, 397–410.

[27] B. Neubert, T. Franken, and O. Deussen. 2007. Approximate Image-based Tree-
modeling Using Particle Flows. ACM Transactions on Graphics 26, 3, Article 88
(2007).

[28] B. Neubert, S. Pirk, O. Deussen, and C. Dachsbacher. 2011. Improved Model- and
View-Dependent Pruning of Large Botanical Scenes. Computer Graphics Forum
30, 6 (2011), 1708–1718.

[29] T. Niese, S. Pirk, M. Albrecht, B. Benes, and O. Deussen. 2022. Procedural Urban
Forestry. ACM Trans. Graph. 41, 2, Article 20 (mar 2022), 18 pages.

[30] M. Okabe, S. Owada, and T. Igarashi. 2007. Interactive Design of Botanical Trees
Using Freehand Sketches and Example-Based Editing. In ACM SIGGRAPH 2007
Courses (San Diego, California) (SIGGRAPH ’07). 26–es.

[31] P. E. Oppenheimer. 1986. Real time design and animation of fractal plants and
trees. Proc. of SIGGRAPH 20, 4 (1986), 55–64.

14

DeepTree: Modeling Trees with Situated Latents

[32] W. Palubicki, K. Horel, S. Longay, A. Runions, B. Lane, R. Měch, and P. Prusinkie-
wicz. 2009. Self-organizing Tree Models for Image Synthesis. ACM Trans. Graph.
28, 3, Article 58 (2009), 10 pages.

[33] W. Pałubicki, M. Makowski, W. Gajda, T. Hädrich, D. L. Michels, and S. Pirk. 2022.
Ecoclimates: Climate-Response Modeling of Vegetation. ACM Trans. Graph. 41, 4,
Article 155 (2022), 19 pages.

[34] S. G. Parker, J. Bigler, A. Dietrich, H. Friedrich, J. Hoberock, D. Luebke, D. McAl-
lister, M. McGuire, K. Morley, A. Robison, and M. Stich. 2010. OptiX: A General
Purpose Ray Tracing Engine. ACM Trans. Graph. 29, 4, Article 66 (jul 2010),
13 pages.

[35] S. Pirk, B. Benes, T. Ijiri, Y. Li, O. Deussen, B. Chen, and R. Měch. 2016. Modeling
Plant Life in Computer Graphics. In ACM SIGGRAPH 2016 Courses (Anaheim,
California) (SIGGRAPH ’16). ACM, New York, NY, USA, Article 18, 180 pages.

[36] S. Pirk, M. Jarząbek, T. Hädrich, D. L. Michels, and W. Palubicki. 2017. Interactive
Wood Combustion for Botanical Tree Models. ACM Transactions on Graphics 36,
6, Article 197 (Nov. 2017), 12 pages.

[37] S. Pirk, T. Niese, O. Deussen, and B. Neubert. 2012. Capturing and animating the
morphogenesis of polygonal tree models. ACM Transactions on Graphics 31, 6,
Article 169 (2012), 10 pages.

[38] S. Pirk, T. Niese, T. Hädrich, B. Benes, and O. Deussen. 2014. Windy Trees:
Computing Stress Response for Developmental Tree Models. ACM Transactions
on Graphics 33, 6, Article 204 (2014), 11 pages.

[39] S. Pirk, O. Stava, J. Kratt, M. A. M. Said, B. Neubert, R. Měch, B. Benes, and O.
Deussen. 2012. Plastic Trees: Interactive Self-adapting Botanical Tree Models.
ACM Trans. Graph. 31, 4, Article 50 (July 2012), 10 pages.

[40] T. Polasek, D. Hrusa, B. Benes, and M. Cadik. 2021. ICTree: Automatic Perceptual
Metrics for Tree Models. ACM Transaction on Graphics 40, 6, Article 230 (Dec.
2021), 15 pages. https://doi.org/10.1145/3478513.3480519

[41] P. Prusinkiewicz and A. Lindenmayer. 1990. The Algorithmic Beauty of Plants.
Springer-Verlag New York, Inc.

[42] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. 2017. PointNet: Deep Learning on Point
Sets for 3D Classification and Segmentation. In CVPR. 77–85.

[43] W. T. Reeves and R. Blau. 1985. Approximate and Probabilistic Algorithms for
Shading and Rendering Structured Particle Systems. SIGGRAPH Comput. Graph.
19, 3 (July 1985), 313–322.

[44] H. Shao, T. Kugelstadt, T. Hädrich,W. Pałubicki, J. Bender, S. Pirk, andD. L.Michels.
2021. Accurately Solving Rod Dynamics with Graph Learning. In NeurIPS.

[45] O. Stava, S. Pirk, J. Kratt, B. Chen, R. Měch, O. Deussen, and B. Benes. 2014. Inverse
Procedural Modelling of Trees. 33, 6 (2014), 118–131.

[46] J. O. Talton, Y. Lou, S. Lesser, J. Duke, R. Měch, and V. Koltun. 2011. Metrop-
olis procedural modeling. ACM Transactions on Graphics 30, Article 11 (2011),
14 pages.

[47] P. Tan, T. Fang, J. Xiao, P. Zhao, and L. Quan. 2008. Single Image Tree Modeling.
ACM Transactions on Graphics 27, 5, Article 108 (2008), 7 pages.

[48] P. Tan, G. Zeng, J. Wang, S. B. Kang, and L. Quan. 2007. Image-based Tree
Modeling. ACM Transactions on Graphics 26, 3, Article 87 (2007).

[49] D. W Thompson. 1942. On growth and form. Vol. 2. Cambridge university press.
[50] B. Wang, Y. Zhao, and J. Barbič. 2017. Botanical Materials Based on Biomechanics.

ACM Transactions on Graphics 36, 4, Article 135 (July 2017), 13 pages.
[51] J. Weber and J. Penn. 1995. Creation and rendering of realistic trees. In Proc. of

SIGGRAPH ’95. New York, NY, USA, 119–128.
[52] J. Wither, F. Boudon, M.-P. Cani, and C. Godin. 2009. Structure from silhouettes:

a new paradigm for fast sketch-based design of trees. 28, 2 (2009), 541–550.
[53] S.-K. Wong and K.-C. Chen. 2015. A Procedural Approach to Modelling Virtual

Climbing Plants With Tendrils. Comput. Graph. Forum (2015).
[54] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu. 2021. A Comprehensive

Survey on Graph Neural Networks. IEEE Transactions on Neural Networks and
Learning Systems 32, 1 (2021), 4–24. https://doi.org/10.1109/TNNLS.2020.2978386

[55] H. Xu, N. Gossett, and B. Chen. 2007. Knowledge and heuristic-based modeling
of laser-scanned trees. ACM Transactions on Graphics 26, 4 (2007), Article 19, 13
pages.

[56] J. Xu, J. Chen, S. You, Z. Xiao, Y. Yang, and J. Lu. 2021. Robustness of deep learning
models on graphs: A survey. AI Open 2 (2021), 69–78.

[57] L. Xu and D. Mould. 2015. Procedural Tree Modeling with Guiding Vectors.
Computer Graphics Forum 34, 7 (2015), 47–56.

[58] X. Zhang, G. Bao, W. Meng, M. Jaeger, H. Li, O. Deussen, and B. Chen. 2017. Tree
Branch Level of Detail Models for Forest Navigation. Computer Graphics Forum
36, 8 (2017), 402–417.

[59] Y. Zhao and J. Barbič. 2013. Interactive Authoring of Simulation-ready Plants.
ACM Transactions on Graphics 32, 4, Article 84 (2013), 12 pages.

[60] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun. 2020.
Graph neural networks: A review of methods and applications. AI Open 1 (2020),
57–81.

A APPENDIX

Table 4. Table of parameters for the procedural model.
Param Name Description
𝐺𝑁𝐿𝐵 Number of lateral buds The number of lateral buds created per internode

during growth.
𝐺𝐴𝐴𝑀 Apical angle Mean The mean of the angle between the direction of

parent shoot and the direction of apical bud.
𝐺𝐴𝐴𝑉 Apical angle variance The variance of the angle between the direction of

parent shoot and the direction of apical bud.
𝐺𝐵𝐴𝑀 Branching angle mean The mean of angle between the direction of parent

shoot and the direction of lateral bud.
𝐺𝐵𝐴𝑉 Branching angle variance The variance of angle between the direction of par-

ent shoot and the direction of lateral bud.
𝐺𝑅𝐴𝑀 Roll angle mean The mean of orientation angle between two lateral

buds created with the same internode.
𝐺𝑅𝐴𝑉 Roll angle variance The variance of orientation angle between two lat-

eral buds created with the same internode.
𝐹𝐴𝐾𝑃 Apical bud kill probability The probability that a given apical bud will die dur-

ing a growth cycle.
𝐹𝐿𝐾𝑃 Lateral bud kill probability The probability that a given lateral bud will die

during a growth cycle.
𝐹𝐴𝐿𝐹 Apical bud lighting factor The influence of the lighting condition on the

growth probility of a apical bud.
𝐹𝐿𝐿𝐹 Lateral bud lighting factor The influence of the lighting condition on the

growth probility of a lateral bud.
𝐹𝐴𝐷𝐵 Apical dominance base The base level of auxin produced to inhibit parent

shoots from growing.
𝐹𝐴𝐷𝐹 Apical dominance distance

factor
The reduction of auxin due to the transimission
along parent shoots.

𝐹𝐴𝐴𝐹 Apical dominance age fac-
tor

The reduction of auxin due to increasing age of the
tree.

𝐹𝐺𝑅 Growth rate The expected number of internodes generated along
the branch during a growth cycle.

𝐹𝐼𝐿𝐵 Internode length base The base distance between two adjacent internodes
on the same shoot.

𝐹𝐴𝐶𝐵 Apical control base The impact of the branch level on the growth rate.
𝐸𝑃𝐻𝑂 Phototropism The impact of the average growth direction of in-

coming light.
𝐸𝐺𝐺𝐵 Gravitropism base The impact of the average growth direction of the

gravity.
𝐸𝑃𝑃𝐹 Pruning factor The impact of the amount of incoming light on the

shedding of branches.
𝐸𝐿𝑃𝐹 Low branch pruning factor The height below which all lateral branches are

pruned.
𝐸𝐺𝐵𝑆 Gravity bending strength The impact of gravity on branch structural bending.
𝐸𝐺𝐴𝐹 Gravity bending angle fac-

tor
The relation of gravity bending related to the thick-
ness of the branch.

t Desired age The expected age of the tree.

Table 5. Parameter values for each species used in our framework.
Params. Beech Corkscrew Maple Oak Pine Tulip Walnut Willow
𝐺𝑁𝐿𝐵 2 2 2 2 2 2 2 2
𝐺𝐴𝐴𝑀 0 45 0 20 0 0 20 25
𝐺𝐴𝐴𝑉 2 3 0 2 0 1 2 3
𝐺𝐵𝐴𝑀 45 45 50 30 80 30 30 15
𝐺𝐵𝐴𝑉 1 2 1 3 1 1 3 1
𝐺𝑅𝐴𝑀 120 120 110 130 120 125 120 120
𝐺𝑅𝐴𝑉 3 3 2 3 3 3 1 2
𝐹𝐴𝐾𝑃 0.0 0.0 0.0 0.01 0.0 0.05 0.1 0.0
𝐹𝐿𝐾𝑃 0.01 0.03 0.0 0.03 0.03 0.21 0.15 0.12
𝐹𝐴𝐿𝐹 0.1 0.23 0.12 0.15 0.05 0.09 0.04 0.3
𝐹𝐿𝐿𝐹 0.54 1.13 0.94 0.2 0.2 1.0 0.1 0
𝐹𝐴𝐷𝐵 0.2 0.12 0.2 0.12 0.5 0.5 0.12 0.11
𝐹𝐴𝐷𝐹 1.0 1.0 1.0 0.98 1.0 1.0 0.1 1.0
𝐹𝐴𝐴𝐹 0.5 0.3 0.5 0.3 0.3 0.3 0.3 0.3
𝐹𝐺𝑅 1.5 1.45 1.45 1.35 1.2 1.1 1.75 1.12
𝐹𝐼𝐿𝐵 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
𝐹𝐴𝐶𝐵 1.0 1.0 1.5 1.0 1.6 2.0 6.2 1.0
𝐸𝑃𝐻𝑂 0.01 0.1 0.0 0.05 0.0 0.1 0.05 0.1
𝐸𝐺𝐺𝐵 -0.25 -0.21 -0.1 -0.1 -0.09 -0.15 -0.1 0.07
𝐸𝑃𝑃𝐹 0.1 0.2 0.05 0.01 0.01 0.7 0.12 0
𝐸𝐿𝑃𝐹 0.1 0.15 0.1 0.15 0.15 0.15 0.15 0.2
𝐸𝐺𝐵𝑆 1.0 6.0 2.0 6.0 4.0 2.0 6.0 0.0
𝐸𝐺𝐴𝐹 2.0 3.0 2.0 3.0 2.0 3.0 3.0 3.0
t 35 35 40 35 45 60 40 40

15

https://doi.org/10.1145/3478513.3480519
https://doi.org/10.1109/TNNLS.2020.2978386

Zhou, et al.

Table 6. Evaluation metrics values for each species. P indicates procedurally generated models and DT DeepTree generated ones. The top row in each pair of
rows shows the mean value and the second row the standard deviation.

Params. Beech Corkscrew Maple Oak Pine Tulip Walnut Willow Total Δ
P DT P DT P DT P DT P DT P DT P DT P DT P DT

Branch length 3.30 3.75 4.47 5.92 3.34 3.69 4.16 4.61 2.92 3.41 4.44 4.80 4.84 5.13 4.43 5.19 4.50 4.04 11%
(BL) 3.16 3.31 3.48 4.29 2.70 2.75 3.44 3.97 2.67 2.88 3.56 3.40 3.81 4.67 3.46 3.97 3.77 3.36

Branch number 777 1634 751 566 816 817 1084 1738 1000 839 726 773 589 677 1304 1691 894 1092 18%
(BN) 222 308 224 95 122 42 354 194 129 65 49 33 175 259 440 495 337 527

Branching distance 1.98 2.10 2.43 3.16 1.91 2.11 2.28 2.50 1.65 1.96 2.56 2.79 2.60 2.79 2.47 2.80 2.47 2.80 12%
(BD) 1.51 1.55 1.79 2.57 1.27 1.38 1.76 1.92 0.98 1.30 2.06 2.08 1.82 2.26 2.03 2.14 2.03 2.14

Node number 1.19 1.06 1.18 1.09 1.20 1.29 1.18 1.06 1.16 1.03 1.10 1.05 1.11 1.07 1.15 1.01 1.15 1.08 11%
(NN) 0.62 0.68 0.63 0.67 0.75 0.68 0.60 0.66 0.69 0.65 0.51 0.51 0.45 0.37 0.58 0.52 0.59 0.59

Angle: parent vs child1 0.15 0.15 0.70 0.69 0.07 0.08 0.33 0.33 0.06 0.06 0.06 0.06 0.34 0.32 0.42 0.41 0.31 0.29 6%
0.10 0.11 0.17 0.09 0.03 0.04 0.08 0.05 0.04 0.04 0.04 0.04 0.10 0.06 0.15 0.06 0.24 0.19

Angle: parent vs child2 0.79 0.79 0.81 0.81 0.89 0.89 0.54 0.53 1.40 1.40 0.53 0.53 0.56 0.55 0.26 0.27 0.70 0.67 4%
0.02 0.06 0.18 0.07 0.03 0.04 0.17 0.04 0.05 0.05 0.02 0.06 0.20 0.10 0.02 0.01 0.38 0.31

Angle: parent vs child3 0.79 0.80 0.81 0.80 0.88 0.88 0.54 0.56 1.40 1.40 0.53 0.53 0.56 0.57 0.26 0.27 0.70 0.66 6%
0.02 0.07 0.18 0.10 0.03 0.05 0.17 0.09 0.05 0.07 0.02 0.04 0.20 0.18 0.02 0.06 0.38 0.32

16

	Abstract
	1 Introduction
	2 Related Work
	3 Overview
	4 Deep Modeling of Branching Structures
	4.1 Tree Representation
	4.2 Neural Network Pipeline
	4.3 Iterative DeepTree Generation
	4.4 Environmental Response
	4.5 blackPoint-based Modeling

	5 Implementation
	5.1 Dataset Preparation
	5.2 Training
	5.3 Rendering

	6 Results, Evaluation, and Applications
	6.1 Results
	6.2 Applications
	6.3 Evaluation

	7 Discussion and Limitations
	8 Conclusions and Future Work
	Acknowledgments
	References
	A Appendix

