
S2 Computational models

The SAR model expresses the BOLD signal y = (yi) as a linear combination of the fluctuations within other regions [1, 2]

yi = k
∑

j 6=i

Dijyj + σνi. (1)

k is a parameter of spatial autoregression, σ is the noise level, and the νi’s stand for uncorrelated realizations of Gaussian
noise with zero mean and unit variance. y is further assumed to be multivariate normal with zero mean and covariance
matrix that can be calculated from Eq. (1) as

σ2(I− kD)−1(I− kD)−t, (2)

where I stands for the identity matrix and “−t” is the inverse of the regular matrix transposition. In the simulations, σ
was set to one.
The Wilson-Cowan model explores large ensembles of excitatory (E) and inhibitory (I) neurons using a mean-field
approach [3, 4]. The dynamics is governed by the following equations:

τE
∂Ei(t)

∂t
= −Ei(t) + φ



Ib + k
∑

j

DijEi(t− τij)− Ii(t)



+ σνi

τI
∂Ii(t)

∂t
= −Ii(t) + φ [ωIEi(t)] + σνi,

with Dii = ω+/k, and where τE and τI correspond to the time constant (or scale) of the excitatory and inhibitory
population, respectively. ωI is the action level of the excitatory population on the inhibitory population, ω+ the self-
retroaction of excitatory population. Ib is a diffuse spontaneous background input. τij is the propagation delay between
regions i and j, based on the average fiber tract length between regions scaled by axonal velocity, v, i.e., τij = Lij/v.
νi is a random fluctuating input accounting for sources of biophysical variability and was defined as in the SAR model.
The transfer function φ accounts for the saturation of firing rates in neuronal populations and is modeled by a sigmoid:
φ(x) = c[1 − e−a(x−b)]−1. Parameters were set to: τI = τE = 20 ms; ωI = 0.5; ω+ = 0.5; v = 10 m/s; Ib = 0; σ = 0.25;
a = 5; b = 0; and c = 2.
The rate model is a simplification of the Wilson-Cowan system [5], where inhibitory populations and saturation function
φ are removed

τ
∂ui(t)

∂t
= −ui(t) + k

∑

j 6=i

Dijui(t− τij) + σνi.

Here we have τ = 20 ms; v = 10 m/s; and σ = 0.25.
The Kuramoto model is composed of a set of coupled oscillators

∂φi(t)

∂t
= 2πfi + k

∑

j 6=i

Dij sin [φi(t)− φj(t− τij)] + σνi,

where θi and fi stand for the phase and intrinsic frequency of region i. We set fi = 60 Hz; v = 10 m/s; and σ = 1.25 rd.
The Fitzhugh-Nagumo model is composed of two nested variables [6]

τx
∂xi(t)

∂t
= g[xi(t), yi(t)] + k

∑

j 6=i

Dijxj(t− τij) + σνi

τy
∂yi(t)

∂t
= h[xi(t), yi(t)] + σνi,

where

g[xi(t), yi(t)] = γxi(t)−
x3
i (t)

3
− yi(t)

h[xi(t), yi(t)] = −βyi(t) + xi(t) + α,

τx = 20 ms; τy = 100 ms; v = 10 m/s; σ = 0.25; α = 0.8; β = 0.6; and γ = 1.
The neural-mass model is a nonlinear biophysical model of neuronal dynamics relying on the Hodgkin-Huxley model [7].
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The main dynamical variables are the mean membrane potential of excitatory and inhibitory populations (V and Z,
respectively), which are governed by the conductance of sodium, potassium and calcium ions, and the passive conductance
of leaky ions, gion. The total current flow across pyramidal cell membranes is given by:

∂Vi(t)

∂t
= −mCa



gCa + rNMDAaeek
∑

j

DijQVj



 (Vi(t)− VCa)

−



gNamNa + aeek
∑

j

DijQVj



 (Vi(t)− VNa)

−gKW (Vi(t)− VK)− gL(Vi(t)− VL)

+aieZQZi
+ aneIδ

∂Zi(t)

∂t
= b [aiiViQVi

+ aniIδ] ,

with Dii = (1−k)/k, and where mion and Vion are the fractions of open ion channels and the Nernst potential for that ion
species, respectively. For large ion channels population, the fraction of open ion channels is given by the sigmoid-shaped
neural activation function,

mion =
1

2

[

1 + tanh

(

V − Tion

δion

)]

,

except for the potassium channels that decay exponentially,

∂W

∂t
=

φ(mK −W )

τ
.

QV and QZ represent the average firing-rates of excitatory and inhibitory neurons,

QX =
QXmax

2

[

1 + tanh

(

X −XT

δX

)]

.

Iδ corresponds to nonspecific subcortical excitation. axy scales the x-to-y synaptic strength and rNMDA corresponds to
the number of NMDA receptors. Parameters are set to values taken from [8].
The spiking neurons model models each region as a biophysically realistic attractor consisting of mutually intercon-
nected populations of excitatory pyramidal neurons and inhibitory neurons [9]. This type of attractor network of spiking
neurons is a dynamical system with an intrinsic tendency to settle in stationary states, also called attractors, typically
characterized by a stable pattern of firing activity. Small perturbations may induce transitions between different stable
attractors. Mean-field approximation yields a set of nonlinear equations of average firing rates of each population. For
full details on the model definition and parameters, see [10].

Optimization of coupling parameter

All models had as inputs a normalized form of the structural connectivity matrix as well as the value for a parameter that
represented the coupling strength between regions. To limit the influence of these inputs, we performed an optimization
step prior to data simulation. For each model, we generated data with different matrix normalization strategies and values
for the coupling parameter and kept the configuration that maximized predictive power. For normalization, we considered
2 approaches: spectral normalization and row normalization [11]. Spectral normalization consists of dividing the matrix
by its spectral radius, i.e. the largest absolute value of its eigenvalues. Row normalization imposes that the matrix rows
sum to 1 [2]. For the coupling parameter, known bounds were used to constrain the optimization when available (SAR,
rate).

Numerical details of simulations

All simulations were performed in Matlab (The MathWorks Inc., Natick, MA), except for the spiking neurons model which
is implemented in language C. The SAR model gives a closed form for the covariance matrix [see Eq. (2)] that we used to
directly compute the FC predicted by this model. Dynamical models were simulated at a sampling frequency of 10 kHz.
Simulations of the rate, Wilson-Cowan, Kuramoto, and Fitzhugh-Nagumo models relied on the Euler integration scheme,
while Matlab ordinary differential equations solver was used for the neural-mass model. The resulting data were then
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downsampled to a time resolution of 1 ms. The data corresponding to the first 20 s were discarded from the analysis to
avoid transient dynamics, resulting in 8 min of simulated brain activity. Simulated rs-fMRI BOLD signal, sampled at 2
Hz, was obtained from neuronal activity by means of the Balloon-Windkessel hemodynamic model [12]. We computed
three runs with random initial conditions and averaged the corresponding FCs to improve stability.
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