In this appendix we provide the full details of the derivation of the local interaction terms. These are captured by taking the continuum limit of a lattice model, we do this by following the work of Painter and Sherratt [1]. We begin by considering solitarious locust movement on a one-dimensional lattice (we assume that local gregarious locust behaviour is the same resulting in a similar derivation). Let s_t^i be the number of solitarious locusts at site i at time t, and let $g_t^i, \rho_t^i,$ and c_t^i be similarly defined.

We assume that the transition probabilities for a locust at the i^{th} site depends on the food density at that site, and the relative population density between the current site and neighbouring sites. If we let T_i^{\pm} be the probability at which locusts at site i move to the right, $+$, and left, $-$, during a timestep, then our transition probabilities are

$$T_i^{\pm} = F(c_i)(\alpha + \beta(\tau(\rho_i) - \tau(\rho_{i\pm 1}))),$$

(1)

where F is a function of food density, τ is a function related to the local locust density, and α and β are constants. Then the number of individuals in cell i at time $t + \Delta t$ is given by

$$s^{t+\Delta t}_i = s^t_i + T^{+}_{i+1}s^t_{i+1} + T^{-}_{i-1}s^t_{i-1} - (T^{-}_i + T^{+}_i)s^t_i.$$

(2)
Substituting (1) into (2) gives

\[s_{i+1}^{t+\Delta t} = s_i^t + F(c_{i+1})(\alpha + \beta(\tau(\rho_{i+1}) - \tau(\rho_i)))s_{i+1}^t + F(c_{i-1})(\alpha + \beta(\tau(\rho_{i-1}) - \tau(\rho_i)))s_{i-1}^t - [F(c_i)(\alpha + \beta(\tau(\rho_i) - \tau(\rho_{i-1}))) + F(c_i)(\alpha + \beta(\tau(\rho_i) - \tau(\rho_{i+1})))s_i^t]. \quad (3) \]

We then rearrange (3) to take out the common factors \(\alpha \) and \(\beta \), giving

\[s_{i+1}^{t+\Delta t} = s_i^t + \alpha[F(c_{i+1})s_{i+1}^t + F(c_{i-1})s_{i-1}^t - 2F(c_i)s_i^t] + \beta \left[F(c_{i+1})s_{i+1}^t(\tau(\rho_{i+1}) - \tau(\rho_i)) + F(c_{i-1})s_{i-1}^t(\tau(\rho_{i-1}) - \tau(\rho_i)) - F(c_i)s_i^t(2\tau(\rho_i) - \tau(\rho_{i-1}) - \tau(\rho_{i+1})) \right]. \quad (4) \]

We then Taylor expand the terms in (4) to obtain the equation in relation to the site \(i \) at time \(t \) only. Beginning with,

\[s_{i+1}^{t+\Delta t} = s_i^t + \Delta t \frac{\partial s_i^t}{\partial t} + O(\Delta t^2). \quad (5) \]

Then for the terms related to \(\alpha \) we get

\[\alpha \left[F(c_i)s_i^t + \Delta x \frac{\partial}{\partial x}(F(c_i)s_i^t) + \frac{\Delta x^2}{2} \frac{\partial^2}{\partial x^2}(F(c_i)s_i^t) + \frac{\Delta x^3}{6} \frac{\partial^3}{\partial x^3}(F(c_i)s_i^t)
ight] \\ - 2F(c_i)s_i^t + O(\Delta x^4) \right], \\
= \alpha \Delta x^2 \frac{\partial^2}{\partial x^2}(F(c_i)s_i^t) + O(\Delta x^4), \quad (6) \]

as the 0th, 1st, and 3rd order terms of \(\Delta x \) cancel each other out. We then turn our attention to our terms involving \(\beta \), we will Taylor expand each multiplication.
individually as otherwise the terms become unmanageable. To begin,

\[\mathcal{R} = F(c_{i+1}) s_{i+1} (\tau(p_{i+1}) - \tau(p_i)) \]

\[= \left[F(c_i) s_i + \Delta x \frac{\partial}{\partial x} (F(c_i) s_i) + \frac{\Delta x^2}{2} \frac{\partial^2}{\partial x^2} (F(c_i) s_i) + \frac{\Delta x^3}{6} \frac{\partial^3}{\partial x^3} (F(c_i) s_i) \right] \]

\[\cdot \left[\tau(p_i) - \tau(p_i) + \Delta x \frac{\partial}{\partial x} (\tau(p_i)) + \frac{\Delta x^2}{2} \frac{\partial^2}{\partial x^2} (\tau(p_i)) + \frac{\Delta x^3}{6} \frac{\partial^3}{\partial x^3} (\tau(p_i)) \right] + \mathcal{O}(\Delta x^4) \]

\[= F(c_i) s_i \left[\Delta x \frac{\partial}{\partial x} (\tau(p_i)) + \frac{\Delta x^2}{2} \frac{\partial^2}{\partial x^2} (\tau(p_i)) + \frac{\Delta x^3}{6} \frac{\partial^3}{\partial x^3} (\tau(p_i)) \right] + \mathcal{O}(\Delta x^4), \] \tag{7}

and

\[\mathcal{L} = F(c_{i-1}) s_{i-1} (\tau(p_{i-1}) - \tau(p_i)) \]

\[= \left[F(c_i) s_i - \Delta x \frac{\partial}{\partial x} (F(c_i) s_i) + \frac{\Delta x^2}{2} \frac{\partial^2}{\partial x^2} (F(c_i) s_i) - \frac{\Delta x^3}{6} \frac{\partial^3}{\partial x^3} (F(c_i) s_i) \right] \]

\[\cdot \left[\tau(p_i) - \tau(p_i) - \Delta x \frac{\partial}{\partial x} (\tau(p_i)) + \frac{\Delta x^2}{2} \frac{\partial^2}{\partial x^2} (\tau(p_i)) - \frac{\Delta x^3}{6} \frac{\partial^3}{\partial x^3} (\tau(p_i)) \right] + \mathcal{O}(\Delta x^4) \]

\[= F(c_i) s_i \left[-\Delta x \frac{\partial}{\partial x} (\tau(p_i)) + \frac{\Delta x^2}{2} \frac{\partial^2}{\partial x^2} (\tau(p_i)) - \frac{\Delta x^3}{6} \frac{\partial^3}{\partial x^3} (\tau(p_i)) \right] \]

\[- \Delta x \frac{\partial}{\partial x} (F(c_i) s_i) \left[-\Delta x \frac{\partial}{\partial x} (\tau(p_i)) + \frac{\Delta x^2}{2} \frac{\partial^2}{\partial x^2} (\tau(p_i)) \right] \]

\[+ \frac{\Delta x^2}{2} \frac{\partial^2}{\partial x^2} (F(c_i) s_i) \left[-\Delta x \frac{\partial}{\partial x} (\tau(p_i)) \right] + \mathcal{O}(\Delta x^4), \] \tag{8}

and finally,

\[\mathcal{C} = - F(c_i) s_i (2\tau(p_i) - \tau(p_{i-1}) - \tau(p_{i+1})) \]

\[= - F(c_i) s_i \left[2\tau(p_i) - \tau(p_i) + \Delta x \frac{\partial}{\partial x} (\tau(p_i)) - \frac{\Delta x^2}{2} \frac{\partial^2}{\partial x^2} (\tau(p_i)) + \frac{\Delta x^3}{6} \frac{\partial^3}{\partial x^3} (\tau(p_i)) \right] \]

\[- \tau(p_i) - \Delta x \frac{\partial}{\partial x} (\tau(p_i)) \]

\[- \Delta x \frac{\partial}{\partial x} (\tau(p_i)) - \frac{\Delta x^2}{2} \frac{\partial^2}{\partial x^2} (\tau(p_i)) - \frac{\Delta x^3}{6} \frac{\partial^3}{\partial x^3} (\tau(p_i)) \] \]

\[+ \mathcal{O}(\Delta x^4), \] \tag{9}
Adding (7), (8), and (9), gives

\[L + C + R = 2\Delta x^2 \left[\Delta x F(c_i)s_i^t \frac{\partial^2}{\partial x^2}(\tau(\rho_i)) + \frac{\partial}{\partial x} \left(F(c_i)s_i^t \frac{\partial}{\partial x}(\tau(\rho_i)) \right) \right] + O(\Delta x^4), \]

\[= 2\Delta x^2 \frac{\partial}{\partial x} \left(F(c_i)s_i^t \frac{\partial}{\partial x}(\tau(\rho_i)) \right) + O(\Delta x^4). \]

Combining (5), (6) and (10) into (4), gives,

\[s_i^t + \Delta t \frac{\partial s_i^t}{\partial t} + O(\Delta t^2) = s_i^t + \alpha \Delta x^2 \frac{\partial^2}{\partial x^2}(F(c_i)s_i^t) + 2\beta \Delta x^2 \frac{\partial}{\partial x} \left(F(c_i)s_i^t \frac{\partial}{\partial x}(\tau(\rho_i)) \right) + O(\Delta x^4), \]

which we rearranging to obtain

\[\frac{\partial s_i^t}{\partial t} = \alpha \frac{\Delta x^2}{\Delta t} \frac{\partial^2}{\partial x^2}(F(c_i)s_i^t) + 2\beta \frac{\Delta x^2}{\Delta t} \frac{\partial}{\partial x} \left(F(c_i)s_i^t \frac{\partial}{\partial x}(\tau(\rho_i)) \right) + O(\Delta x^4) + O(\Delta t^2). \]

We then substitute our functions,

\[F(c_i) = e^{-\frac{c_i}{c_0}}, \text{ and } \tau(\rho_i) = \rho_i^2 \]

to obtain

\[\frac{\partial s_i^t}{\partial t} = \alpha \frac{\Delta x^2}{\Delta t} \frac{\partial^2}{\partial x^2}(e^{-\frac{c_i}{c_0}}s_i^t) + 2\beta \frac{\Delta x^2}{\Delta t} \frac{\partial}{\partial x} \left(e^{-\frac{c_i}{c_0}}s_i^t \frac{\partial}{\partial x}(\rho_i^2) \right) + O(\Delta x^4) + O(\Delta t^2). \]

We then take the limit as \(\Delta x, \Delta t \to 0 \) such that,

\[\lim_{\Delta x \to 0} \alpha \frac{\Delta x^2}{\Delta t} = D, \text{ and } \lim_{\Delta t \to 0} 2\beta \frac{\Delta x^2}{\Delta t} = D\gamma, \]

to find,

\[\frac{\partial s}{\partial t} = D \frac{\partial^2}{\partial x^2}(e^{-\frac{\rho}{\rho_0}} s) + D\gamma \frac{\partial}{\partial x} \left(e^{-\frac{\rho}{\rho_0}} s \frac{\partial}{\partial x}(\rho^2) \right). \]

Which we then rearrange to find our flux as

\[J_s_{local} = -D \left[\frac{\partial}{\partial x} \left(s e^{-\frac{\rho}{\rho_0}} \right) + \gamma s \rho e^{-\frac{\rho}{\rho_0}} \frac{\partial}{\partial x}(\rho^2) \right]. \]

The derivation of \(J_g_{local} \) follows the same method.
References