
Expected complete data log-likelihood and EM

In our EM algorithm, the expected complete data log-likelihood (�Q�) is a function of a
set of model parameters τ , i.e.

Q(τ) =

M∑
m=1

∑
zm,lm

log (f(bm, rm, gm|zm, lm, τ)) p∗m(zm, lm)

 ,

where M is the total marker number, m is the SNP marker index, bm is the observed BAF,
rm is the observed LRR, gm is the error-free genotype, zm = (zm1, zm2) is ordered haplotype
cluster memberships, lm is the aberration type, τ is the model parameters set, p∗m(zm, lm) ≡
p(zm, lm|τ∗, b, r, g) is the conditional marginal distribution, given parameter estimates τ∗.
We further assume that conditioned on (zm, lm), rm and (gm, bm) are independent (see
Materials and Methods). Thus

Q(τ) =
M∑
m=1

∑
zm,lm

(log (f(rm|lm, τ)) + log (f(bm, gm|zm, lm, τ)))p∗m(zm, lm)

 .

We maximize Q at each EM cycle by solving the equation that sets to zero its partial
derivative w.r.t. each parameter. For some parameters, a closed-form solution is available;
for others, a numerical method must be applied.

In our experience, when the tumor mixture is high (e.g. above 10%), we can approximate
the M-step by maximizing Q w.r.t. each individual parameter in τ marginally, rather than
maximizing in a multivariate manner. However, for extreme low tumor purity (e.g. about
3%), to avoid convergence problems, we must take the approach of expected conditional
maximization (ECM), meaning we have to re-compute the posterior probability of latent
states with the updated estimates after maximizing each parameter. The computation is
more expensive with ECM.

Estimation of the mixture proportion

The derivative of Q w.r.t. tumor DNA mixture proportion (w) is composed of the fol-
lowing two summations involving derivatives of BAF and LRR densities respectively:

∂

∂w
Q(w) =

M∑
m=1

∑
zm,lm

(
∂

∂w
log(f(rm|lm, τ))

)
p∗m(zm, lm)

+

∑
m∈{i st gi=1}

∑
zm,lm

(
∂

∂w
log(f(bm, gm|zm, lm, τ))

)
p∗m(zm, lm)

 , (1)

where M is the total number of SNP makers, and the inner sum is over all combinations of
z and l. Since BAFs are informative at heterozygous sites only (germline homozygous sites
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have the derivative of zero w.r.t. w), the second summation in equation (1) is limited to
germline heterozygous sites.

We assume LRRs follow the same normal distribution as de�ned in GPHMM except for
the addition of a sample-speci�c scale factor, i.e.

f(r|l, w, or, σ2r , q) =
1

σr
φ

(
r − µ(r)(l, w, q)− or

σr

)
,

where

µ(r)(l, w, q) ≡ q · log2
(1− w)2 + w(α(l) + β(l))

2
, and

φ is pdf of the standard normal distribution, l the latent aberration type, σ2r the variance, or
the global baseline shift, and q the LRR scale. The functions α(lm) and β(lm) have domains
on the state space of l and give parent-speci�c allele copy numbers. The derivative in the
�rst summation of equation [1] is

∂

∂w
log(f(rm|lm, τ)) =

(rm − or − q log2
(1−w)2+w(α(lm)+β(lm))

2 )

σ2r
· q(−1 + 0.5(α(lm) + β(lm)))

loge(2)
.

We focus on low purity samples, where the perturbed BAF will remain relatively close
to one-half and the truncation of BAFs at 0 or 1 (for heterozygotes) is of minimal concern.
Thus, at germline heterozygous sites, we assume the potentially mixed BAF is distributed
as

f(b|h, l, w, ob, σ2b ) =
1

σb
φ

(
b− µ(b)(h, l, w)− ob

σb

)
,

where φ is the pdf of the standard normal distribution, σ2b is the variance of BAF, ob is a
global baseline shift, h is the inherited allele con�guration (either �AB" or �BA") and

µ(b)(h, l, w) ≡ 0.5w (β(l)− α(l)) (−1)1(h=“AB”)

(1− w)2 + w (α(l) + β(l))
+ 0.5.

For simplicity, we subtract 0.5 from observed BAFs, then we can drop 0.5 from µ(b)(h, l, w)
expression and it has opposite signs for allele con�gurations �AB" and �BA". The derivative
in the second summation of equation (1) is

∂

∂w
logf(bm, gm = 1|zm = (j, k), lm, w) =

1

σ2b

(
(bm − ob)

1− Ωm

1 + Ωm
− µABm

)
∂

∂w
µABm ,
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where

Ωm ≡ exp
(
−2bmµ

AB
m

σ2b

)
p(hm = “BA”|zm = (j, k)

p(hm = “AB”|zm = (j, k))
= exp

(
−2bmµ

AB
m

σ2b

)
θjm(1− θkm)

θkm(1− θjm)
,

µABm ≡ µ(b)(hm = “AB”, lm, w) =
−0.5 (α(lm)− β(lm))w

(1− w)2 + (α(lm) + β(lm))w
,

∂

∂w
µABm =

−α(lm) + β(lm)

((α(lm) + β(lm)− 2)w + 2)2
, and

θim is the probability that allele is �B� given haplotype cluster membership is i at maker m,
as de�ned in fastPHASE model [1].

After substituting the two derivatives in equation (1), we do not have a closed-form
solution. Therefore we rely on numerical root-�nding methods. In practice, we use the
secant method with previous w estimates as initial values.

Estimation of BAF global baseline shift (ob)

The derivative of Q w.r.t. ob is

∂

∂ob
Q(ob) =

∑
m∈{i st gi=1}

∑
zm,lm

∂

∂ob
log(f(bm, gm|zm, lm, τ))p∗m(zm, lm)

 .

Therefore, the new estimate of ob is

ôb =
1

Mhet

∑
m∈{i st gi=1}

∑
zm,lm

(
bm − µABm

1− Ωm

1 + Ωm

)
p∗m(zm, lm),

where Mhet is the number of germline heterozygous SNP markers.

Estimation of BAF variance (σ2
b)

The derivative of Q w.r.t. σ2b is

∂

∂σ2b
Q(σ2b ) =

∑
m∈{i st gi=1}

∑
zm,lm

∂

∂σ2b
log(f(bm, gm|zm, lm, τ))p∗m(zm, lm)

 .

And using the normality assumption for BAF distribution,

∂

∂σ2b
log(f(bm, gm = 1|zm = (j, k), lm, w)) =

1

2σ4b

(
−σ2b + (bm − ob)2 + (µABm )2 − 2(bm − ob)(µABm )

1− Ωm

1 + Ωm

)
.

We apply numerical root-�nding method to obtain the new estimate.
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Estimation of variance and global baseline shift for LRR (σ2
r ,

or)

It is easy to show that the solutions that maximize Q w.r.t. σ2r and or are the following
expressions:

ôr =
1

M

M∑
m=1

∑
lm

(
rm − µ(r)(lm, w)

)
p∗m(lm)

and

σ̂2r =
1

M

M∑
m=1

∑
lm

(
rm − µ(r)(lm, w)− or

)2
p∗m(lm),

where p∗m(lm) =
∑

zm
p∗m(zm, lm).

Estimation of LRR scale coe�cient (q)

It has been pointed out that amplitude of LRR varies from sample to sample and that
the observed amplitude is usually smaller than the standard value log2(

tumor copy number
2 )

[2]. In GAP, this is modeled with a simple coe�cient of contraction that is speci�c to the
sample. GPHMM models the expected LRR as

µ(r)(l, w) ≡ 2log10(2) · log2
(
averge allele copy number in mixture

2

)
.

In our model, extra �exibility is achieved by replacing the constant 2log10(2) in GPHMM
with a LRR scale parameter (q) and the new estimate for updating q is

q̂ =

∑M
m=1

∑
zm,lm

p∗m(zm, lm)(rm − or) log2
(1−w)2+w(α(lm)+β(lm))

2∑M
m=1

∑
zm,lm

p∗m(zm, lm)
(

log2
(1−w)2+w(α(lm)+β(lm))

2

)2 .

Estimation of a GC content coe�cient

Local GC content may induce a �wave� e�ect in the LRR data [3]. Therefore adjusting
for GC content can reduce the noise in LRR signal, as demonstrated in GPHMM [4]. Similar
to GPHMM, we use average GC-percentage in a 1Mb window around each SNP maker.

Let xm, (m = 1 · · ·M) denote the average GC content at marker m and t a global
coe�cient for GC content. Then we can re-write the density for LRR data as

f(rm|xm, lm, w, or, σ2r , q, t) =
1

σr
φ

(
r − µ(r)(lm, w, q)− or − t · xm

σr

)
.
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It is easy to show the estimate for t is

t̂ =

∑M
m=1

∑
zm,lm

p∗m(zm, lm)(rm − or − µ(r)(lm, w, q))xm∑M
m=1

∑
zm,lm

p∗m(zm, lm)x2m
.

The above estimations for rest of the parameters remain valid if we replace rm with rm−t·xm.

Identi�cation of over-represented allele in tumor DNA

After the EM algorithm converges, the latent aberration state and haplotype cluster
membership at marker m has joint posterior probability pc(zm, lm) = p(zm, lm|g, r, b, ν, τ̂).
We then compute the probability that the allele �B� is over-represented at a germline het-
erozygous marker m as follows:∑

zm,lm

p(�B� is over-represented|zm, lm)pcm(zm, lm) =

∑
zm,lm

∑
hm∈{(A,B) , (B,A)}

1{�B� is over-presented|hm, lm}p(hm|zm)pcm(zm, lm),

where 1{·} is an indicator function. The probability for the allele �A� can be similarly
obtained.

Mean copy of haplotype cluster in tumor DNA

It is possible that a causal factor is correlated with a particular haplotype background,
either due to an untyped �causal� germline allele well tagged by a haplotype or to a �hap-
lotype e�ect� itself. Therefore it may be helpful to test the association of phenotypes with
the mean copy number of a haplotype cluster. Suppose we obtain the posterior probability
pcm(zm, lm) as de�ned above, the mean copy of haplotype cluster k at marker m is∑

zm,lm

(1{zm1 = k}α(lm) + 1{zm2 = k}β(lm)) pcm(zm, lm),

where zm = (zm1, zm2).
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