Modeling Plant Life in Computer Graphics

Reconstruction and Inverse Procedural Modeling

Siggraph 2016 Course

Sören Pirk, Bedrich Benes, Takashi Ijiri, Yangyan Li, Oliver Deussen, Baoquan Chen, Radomír Měch

Overview

Reconstruction and Inverse Procedural Modeling [30 minutes]

- From CT scans, flowers (ljiri)
- From point sets (Pirk, Chen)
- Inverse Procedural Modeling (Mech, Benes)

Flower Modeling via X-ray Computed Tomography

 Takashi Ijiri, Shin Yoshizawa, Hideo Yokota, Takeo Igarashi. Flower Modeling via X-ray Computed Tomography, ACM Trans. Graph. Volume 33, Issue 4, Article No. 48, July 2014.

Background

Flower and plant modeling is important topic in CG

• CG Scene design / Simulation / Electric encyclopedia

Flower modeling is difficult

Goal- Reconstruct complicated and realistic flowers **Approach** Use X-ray CT

Render the Possibilit

Fix a sample on a tube

Scan the sample by industrial CT Matsusada precision: *µRay8700*

Obtain occlusion-free flower CT volume image

Challenge – Segment volume into flower components

Flower components

- Thin shapes
- Similar CT intensity
- Contact one another

Render the Possibilities

SIGGRAPI

Key idea – Approximate flower components with simple primitives

Present a UI to place primitives Present novel active curve/surface to fit primitives

Modeling Petals & Sepals

Petal often appears as a curve on a horizontal cross section

The user places CPs on a curve of the target petal

 \rightarrow Beam/boundary curves & active surface is computed

Active curves C(t)

Interpolate CPs $(\mathbf{q}_1, \mathbf{q}_2, ..., \mathbf{q}_M)$ smoothly

Trace their targets regions

Active surface S(2, 1 Interpolate curve network Trace target region

$$E_{c} = \int_{\Omega_{c}} \frac{1}{2} |\mathbf{C}''(t)|^{2} + \alpha |\mathbf{C}'(t)^{T} \mathcal{M}(\mathbf{C}(t))\mathbf{C}'(t)| dt$$

Smoothing effects
$$E_{s} = \int \int_{\Omega_{s}} \frac{1}{2} (\mathbf{S}_{uu}^{2} + 2\mathbf{S}_{uv}^{2} + \mathbf{S}_{vv}^{2}) + \beta |\mathbf{B}\mathbf{S}_{u} \times \mathbf{B}\mathbf{S}_{v}| dudv$$

Render the Possibilities

Results

Present a flower modeling method via X-ray CT scanner

Achieved to reconstruct flowers with complicated structures

Our CT volumes are available Google "Flower CT volume library"

Texture-lobes for tree modelling

Livny, Y., Pirk, S., Cheng, Z., Yan, F., Deussen, O., Cohen-Or, D., Chen, B. (2011) Texture-lobes for tree modeling. ACM Trans. Graph. 30, 4, 53:1–53:10.

Reconstruction of Urban Scenes

Real Tree

3D Point Cloud

3D Point Sets

From Point Sets to Meshes

3D Point Cloud

3D Tree Model

A Tree is Complex

Cluster-based Representation

Separate leaf-points and branch-points.

Minimum-weight spanning tree over the input.

Determine thickness of branches based on allometric rules.

Set of Clusters Skeletal Graph **Cluster-based** Representation

[Livny et al. 2011]

Pipeline

Resource Requirements

Cluster-based Representation

Species Information

Reconstruction

Reconstruction

Procedurally-generated Branching Structure Branch Library

Leaf Cluster

Mesh Construction

CPU GPU

Dynamic Level of Detail

[Cook et al. 2007]

Camera View

Object View

Results: Delonix

Urban Reconstruction

W YOUR BARRIEL MUNILING

Analyzing Growing Plants from 4D Point Cloud Data

 Li, Y. Fan, X., Mitra, N. J., Chamovitz, D., Cohen-Or, D., Chen, B. (2013).
Analyzing growing plants from 4D point cloud data. ACM Trans. Graph. 32, 6, Article 157

Time-lapse images of growing plants

Render the Possibilitie

Video courtesy to **Neil Bromhall** on Youtube: Sycamore seedling growing time lapse

Time-lapse of 3D Point Cloud (4D Point Cloud)

Charactering Plant Growth (1)

- •Quantitative properties
 - Area, volume, etc.
 - Better in organ level

Huge amount of work!!!

Charactering Plant Growth (2)Growth events (qualitative changes)

Challenges

- Large deformation (violating incompressibility assumption)
- Large topology change
- No shape template

- Growth events
 - Subtle start (ending)

SIGGRAP

- Similar, but not same
- Ambiguities

Scanning system (1)

Detecting growth events \rightarrow counting organ number

Counting organ number \rightarrow point cloud segmentation

SIGGRAP

Leaf-stem classification Binary labelling problem Individual organ segmentation Multi-labelling problem

Leaf-stem classification: discriminative feature

Leaves are more "flat"! Find $f_B: P^t \to \{L, S\}$ $f_B(p^t) = \begin{cases} S, \text{ if } C(p^t) > t \\ L, \text{ if } C(p^t) \leq t \end{cases}$

Curvature $C(p^t)$ of Plant Points
Mature leaves are more "flat" than stems. SIGGRAPH New leaves can be less "flat" than some stems.

- Fwd analysis: detecting strong evidences
- Bwd analysis: smarter with the "after-effect"

Leaf-stem classification: MRF with known labels

Find
$$f_B: P^t \to \{L, S\}$$
, that minimizes

$$E(f_B) = \sum_{p^t \in P^t} D_{p^t} (f_B(p^t)) + \sum_{p^t, q^t \in N_{P^t}} V(f_B(p^t), f_B(q^t)),$$

where $N_{P^t} = \{(p^t, q^t) \in Delaunay(P^t): |p^t - q^t| < 3 \text{mm}\}.$

Leaf-stem classification: data term (1) $D_{p^{t}}(L) = \begin{cases} max(R(p^{t}) - R(L_{l^{*}}^{t \pm 1}), 0), & if \Phi > 0 \\ R(p^{t}) - \Re_{L} & if \Phi = 0 \end{cases}$ $D_{p^{t}}(S) = \begin{cases} max(R(S_{s*}^{t\pm 1}) - R(p^{t}), 0), & if \Phi > 0 \\ \Re_{S} - R(p^{t}), & if \Phi = 0 \end{cases}$ where $\Phi = |\{L_{l}^{t \pm 1}\}| \times |\{S_{s}^{t \pm 1}\}|.$

- **Spatial** and **temporal** adaption.
- Rarely relies on **global parameters**.

Ø

Label hypothesis generation + MRF optimization

Individual leaf segmentation (1)

Individual leaf = one connected component (true, if the leaves don't touch each other)

Transfer leaf information over time

Render the Possibilities **SIGGRAPH**201

[Organ Properties for Simulation]

[Synthesizing Live Plants]

Future work: quantitative analysis

An important constraint is missing here: the volume of each organ should change gradually!

Inverse Procedural Modeling of Trees

Stava, O., Pirk, S., Kratt, J., Chen, B., Měch, R., Deussen, O., & Benes, B. (2014). *Inverse procedural modeling of trees*. In Computer Graphics Forum (Vol. 33, No. 6, pp. 118-131).

Procedural Modeling

Angre (co	owif . set angle used by + and - below to sob/(coowif	
Axiom={CO Axiom {CO	MMANDS} : set starting set of commands to {COMMANDS} MMANDS} : set starting set of commands to {COMMANDS}	
{COUNT}+ {COUNT}-	: turn left {COUNT} times. if {COUNT} is omitted, use 1 : turn right {COUNT} times. if {COUNT} is omitted, use 1	
	: turn 180 degrees or the largest possible turn < 180 degree	
f	: draw a line using the current direction/length	
g	: move forward instead of drawing	
\{ANGLE}	: turn left {ANGLE} degrees	
/{ANGLE}	: turn right {ANGLE} degrees	
d	: draw a line using the current direction/length	
m	: move forward instead of drawing	
[: save state (position, angle, size, etc.)	
1	: restore state	
1	: reverse the meaning of '+' and '-' and '\' and '/'	
@{SCALE}	: multiply the current line length by {SCALE}	
@q{SCALE}	multiply the line length by the square root of {SCALE}	
@I{SCALE}	: multiply the line length by the reciprocal of {SCALE}	
c{INDEX}	: set color map index to {INDEX}	
<{COUNT}	: increment color map index by {COUNT}	
>{COUNT}	: decrement color map index by {COUNT}	
	{COMMANDS} : associate {COMMANDS} with character {LETTER}	

Processe Parblo Headler and Modeling

Developmental Model

- Captures new biological findings [Cline et al. 2006, Cline et al. 2009]
- Geometric, environmental and bud fate parameters

Apical Bud

• Patch-based foliage modeling [Livny et al. 2011]

Lateral Buds

Developmental Model

Growth Rate Internode Length Internode Angle Factor Apical Control Level Apical Dominance Factor

•••

Gravitropism Phototropism Pruning Factor Low Branch Pruning Factor Gravity-bending Strength

...

Params Apical Angle Variance Number of Lateral Buds

Number of Lateral Buds Branching Angle Mean and Variance Roll Angle and Variance Apical and Lateral Light Factor

...

Developmental Model

Optimization

- Find parameters for developmental model
- Maximize similarity between input and generated instance
- What does similar mean?

Fitness function based on geometry, shape and structure

Shape Distance

- Crown shape affected by distribution of branches
- Divide tree into slabs to capture variance
- Compute shape descriptors for each slab:

Height, radius, principal directions, leaf-branch density

Geometric Distance

- Statistics of branch geometry computed from the tree graph
- Sample weight based on length and thickness of a branch
- Descriptors are defined as mean and variance of these samples

Name	Formula
Length	$\sum_{i=1}^k d_i$
Thickness	$\max_{\forall d_i} t_i$
Deformation	$\sum_{i=1}^{k-1} lpha_i$
Straightness	$\frac{ \vec{d}_{SE} }{b_L}$
Slope	$\angle ar{d}_{SE}$
Sibling Angle	β_S
Parent Angle	ω_S

Structural Distance

- Transform graph T1 into graph T2
- Costs for transforming the nodes (edit distance)
- Possible transformations:
 assign, insert, delete
- Quickly loses accuracy when geometric resolution differs

a3 a6 a5 b4 b2 a2 b3 a4 b5 b1 **b0** a0 T1 Τ2 Edit distance Trees $\frac{d_N(t_1, t_2)}{2 \max\left(d_N(t_1, \varepsilon), d_N(\varepsilon, t_2)\right)}$ $d_T(au_1, au$ Structure-based distance Roots

[Zhang 1996, Ferraro and Godin 2000]

Similarity Measure

- The sum of shape-, geometry and structure-based distances
- Corresponding weights for each distance (w_S, w_G, w_T)
- Results generated with equal weight

Optimization of Parameters

- Find parameter set that generates "similar enough" tree models
- Simulated annealing
- Stochastic sampling based on Metropolis-Hastings
- Solve approximate optimization problem:

$$\underset{\bar{\varphi}_{\mathcal{M}},t}{\operatorname{argmin}} \left(\sum_{\omega_j} D_T \left(\tau^r, \tau^{\mathcal{M}}(\omega_j) \right) \right)$$

Results

1. X.

Environment

Interpolation of Parameters

Different Species

