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Text S1

Adjunction (proof)

We provide a proof of adjointness adapted from [1] to the more general case where actions also vary.
Here, we write (X*, -, €) for the free monoid on the set X with binary associative operator - and identity
€.

Definition (ASet). The category ASet (sets with actions) has objects (@, X, d) that consist of a
set @, and a set X whose members “act on” members of @, and a map J : Q@ x X — @Q, which specifies
these actions. Thus, if ¢ € Q and x € X, then d(q,z) € @ is the result of x acting on ¢g. The morphisms
of ASet are the functions (g, p) : (@, X,0) — (R,Y,~), that is, pairs of maps g: @ > Rand p: X — Y,

such that the following diagram commutes:

4

QxX

Q
A4
R

R><Y7—>

where the identity morphism 1¢ x s is the pair of identity maps (1¢g, 1x), and compositions are defined
component-wise. That is, the composition of (g, p) : (Q, X,0) — (R,Y,7) and (h,0) : (R,Y,~) — (S, Z,§)
is (h,o)o(g,p): (Q,X,d) — (S,Z,£), and it is indeed an ASet morphism, that is, the following diagram

commutes:

QxX Q (2)

It is straightforward to prove that ASet is a category, by showing the morphisms satisfy the laws of
identity and associativity.

Definition (run map). The run map of an object (Q, X, d) is the unique map §* : Q@ x X* — Q,



Categorial compositionality 2

defined inductively by:

*(q.e) = q, Yqe@ (3)

0 (gyw-[z]) = (0% (q,w),x), VgeQ,we X" zeX. (4)

If we regard X as a subset of X*, i.e. as the part of X* consisting of “lists” of length 1, then 6*(q, [z]) =
0*(q, e [x]) = 6(6*(q,¢€),x) = 0(q, ), so §* does indeed agree with § on Q x X C @ x X*.

It is immediate that if (Q, X, ) is an ASet, then so is (Q x X™*, X, g, x), where pg x : (QxX*)xX —
Q x X*, such that g x : (g,w),z) — (g, - [z]).

Proposition. If (@, X, ) is an ASet, then the following diagram commutes:

HQ,x

(Qx X*)x X Qx X* (5)

5*Xlxi \L6*
Qx X . Q

That is, (6*,1,) is a morphism of ASets.
Proof. Forallge Q, we X*, xz € X,
8 o pg x((q,w),x) = 6" (g, w - [z]) (definition of ug x)

=6(6"(q,w), x) (Equation 4)
=00 (6" x 1x)((¢g;w), x) O

Recall the forgetful functor U : ASet — Set x Set, such that U : (T, Z,() — (T, Z).

Theorem. Define a functor F' : Set x Set — ASet as follows: Fy : (Q,X) — (Q x X*, X, pg.x)-
A Set x Set morphism is a pair of maps (j,7) : (@, X) — (R, Y),ie,j:Q — Rand7: X — Y.
The result of applying F1 : (Q X X*, X, ugxx+.x) — (R X Y*Y, urxy+y) to the morphism (j,7) is
(j x 7*,7). Define 1 : 1aget — U o F on each object (@, X) to be ng x : (¢,z) — ((¢,€),z). Then F is
the left adjoint of U, and 7 is the unit of the adjunction. F(Q, X) is called the free ASet on (@, X).

Proof. It is routine to check that Fy(j,7) is an ASet morphism. To prove that F' is the left adjoint,
we have to show for any ASet (R,Y,v),s0v: RxY — R, and any pair of maps (g, p) : (@, X) — (R,Y),

where g : Q — Rand p: X — Y, that there exists a unique morphism of ASets ¢ : (Q x X*, X, ug x) —
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(R,Y,7), such that (g,p) = U(¥) o ng,x. Such a morphism 1) must consist of a pair of maps, ¢ = (h, x),
where h: @ x X* — R, and x : X — Y. So, we are looking for a unique morphism ¢ = (h, x), such that

(g,p) = (h,x) ong,x, that is, the following diagram commutes:

(Q,X) —(Q x X*, X) (Qx X*, X, 1g.x) (6)
|
k J{(m) K’
g, Y
(R,Y) (R,Y,7)

and since ¢ = (h, x) is a morphism, such that the following diagram also commutes:

Hoxx* X

(Q@x X*)x X Qx X* (7)
-] :
RxY p” R

We have to show that the commutativity of Diagrams 6 and 7 determines 1 uniquely. Diagram 6 says

that forall g€ Q, x € X

(ha X) ° nQ,X(qa ’JJ) = (gv p)(Qa IE)
Le.,  (h,x)((g:€),2) = (9(q), p(x))

ie,  (h(g,6),x(x)) = (9(q), p(x)).

Thus, Diagram 6 forces, for all z € X, x(z) = p(z), i.e., x = p, and for all ¢ € Q,

h(g,€) = g(q)- (8)

Equation 8 forms the base part for the recursive definition of h.

Following the clockwise path in Diagram 7 applied to ¢ € Q, w € X*, x € X gives us ho
toxx+x((qg,w),z) = h(g,w - [z]), by definition of x. Following the anticlockwise path in Diagram 7
gives us, since x = p, 7o (A x X)((g,w),) = 7 o (b, p)((¢, w), z) = Y(hlg, w), p(x)). Commutativity of

Diagram 7 requires these two paths to be equal, i.e.,

h(g,w - [a]) = y(h(q, w), p(x)). (9)



Categorial compositionality 4

This equation provides the recursive part of the definition of h. So, if h exists, then it satisfies Equations 3
and 9.

The length of a string w was defined in Diagram 11. It is now straightforward to prove by induction
on the length of w that h(q,w) = v*(g(q), p*(w)), for all ¢ € Q, w € X*, where v* : R x Y* — R is the
run map of (R,Y,~).

Base: If length(w’) = 0, w’ =€, so h(g,w") = h(g,€) = g(q). But, v*(g9(q), p*(w")) = v*(9(q), p*(€)) =
v*(g9(q),€) = g(q), by definition of the run map ~*, so in this case h(g(q),€) = g(q). So, the base case is
proven.

Inductive step: If length(w’) > 0, then w’ = w - [z] for w € X*, z € X, so

h<Q7 w/) = h(va . [‘T])
= v(h(q,w), p(x)) (Equation 9)
=~v(v*(g(q), p"(w)), p(x)) (induction hypothesis)

=7((9(q), p" (w) - p(x)) (definition of )

=((9(a), p*(w - [2]) (definition of p*)
=((g(q), p* (w")). (as required)
As the base and inductive cases are proven, the principle of induction establishes the result. O
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