S1 Text. SHAP values

We use SHAP values to estimate the marginal contribution of each feature in the predicted value by the model for a given data instance, deemed as feature importance herein [1]. SHAP is rooted in "Shapley values", a concept from cooperative game theory first introduced in 1953 [2], which assigns a portion of the total payout to each player based on their marginal contribution to the coalition in a cooperative game setting. In the context of this paper, each feature is deemed as a player and the difference in predicted value by the model with and without a particular feature is considered as its importance.

Assume that effect (importance) of a given feature, $f_j \in F^p$, on the model prediction $J(x)$ for an individual input instance, $x^i = \{x^i_1, ..., x^i_p\}$, is desired, where F is set of all the features with p members. Given a set of features excluding f_j, $S \subseteq F \setminus \{f_j\}$, effect of f_j is the difference between the predicted value by the model with and without f_j:

$$J(x_{S \cup \{f_j\}}) - J(x_S) \quad (1)$$

Because effect of f_j also depends on the other features in S, eq. 1 must be calculated for all possible subsets $S \subseteq F \setminus \{f_j\}$. The shapely value, $\phi\{f_j, x_i\}$, is weighted average of all possible differences:

$$\phi\{f_j, x_i\} = \sum_{S \subseteq F \setminus \{f_j\}} \frac{|S|!(p - |S| - 1)!}{p!} (J(x_{S \cup \{f_j\}}) - J(x_S)) \quad (2)$$

The weighting term, $\frac{|S|!(p - |S| - 1)!}{p!}$, accounts for all possible permutations of features added before and after f_j to the model. Number of terms in eq. 2 grows exponentially with number of features, and each term requires re-training the model with a different subset of features. Thus, in a high-dimensional feature space finding the exact solution of eq. 2 becomes computationally intensive. A sampling scheme can be used to find an approximation of eq. 2 [3]. We use the Kernel SHAP method [1] to find shapely values, which averts the need for repeated training of the model with different subset of features. Kernel SHAP approximates the contribution of each feature at an input instance, x^i, as follows:

- Generate sample vectors $z \in \{0, 1\}^p$, where p is number of features. Each member in z represent a feature;
- Map z to the original feature space to obtain $x' = h(z)$. function $h_x : \{0, 1\}^p \rightarrow \mathbb{R}^p$, maps 1’s in z to the value of the corresponding feature from the input instance, x^i, and maps 0’s to value of the corresponding feature from from a random data instance, x^k;
- Apply the model on each x' to obtain $J(x')$. Since most models can not handle missing values, effect of missing features (0’s in z) is approximated by integrating over samples from the input data, i.e. $J(x')$ is approximated with $E[J(x')|_{z_1}]$, where z_1 is set of 1’s in z;
• Assign a weight to each \(z \) using weighting kernel \(\pi_x(z) \):

\[
\pi_x(z) = \frac{(p - 1)}{\binom{p}{|z|}|z|(p - |z|)}
\]

(3)

where \(|z|\) is the number of 1’s in \(z \);

• Assuming \(g(z) \), the local explanation model for \(J(x') \) at a input instance \(x' = h(z) \), to be a linear function of \(z \) parameterized by shapley values \(\phi_j \):

\[
g(z) = \phi_0 + \sum_{j=1}^{p} \phi_j z_j
\]

(4)

shapely values, \(\phi_j \), are obtained by fitting the weighted linear model given in eq. 4 by minimizing the following loss function:

\[
\arg \min_{g} L(J, g, \pi_x)
\]

(5)

\[
L(J, g, \pi_x) = \sum_{z \in Z} (|J(h_x(z)) - g(z)|^2 \pi_x(z)
\]

(6)

The loss function \(L(J, g, \pi_x) \), and weighting kernel \(\pi_x(z) \) are chosen such that solution to 5 recovers the shapely values given by 2 (see supplementary information of [1] for proof).
References

