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Abstract

Many disease-associated variants affect gene expression levels (expression quantitative trait loci, eQTLs) and expression
profiling using next generation sequencing (NGS) technology is a powerful way to detect these eQTLs. We analyzed 94 total
blood samples from healthy volunteers with DeepSAGE to gain specific insight into how genetic variants affect the
expression of genes and lengths of 39-untranslated regions (39-UTRs). We detected previously unknown cis-eQTL effects for
GWAS hits in disease- and physiology-associated traits. Apart from cis-eQTLs that are typically easily identifiable using
microarrays or RNA-sequencing, DeepSAGE also revealed many cis-eQTLs for antisense and other non-coding transcripts,
often in genomic regions containing retrotransposon-derived elements. We also identified and confirmed SNPs that affect
the usage of alternative polyadenylation sites, thereby potentially influencing the stability of messenger RNAs (mRNA). We
then combined the power of RNA-sequencing with DeepSAGE by performing a meta-analysis of three datasets, leading to
the identification of many more cis-eQTLs. Our results indicate that DeepSAGE data is useful for eQTL mapping of known
and unknown transcripts, and for identifying SNPs that affect alternative polyadenylation. Because of the inherent
differences between DeepSAGE and RNA-sequencing, our complementary, integrative approach leads to greater insight
into the molecular consequences of many disease-associated variants.
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Introduction

Genome-wide association studies (GWAS) have associated

genetic variants, such as single nucleotide polymorphisms (SNPs)

and copy number variants (CNVs), with numerous diseases and

complex traits. However, the mechanisms through which genetic

variants affect disease phenotypes or physical traits often remain

unclear. To gain insight into these mechanisms, we have

combined genotype data with gene expression data by conducting

expression quantitative trait locus (eQTL) mapping. Previously,

the level of gene expression was primarily assessed using

oligonucleotide microarrays, which was a powerful method to

profile the transcriptome [1–6]. But recently, high-throughput

next generation sequencing (NGS) has become available, which

allows quantification of expression levels by counting mRNA

fragments (RNA-seq) or sequence tags (including serial analysis of

gene expression (SAGE), cap analysis of gene expression (CAGE),

and massively parallel signature sequencing (MPSS)) [7].

To date, two NGS eQTL studies have been published [8,9],

both of which used RNA-seq. Although RNA-seq is a versatile

technique, the coverage in the ultimate 39-end is usually lower due

to the fragmentation and random hexamer priming steps involved
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in the sample preparation [10] (Figure 1B). DeepSAGE technol-

ogy [11,12], however, concentrates on capturing information on

the 39 end of transcripts. In DeepSAGE, enzymatic cDNA

digestions generate one specific tag of 17 nucleotides at the most

39-CATG sequence of each transcript (Figure 1A). The majority of

these 21-mer tags (‘CATG’ + 17 nucleotides) can be uniquely

mapped to the genome to identify the genes expressed.

There are several features of NGS-based expression quantifica-

tion methods that are especially important for eQTL mapping.

While oligonucleotide arrays target a predefined set of transcripts

or exons, both RNA-seq and DeepSAGE are capable of detecting

novel and unannotated transcripts. If such a novel gene later turns

out to be cis-regulated by trait- or disease-associated SNPs, it can

represent an interesting causal candidate gene for the trait or

disease under investigation. RNA-seq is extremely versatile, as it

can quantify the expression of alternative transcripts, which makes

it possible to detect SNPs regulating the choice between alternative

transcripts. DeepSAGE, however, is generally not suited to

detecting alternative splicing because of the 39 bias of the tag

locations [13]. Because only sequence data is generated for these

short tags, the read depth per tag is generally much greater than

with RNA-seq, permitting accurate quantification of these tags

[11,14]. Thus, this 39 emphasis makes DeepSAGE suitable for

transcript variants that differ in 39-UTRs and also for detecting

alternative polyadenylation events, a widespread phenomenon

that generates variation in 39-UTR length [15,16]. Shortening or

lengthening of the 39-UTR may result in the loss or gain of

regulatory elements, such as miRNA binding sites or binding sites

for proteins that can stabilize or destabilize the transcript [17,18].

Several SNPs that influence the choice for alternative polyade-

nylation sites have been detected by RNA-seq on a small number

of individuals [19]. Here, we analyzed this phenomenon in more

depth by performing cis-eQTL mapping on DeepSAGE data from

total blood samples of 94 individuals.

Results

DeepSAGE dataset
For cis-eQTL mapping, we used DeepSAGE sequencing of

21 bp tags (1667 million tags) from total blood samples from 94

healthy, unrelated individuals from the Netherlands Twin Register

(NTR) and the Netherlands Study of Depression and Anxiety

(NESDA) [20]. Sequence reads were mapped to the reference

genome hg19 using Bowtie [21] and assigned to transcripts. We

mapped 8565% of tags to the genome and found that 7769% of

these mapped to exonic regions. Although 66618% of these reads

mapped to hemoglobin-alpha or –beta (HBA1, HBA2, HBB) genes,

we were left with sufficient sequencing depth to detect a total of

9,562 genes at a threshold of at least two tags per million.

Cis-eQTL mapping
Once reads had been mapped, we quantified the expression

levels of sequenced tags and performed cis-eQTL mapping,

evaluating only those combinations of SNPs and tags that were

located within a genomic distance of 250 kb, while using a

Spearman rank correlation test (tag-level false discovery rate

(FDR) controlled at 0.05). We identified 540 unique cis-regulated

tags.

To subsequently increase the statistical power of eQTL

detection, we used principal component analysis (PCA) to correct

for technical and known and unknown biological confounders.

The first principal components (PC) generally capture a high

percentage of the expression variation, and these PCs mostly

reflect technical, physiological and environmental variability.

Removing this variation allows for the detection of more eQTLs

[6,22,23]. In our data the first principal component significantly

correlated with sample GC content, and principal components 7

and 11 correlated with various blood cell count parameters (for

details see Text S1, Figures S1 and S2). When using the PC

corrected data, we observed an almost two-fold increase in the

number of significant cis-eQTLs (1,011 unique cis-regulated tags,

corresponding to 896 unique cis-regulated genes at tag-level

FDR,0.05). The list of detected eQTLs is given in Table S1.

Comparison with microarray results
We then compared the DeepSAGE cis-eQTLs with cis-eQTLs

that we had identified using the Affymetrix HG-U219 expression

microarrays on the same 94 samples. In that analysis we detected

cis-eQTLs for only 274 genes (FDR,0.05), only a third of what we

identified using DeepSAGE.

We observed that this substantial difference could mostly be

explained by the fact that the cis-eQTLs detected using Affymetrix

microarrays nearly always reflected genes that are highly expressed

in blood, whereas for DeepSAGE the detected cis-eQTL genes

had expression levels that could be much lower (Figure 2).

Although we only concentrated on tags that were expressed, there

was no clear relationship between the mean tag level expression

and the probability of showing a significant cis-eQTL. As such,

DeepSAGE is much more capable of identifying cis-eQTLs for

genes showing low expression than conventional microarrays.

It was therefore not a surprise that only 39% of the identified

DeepSAGE cis-eQTLs could also be significantly detected in the

microarray-based dataset (with identical allelic direction) (Figure

S3). Indeed, the cis-eQTLs that were not replicated in the

microarray-based dataset generally had a much lower expression

than the replicating cis-eQTLs (Wilcoxon Mann Whitney

P,261023).

And vice versa, we could significantly replicate 75% of the

detected Affymetrix cis-eQTLs with the same allelic direction in

the DeepSAGE data (Figure S3), indicating that DeepSAGE

shows overlapping results with array-based data. At the same time,

this provides insight into the regulation of gene expression by

SNPs at many more loci.

We estimated the reduction that could be made in the sample

size of the sequencing-based dataset to get the same number of cis-

regulated genes as in microarray-based data. We observed that the

DeepSAGE sample size could be reduced by almost half (to 55

samples) to get the same number of significant cis-regulated genes

as identified in the microarray analysis of the 94 samples. As such,

Author Summary

Many genetic variants that are associated with diseases
also affect gene expression levels. We used a next
generation sequencing approach targeting 39 transcript
ends (DeepSAGE) to gain specific insight into how genetic
variants affect the expression of genes and the usage and
length of 39-untranslated regions. We detected many
associations for antisense and other non-coding tran-
scripts, often in genomic regions containing retrotransposon-
derived elements. Some of these variants are also
associated with disease. We also identified and confirmed
variants that affect the usage of alternative polyadenyl-
ation sites, thereby potentially influencing the stability of
mRNAs. We conclude that DeepSAGE is useful for
detecting eQTL effects on both known and unknown
transcripts, and for identifying variants that affect alter-
native polyadenylation.

DeepSAGE eQTL Mapping
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these results clearly indicate that DeepSAGE has higher statistical

power than microarrays.

Cis-eQTL effects on non-coding genes
While most microarray platforms interrogate mainly the

protein-coding part of the transcriptome, NGS-based expression

profiling will detect the majority of all expressed transcripts.

Indeed, we detected eQTLs for known, but non-protein coding,

genes: 8 antisense genes and 31 lincRNAs (Figure 3).

We also expected to find a number of cis-eQTL effects on

previously unknown transcripts. Of the 1,011 tags with a

significant cis-eQTL effect, 230 did not map to known transcripts.

Many of these tags map to retrotransposon-derived elements in the

genome, which are known to be a source of novel exons [24]: 73

DeepSAGE tags with significant cis-eQTLs that did not map to

annotated genes mapped to 72 unique LINE, SINE and LTR

elements in the genome (Table 1).

New regulatory roles for disease- and trait-associated
SNPs

We checked how many of our cis-acting SNPs were associated

with complex traits or complex diseases (‘trait-associated SNPs’), as

published in the Catalog of Published Genome-Wide Association

Studies. 104 of the 6,446 unique trait-associated SNPs were

significant cis-eQTLs in our data (Table S2).

We were interested to determine whether the DeepSAGE data

had revealed cis-eQTL effects for trait-associated SNPs that had

been missed when using conventional arrays on much larger

cohorts. We therefore compared our results to a re-analysis of a

large-scale, array-based cis-eQTL mapping that we had conducted

in whole peripheral blood samples when using a much larger

sample size of 1,469 (using Illumina oligonucleotide arrays [6]).

We identified 13 trait-associated SNPs that did show a

significant cis-eQTL effect in DeepSAGE eQTL mapping, but

which did not show a cis-eQTL effect in the large, array-based,

blood dataset (Table 2). This indicates that many trait-associated

SNPs have regulatory effects that will, so far, likely have been

missed using microarrays. While some of the tags map in the exons

of annotated transcripts, we also found three cis-regulated tags in

introns (sense direction), two tags antisense to the known

transcripts, and two tags outside the annotated transcripts. These

results indicate that several trait-associated SNPs affect the

expression of previously unknown transcripts, adding functional

relevance to SNPs and transcripts that are so far without

annotation.

Some newly discovered eQTLs provide novel insights into

genome-wide association hits for diseases or physiological traits,

e.g. SNP rs216345, which has been associated with bipolar

disorder. While it is located just downstream of PRSS3, we now

saw that it also affects the expression of UBE2R2. There are many

links between the ubiquitin system and bipolar disorder reported

in the literature (e.g. [25,26]), making UBE2R2 a more plausible

candidate gene for bipolar disorder than PRSS3.

Genes with multiple SAGE tags and opposite allelic
direction

In DeepSAGE, 21-bp-long cDNA fragments begin at the

‘CATG’ closest to the polyadenylation site (Figure 1). These

Figure 1. Comparison of typical DeepSAGE and RNA-seq data generation steps. A) DeepSAGE data preparation consists of the following
basic steps: after RNA extraction the polyadenylated mRNA fraction is captured with oligo-dT beads. While RNA is still bound to the beads, double-
stranded cDNA synthesis is performed. Next, cDNA is digested by NlaIII restriction enzyme (an anchoring enzyme), which cuts the DNA at CATG
recognition sequences, leaving only the fragment with the most distal (39) CATG site associated with the beads. Subsequently, a GEX adapter is
attached to the 59 end. This adapter contains a recognition sequence for the MmeI restriction enzyme that cuts the sequence 17 bp downstream of
CATG site. After ligation of a second GEX adapter, fragments containing 21 bp tags (17 unknown nucleotides + CATG) are ready for sequencing. B) A
typical protocol for RNA-seq data preparation has the following steps: after RNA extraction the polyadenylated mRNA fraction is captured with oligo-
dT beads. Captured RNA is fragmented and for each fragment cDNA synthesis is performed using random hexamer primers. Sequencing adapters are
then ligated to each fragment. This is followed by size selection of the DNA fragments and PCR amplification. Then one end of the fragment is
sequenced (single-end sequencing) or both ends (paired-end sequencing).
doi:10.1371/journal.pgen.1003594.g001

Figure 2. Fraction of cis-regulated genes in bins by mean gene expression levels for DeepSAGE and Affymetrix data. For each dataset,
all genes were sorted by their mean gene expression levels, and divided into ten equal bins. The X-axis reflects these bins, which are sorted by
increasing mean gene expression levels. The Y-axis reflects the fraction of cis-regulated genes that fall into each bin.
doi:10.1371/journal.pgen.1003594.g002
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individual ‘tags’ represent transcripts sharing the same polyade-

nylation site. If a SNP increases the abundance of one tag of a gene

and decreases the abundance of another tag of the same gene, this

indicates that the SNP is acting like a switch between transcripts

with different 39-UTRs or between alternative polyadenylation

sites [19] (Figure 4).

Twelve genes with highly significant cis-eQTLs (p-value,1027)

contained tags that were regulated in opposite directions (Table 3).

Most of the tags regulated in opposite direction could be explained

by switches in alternative polyadenylation sites, as the tags were

observed in the same last exon. The effect on alternative

polyadenylation in IRF5 has been found before [19,27] and was

also validated in our cohort by RT-qPCR with primers in the

proximal and distal parts of the 39-UTR (Figure 5). As a further

confirmation of the observed switches in using polyadenylation

sites, we tested genotype-dependent alternative polyadenylation in

two other RNA-seq datasets [8,9]. In these datasets, we confirmed

the effect of two cis-regulating SNPs on THEM4 and F11R.

However, we could not confirm the effect of other SNPs on targets

validated experimentally, including IRF5. This shows the limita-

tion of RNA-seq data in detecting alternative polyadenylation

events, likely due to limited and unequal coverage of the 39-UTR.

For only two genes, OAS1 (also reported earlier [28]) and RP11-

493L12.2, the observed opposite allelic effect originated from

transcripts with different last exons, likely due to alternative

splicing.

As we has identified several SNPs that affect alternative

polyadenylation, we subsequently used a more permissive strategy,

which required that, for a given SNP, only one eQTL tag should

pass the FDR,0.05 significance threshold while the other tag

could be less significant. However, for such SNP-tag pairs, we then

tested whether the allelic directions were opposite and if the

difference between correlation coefficients was significant. With a

differential correlation significance p-value threshold of 1027, we

detected 41 unique genes showing regulation in opposite directions

(Table S3). Of these, 23 (56%) showed opposite regulation of two

tags in the same annotated 39-UTR and a further 7 genes (17%)

showed opposite regulation of tags in the same exons, both

indicative of a switch in polyadenylation sites. Of these we picked

HPS1, and validated a genotype-determined switch in preferred

polyadenylation site usage by RT-qPCR analysis (Figure 5),

indicating that the more permissive list also holds genuine changes

in polyadenylation sites. The remaining 11 genes showed

significant genotype-determined switches in expression of alterna-

tive transcripts not sharing the final exon. Thus, switches between

shorter and longer 39-UTRs occur more frequently than switches

between transcripts with different 39-UTRs.

To check whether such results appeared by chance, we took an

equal number of top hits from a permuted eQTL run (shuffling the

phenotype labels of the expression data, thus breaking the

Figure 3. Mapping regions of cis-regulated tags. The gene biotypes and exon/intron locations of unique cis-regulated tags, according to
Ensembl v.69 annotation, are shown. The numbers indicate the number of tags mapping in the genes of the corresponding type.
doi:10.1371/journal.pgen.1003594.g003

Table 1. Number of cis-regulated tags mapping to different
genomic regions in tag-wise DeepSAGE eQTL mapping.

Type of genomic region Number of cis-regulated tags

LINE 32

SINE 14

LTR 17

doi:10.1371/journal.pgen.1003594.t001

DeepSAGE eQTL Mapping
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relationship between genotype and expression, but retaining

linkage disequilibrium (LD) structure and structure in the

expression data) and performed the same analysis as above

(assessing an equal number of top eQTLs from the permuted

analysis as we had investigated in the real analysis). Using the

differential correlation significance threshold of 1027 and

conducting this permutation analysis ten times, we did not find

any SNP that affected two tags in the same gene in a significantly

different way, indicating this method is robust.

Since the eQTL SNPs are usually in strong LD with multiple

SNPs, it is difficult to conclude whether a SNP is causal or which

SNP is the likely causal variant. To identify the likely causal

variant, we assessed whether any of these SNPs caused changes in

polyadenylation site usage. A direct effect on alternative

polyadenylation can be explained by a change in the polyade-

nylation site (corresponding to the cleavage site) or in the

polyadenylation signal (a six-nucleotide motif located between

10–30 bases upstream of the cleavage site). We searched for likely

causative SNPs in linkage disequilibrium with the polyA-QTL

SNP (R2$0.8). We did not find any strong evidence for SNPs

influencing the cleavage site and focused on cis-regulating SNPs

located within polyadenylation signals. Considering the length

and the motif of canonical and non-canonical polyadenylation

signals [15], we performed a motif analysis in the sequence

surrounding each cis-regulating SNP. We identified five SNPs

that likely affect polyadenylation because there was a change in

the polyadenylation signal (Table 4). As previously shown,

rs10954213 causes the formation of a stronger polyadenylation

signal in IRF5. Similar changes from non-canonical to stronger,

canonical polyadenylation signals were observed for rs1062827 in

F11R and rs6598 in GIMAP5. Moreover, rs12934747 creates a

new canonical AATAAA polyadenylation signal in LPCAT2. The

presence of this alternative polyadenylation signal at the

beginning of the 39-UTR leads to a decrease in transcripts

containing the full length 39-UTR, as observed by DeepSAGE

(Figure 6). An opposite effect is observed for rs7063 in the

ultimate 39-end of the ERAP1 gene, where the SNP causes the

disruption of the strong canonical motif, and results in the use of

a more proximal polyadenylation signal. Unfortunately we were

not able to identify likely causative SNPs for each of these

eQTLs. This could have several reasons: we imposed strict

thresholds (R2$0.8) on the LD between the detected cis-eQTLs

and the putative causative SNPs; by imputing to the 1000

genomes dataset we may have missed causative SNPs unique to

the Dutch population; and the list of experimentally validated

polyadenylation sites is not exhaustive, because their detection

depends on the expression level and cell type analyzed.

Seven of the SNPs affecting polyadenylation are reported in the

GWAS catalog as associated with diseases (Table S3), including

rs2188962 and rs12521868, which are associated with Crohn’s

disease. We found that these SNPs were associated with a switch in

the polyadenlyation site of IRF1. This may reinforce previous

evidence that IRF1 is the gene in the IBD5 locus responsible for its

association with Crohn’s disease [29]. IRF1 is a family member of

the IRF5 gene. Thus, in the family of interferon regulatory factors,

we found two members with genetic regulation of alternative

polyadenylation sites, likely explaining susceptibility for Crohn’s

disease and systemic lupus erythematosus, respectively.

Another example is rs3194051, located in the IL7R gene. This

SNP was not found in the analysis described above since it affects

the expression of a tag on the same strand, downstream of IL7R in

a LINE element (Table 2). However, this tag may represent an

alternative 39-UTR for IL7R. The SNP is associated with

ulcerative colitis and IL7R may be another example of a gene in
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Figure 4. The number of cis-regulated tags per gene. The percentages of cis-regulated tags mapping into the same gene are indicated (781
genes overall). For nearly half of the genes (48%) only one tag shows an eQTL effect. If multiple tags map within the same gene, only one eQTL tag
should pass the FDR,0.05 significance threshold while the other tag could be less significant. For these eQTLs the allelic direction is shown: same
allelic direction (multiple tags within the same gene are cis-regulated by a SNP in the same direction), significantly opposite allelic direction (multiple
tags within the same gene are cis-regulated by a SNP but with opposite directions and the difference between the correlation coefficients is
significant), or opposite allelic direction but not significant (if the difference between correlation coefficients is not significant).
doi:10.1371/journal.pgen.1003594.g004

Figure 5. The choice of proximal/distal polyadenylation site in genes IRF5 and HPS1 depends on the genotypes of rs10488630 and
rs11189600, respectively. The ratio between the abundance of transcripts with proximal and distal 39-UTR RT-qPCR products in IRF5 (left) and
HPS1 (right) depends on the genotypes of cis-regulating SNPs rs10488630 and rs11189600, respectively. N denotes the number of individuals
included in the analysis. These results indicate allele-specific preference for use of a proximal and distal polyadenlyation site.
doi:10.1371/journal.pgen.1003594.g005
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the inflammatory response pathway demonstrating alternative

polyadenylation.

Meta-analysis with RNA-seq data
In order to increase the statistical power to detect

associations of SNPs with gene expression, we performed a

first-of-its-kind eQTL mapping meta-analysis, combining

DeepSAGE data with two published RNA-seq datasets. We

used paired-end sequencing of mRNA derived from lympho-

blastoid cell lines from HapMap individuals of European

origin [8] and 35 and 46 bp single-end sequencing of mRNA

derived from lymphoblastoid cell lines from HapMap individ-

uals of Yoruba origin [9]. Sequence reads were mapped to the

reference genome hg19 using Tophat [30] and assigned to

transcripts. A consistently high percentage of reads (86–87% of

aligned reads) mapped to exonic regions (Table 5).

We first performed eQTL mapping separately in all three datasets

(Table 6), summarizing expression on the transcript level to permit

comparisons between the datasets. The numbers of cis-regulated

genes detected in transcript-wise analysis was lower than in tag-wise

analysis, possibly because we missed resolution on alternative splicing-

and alternative polyadenylation events. Again, PC correction greatly

improved the number of cis-eQTLs detected (Table 6).

We applied PC correction to the individual datasets. As for

the DeepSAGE analysis, the first PC correlated strongly with

the mean GC-percentage in the two RNA-seq datasets (Figure

S1). We then assessed the robustness of the identified cis-

eQTLs: we checked whether those in one dataset could be

significantly replicated in the other two datasets. We observed

that in each of the RNA-seq datasets approximately one-third

of cis-eQTLs could be replicated in the other dataset (Table

S4). The overlap between RNA-seq and DeepSAGE was

smaller, reflecting differences in the two technologies, in cell

types and in populations. In each comparison, we observed a

very high concordance in the allelic direction of cis-eQTLs that

could be replicated in another dataset.

We also looked at the replication of RNA-seq eQTLs in

corresponding micro-array-based datasets. 80–88% of such

eQTLs could be replicated in microarray data (Table S5).

As we could cross-replicate many cis-eQTLs, we decided to

conduct a meta-analysis to increase the statistical power. We

calculated joint p-values using a weighted Z-score method. The

number of cis-regulated genes then increased to 1,207 unique

genes (Table 6) (a list of detected eQTLs is given in Table S6),

indicating that a meta-analysis of different types of sequencing-

based eQTL datasets reveals many more cis-regulated genes than

the individual analyses.

For our meta-analysis results we determined the number of

disease- and trait-associated SNPs using the Catalog of Published

Genome-Wide Association Studies in the same way as for the

DeepSAGE dataset. 107 of the 6,446 unique trait-associated SNPs

showed a significant cis-eQTL effect in the meta-analysis. The

Table 3. Cis-regulating SNPs significantly* affecting multiple tags of the same gene in opposite directions.

SNP Name
SNP
Type

Allele
Assessed

Probe
Chr. Probe Center

Overall Z-
Score HGNC Name Annotation

rs12568757 G/A G 1 150782318 4.404 ARNT Alternative polyadenylation

1 150782604 24.314

rs12566232 A/C C 1 151846229 26.859 THEM4 Alternative polyadenylation

1 151846628 4.292

rs1062826 G/C C 1 160965239 24.46 F11R Alternative polyadenylation

1 160966976 8.012

rs13160562 G/A A 5 96110323 27.883 ERAP1 Alternative polyadenylation

5 96111908 5.555

rs3185733 A/C A 5 112320282 4.027 DCP2 Alternative polyadenylation

5 112356357 24.46

rs6948928 T/C T 7 128589824 8.451 IRF5 Alternative polyadenylation

7 128589265 27.31

rs2111903 G/C C 12 47603121 5.143 RP11-493L12.2 Different exon

12 47599911 24.676

rs841718 A/G G 12 57489368 5.506 STAT6 Alternative polyadenylation

12 57489809 27.002

rs2285934 G/T T 12 113357275 4.931 OAS1 Different exon

12 113355465 25.191

rs168822 C/T T 16 55616984 7.37 LPCAT2 Alternative polyadenylation

16 55620233 24.664

rs922446 T/C T 16 56395733 24.966 AMFR Alternative polyadenylation

16 56396100 4.392

rs1674159 C/T T 19 5915589 27.103 CAPS Alternative polyadenylation

19 5916143 6.126

*Only significant eQTLs with FDR,0.05 for both cis-regulated tags were used.
doi:10.1371/journal.pgen.1003594.t003
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overlap with 104 trait-associated SNPs detected in tag-wise

DeepSAGE eQTL mapping was 37, indicating that the Deep-

SAGE transcript end quantification revealed other trait-associated

cis-eQTLs than a meta-analysis on the level of whole transcripts.

21 of the 107 SNPs showed a significant cis-eQTL effect in the

sequencing-based meta-analysis, but did not show a cis-eQTL

effect in the large array-based blood dataset (Table 7).

Discussion

We have described the results from cis-eQTL mapping on

DeepSAGE sequencing, a technique that is different from RNA-seq

since it mainly targets the 39-end of transcripts. We identified 1,011

unique cis-regulated tags (significant at tag-level FDR,0.05).

We performed eQTL mapping on the microarray expression

data of the same samples and the number of detected cis-eQTLs was

much smaller than in the DeepSAGE data, indicating the higher

power of DeepSAGE in eQTL mapping. Moreover, for 220 of the

cis-eQTLs SNPs detected by DeepSAGE we did not detect a

significant cis-eQTL in a much larger microarray-based study in

1,469 whole peripheral blood samples [6]. 13 of these SNPs were

reported as disease- or trait-associated in the GWAS catalog.

We observed that the number of cis-eQTLs detected in

microarray data was higher in highly expressed genes, whereas

for DeepSAGE the detected cis-eQTL genes had expression levels

that could be much lower (Figure 2). This means that DeepSAGE

is much better at identifying cis-eQTLs for genes showing low

expression than conventional microarrays. This is because gene

Figure 6. rs12934747*T creates a poly(A) signal in LPCAT2 and leads to alternative polyadenylation site usage. The y-axis represents
the number of counts for the deepSAGE tags. Two samples with different genotypes for SNP rs12934747, CC (reference allele) and TT (alternative
allele), are shown as different traces. Below the coverage tracks, the position of rs12934747 is shown, together with the position of all reported
polyadenylation sites from polyA_DB. An enlargement of the region containing the SNP is shown below. rs12934747 is located at the beginning of
the 39-untranslated region (39-UTR) of LPCAT2, 27 nucleotides upstream a reported and experimentally validated polyadenylation site. This SNP
changes the sequence, creating a polyadenylation signal that leads to the usage of the reported polyadenylation site. The square block indicates the
sequence of the polyadenylation signal created by rs12934747. The creation of this signal shortens the 39-UTR, as indicated by the higher abundance
of the proximal DeepSAGE just upstream of the polyadenylation signal, and the nearly absent distal DeepSAGE, in the sample with the TT genotype
(both tags indicated by arrows). Tag 2 was filtered out because it was expressed in less than 90% of individuals. There is an additional tag 3 in-
between the proximal and distal tags, which is not cis-regulated.
doi:10.1371/journal.pgen.1003594.g006
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expression quantification using microarrays is more difficult as

there is always a background signal present that needs to be

accounted for. This is not the case for next-generation sequencing:

although stochastic variation plays a major role in determining

what RNA molecules will eventually be sequenced (especially for

transcripts of low abundance), detection of such an RNA molecule

is direct proof that it is being expressed.

Clearly, DeepSAGE can capture events that are likely to be

missed by RNA-seq and conventional microarrays. It is not

surprising, due to the different emphasis of DeepSAGE, that we

could only replicate 39% of the DeepSAGE cis-eQTLs in the

microarray data with a consistent allelic direction (Figure S3). The

limited overlap between DeepSAGE- and microarray-based

eQTL studies may be partly explained by the fixed thresholds

applied, the interrogation of different transcript variants, and by

the smaller dynamic range of microarrays. In addition, we found

that more highly expressed genes were more often replicated than

lower expressed ones.

Moreover, DeepSAGE allows for the detection of non-coding

and novel transcripts not present on the microarrays. We showed

that genetic variation affects the expression of a substantial

number of lincRNAs and antisense genes, some of which have

been linked to clinical traits. This suggests that clinical traits may

be modified by expression of antisense transcripts or alternative 39-

UTR selection, which are not separately quantified in the

microarray-based studies or in most RNA-seq, where standard

protocols are still not strand-specific.

We also noticed a relatively high proportion of eQTLs with

DeepSAGE tags mapping in SINE, LINE and LTR elements.

These transposable elements contribute to the evolution and inter-

individual variation of the human genome and to the diversifica-

tion of the transcriptome, the latter facilitated by their inherent

potential to be transcribed and the presence of cryptic splice

acceptor and donor sites [24,31,32]. Some of the DeepSAGE tags

we identified may be located in entirely new transcripts, but the

majority is likely to represent alternative exons or 39-UTRs of

known transcripts, in accordance with the observed preferential

location in introns or near genes.

Associations with transcripts and transcript variants not yet

annotated may help to discover a function for these transcripts, as

they are likely to play a role in the physiological and clinical traits

associated with the SNP. Moreover, this will complement our

knowledge of the pathways associated with these physiological and

clinical traits.

In our study, we have demonstrated that genotype-dependent

switches in the preference of alternative polyadenylation sites are

common. One of these events has been well characterized: SNP

rs10954213 creates an alternative polyadenylation site in IRF5,

shortens the 39-UTR, stabilizes the mRNA, and increases IRF5

expression, explaining its genetic association with systemic lupus

erythematosus [19,27]. We have now discovered more examples

where SNPs create or disrupt polyadenylation motifs. Amongst

others, we identified a new, similar, genotype-dependent switch in

preferred polyadenylation site for family member IRF1, with a

probable link to Crohn’s disease. Alternative polyadenylation

associated with shortening of 39-UTRs is a prominent event in

the activation of immune cells [18]. Thus, genetically determined

use of a proximal polyadenylation sites may predispose to

inflammatory disorders such as Crohn’s disease. The opposite

correlations that we observed for most genes were slightly less

pronounced than for IRF5. This indicates that mechanisms other

than the creation or disruption of canonical polyadenylation motifs

may also play a role. For example, SNPs in miRNA or protein-

binding sites may specifically affect the stability of the transcript

variant with the long 39-UTR.

We subsequently conducted a cis-eQTL meta-analysis on the

heterogeneous types of data using methods extended from those we

developed for microarray-based eQTL meta-analysis [6]. We

identified 1,207 unique cis-regulated genes. This number is

substantially higher than in each of the datasets separately and

indicates that different protocols for digital gene expression

generally deliver consistent results. Nevertheless, the overlap at a

fixed FDR of 0.05 is rather small, in particular between DeepSAGE

and RNA-seq data. While this is partly attributable to using a strong

threshold, there are other important reasons: firstly, the RNA-seq

and DeepSAGE technologies frequently interrogate different

transcript variants. Secondly, the RNA-seq studies were done on

lymphoblastoid cell lines (LCLs) while the DeepSAGE study was on

total blood, and some cis-eQTLs may be tissue-specific [33,34].

Finally, the DeepSAGE technology is strand-specific but the RNA-

seq technologies evaluated here are not: where DeepSAGE will

evaluate the expression of sense and antisense transcripts separately,

RNA-seq will sum them. These reasons could explain why the

percentage of RNA-seq-derived eQTLs that can be replicated by

DeepSAGE is higher than the percentage of DeepSAGE-derived

eQTLs that can be replicated by RNA-seq.

We conclude that DeepSAGE technology is useful to determine

cis-eQTLs, as it is able to quantify the expression of novel transcripts,

and to detect alternative polyadenylation effects and alternative 39-

UTR selection. It is complementary to other sequencing-based

approaches, as they each reveal slightly different regulatory effects of

genetic variants. Different sequencing-based eQTL analyses gener-

ally deliver consistent results, allowing for meta-analyses across

different technologies. Future eQTL mapping studies based on

Table 4. SNPs that likely affect polyadenylation due to a change in the polyadenylation signal.

Cis-regulating
SNP Causal SNP R2 SNP type Gene

Reference
sequence

Alternative polyA
signal

Distance to
polyA site (bp)

Effect on 39-UTR
length

Formation/activation of polyA signal

rs6948928 rs10954213 0.76* G/A IRF5 AATGAA AATAAA 15 Shortening

rs168822 rs12934747 0.87 C/T LPCAT2 AACAAA AATAAA 27 Shortening

rs1062826 rs1062827 0.99 G/A F11R AGTAAA AATAAA 21 Shortening

rs759011 rs6598 1 G/A GIMAP5 AATAGA AATAAA 13 Shortening

Disruption of polyA signal

rs13160562 rs7063 1 T/A ERAP1 AATAAA AAAAAA 23 Shortening

*This SNP was reported in [27] and is validated by our data.
doi:10.1371/journal.pgen.1003594.t004
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DeepSAGE and other next generation sequencing strategies, using

larger cohorts and different techniques, will likely reveal a more

comprehensive picture of how far genetic variation affects the

expression of protein-coding genes and non-coding RNAs.

Materials and Methods

Ethics statement
The medical ethical committee of the VUMC, Amsterdam, the

Netherlands, approved the collection and analysis of material

blood, DNA and RNA from the 94 participants from the

Netherlands Twin Registry (NTR) and the Netherlands Study of

Depression and Anxiety (NESDA).

NTR-NESDA dataset
We analyzed 21 bp DeepSAGE data from total blood RNA of

94 unrelated individuals who participated in NTR or NESDA.

RNA was isolated using PaxGene tubes [20,35,36]. DeepSAGE

sample preparation protocols, and alignment approaches were

described in [37]. One sample was run on one lane of the Illumina

GAII instrument. Data are available in ArrayExpress under

accession number E-MTAB-1181.

The NTR-NESDA data was imputed using Beagle v3.1.0, with

HapMap2 release 24 as a reference.

Tag mapping and expression estimation
Tags from DeepSAGE sequencing were aligned to the NCBI

build 37 reference genome using Bowtie v. 0.12.7 allowing for a

maximum of 1 mismatch and a maximum of 2 possible alignments

(-n 1 -k 1 -m 2 –best –strata options).

The expression values were both quantified on an individual tag

and transcript level. For the tag-wise analysis, the total number of

occurrences of each unique tag in each sample was counted. We

only included tags that were present in .90% of samples. Tags

with SNPs in the CATG recognition sequence (according to

dbSNPv135) and the transcripts containing those tags were

removed before eQTL analysis, since these SNPs can affect the

position of the SAGE tag in the transcript. For the transcript-wise

analysis, the tag counts for tags overlapping the exons of a

transcript by at least half of the tag length were summed.

Coordinates of LINE, SINE, LTR elements were derived from

UCSC’s RepeatMasker track (update: 2009-04-24).

GC content bias estimation
To calculate the GC content per individual for DeepSAGE

data, GC frequencies for all mapped tags were summed after

excluding the twenty most abundant tags, since their high

abundance would give biased estimates.

Cis-eQTL mapping and correction for confounding
effects through principal component analysis

Before eQTL mapping, transcript and tag expression values

were quantile normalized. To perform cis-eQTL mapping,

association of SNPs with the expression levels of tags or transcripts

within a distance of 250 kb (as this is the average size of linkage

regions) of the midpoint of the transcript or tag were tested with a

non-parametric Spearman’s rank correlation. Multiple testing

correction was performed, controlling the false discovery rate

(FDR) at 0.05. To determine the FDR, we created a null

distribution by repeating the cis-eQTL analysis after permuting

the sample labels 10 times [38].

We argue that gene expression levels from NGS-based datasets

are, like micro-array based data, derived from genetic, technical
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and environmental effects. As such, compensating for these non-

genetic effects would increase the power to detect cis-eQTL effects.

To mitigate the effects of non-genetic sources of variability, we first

log2 transformed the data and centered and scaled each tag, and

subsequently applied PCA on the sample correlation matrix. We

then used the first PCs as covariates, and re-did the non-

parametric cis-eQTL mapping on the residual expression data

(using the procedure described by [6]).

Validation of genotype-dependent alternative
polyadenylation in RNA-seq datasets

The genomic coordinates of the 39-UTR, obtained from Refseq

Genes, were split into two separate regions (distal and proximal 39-

UTRs) according to the position of the DeepSAGE tags with opposite

directions, the position of LongSAGE tags from CGAP, and the

position of reported and predicted polyadenylation sites from

polyA_DB database. To calculate the coverage in proximal and distal

regions in RNA-seq datasets, we created a coverage histogram from

each .bam alignment file using coverageBed tool from BEDTools

package (version 2.17.0) [39]. Subsequently, a custom Python script

was used to convert the histogram in number of nucleotides mapped

per region, normalized by the length of the region. The ratio between

the number of counts in the proximal region and the distal region was

then calculated.

qPCR validation of alternative polyadenylation
Expression of short and long variants of HPS1 and IRF5 was

quantified by qRT-PCR, which was performed on a subset of

RNA samples used for the DeepSAGE sequencing. cDNA was

synthesized from 400 ng of total RNA using BioScript MMLV

Table 6. Number of detected cis-eQTLs in transcript-wise analysis of three harmonized RNA NGS datasets.

Number of unique genes with cis-eQTLs

Without principal component
correction

With principal component
correction

Montgomery et al. (paired-end RNA-seq) 94 145

Pickrell et al. (single-end RNA-seq) 199 438

NTR-NESDA transcript-wise (DeepSAGE) 292 579

Meta-analysis 651 1,207

doi:10.1371/journal.pgen.1003594.t006

Table 7. Trait-associated SNPs detected in the sequencing-based transcript-wise meta-analysis, but not detected in array-based
eQTL dataset of 1,469 peripheral blood samples.

SNP name Chr.

Transcript
position
(midpoint) Cis-regulated gene Associated trait

rs1052501 3 41963564 ULK4 Multiple myeloma

rs347685 3 141782879 TFDP2 Chronic kidney disease

rs4580814 5 1081324 SLC12A7 Hematological and biochemical traits

rs4947339 6 28911984 C6orf100 Platelet aggregation

rs2517532 6 31024818 HCG22 Hypothyroidism

rs2844665 6 31024818 HCG22 Stevens-Johnson syndrome and toxic epidermal necrolysis (SJS-TEN)

rs6457327 6 31024818 HCG22 Follicular lymphoma

rs3130501 6 31324124 HLA-B Stevens-Johnson syndrome and toxic epidermal necrolysis (SJS-TEN)

rs2858870 6 32434437 HLA-DRB9 Nodular sclerosis Hodgkin lymphoma

rs3129889 6 32434437 HLA-DRB9 Multiple sclerosis

rs3135388 6 32434437 HLA-DRB9 Multiple sclerosis

rs477515 6 32434437 HLA-DRB9 Inflammatory bowel disease

rs9271100 6 32524134 HLA-DRB6 Systemic lupus erythematosus

rs9273349 6 32632106 HLA-DQB1 Asthma

rs3807989 7 116183034 CAV1 PR interval

rs12680655 8 135604552 ZFAT Height

rs4929923 11 8642408 TRIM66 Menarche (age at onset)

rs12785878 11 71161461 RP11-660L16.2 Vitamin D insufficiency

rs12580100 12 56436876 RPS26 Psoriasis

rs4924410 15 40329664 SRP14 Ewing sarcoma

rs7364180 22 42184613 MEI1 Alzheimer’s disease biomarkers

doi:10.1371/journal.pgen.1003594.t007
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Reverse Transcriptase (Bioline) with 40 ng of random hexamer

and oligo(dT)18 primers following manufacturer’s instructions (for

the list of primer sequences see Table S7). Primers specific to short

or long variants of HPS1 were designed using Primer3Plus

program, primers for IRF5 were designed as previously described

[40]. qRT-PCR was performed on the LightCycler 480 (Roche)

using 26 SensiMix reagent (Bioline). 45 cycles of two-step PCR

were performed for HPS1, and 55 cycles of three-step PCR (95uC
for 15 s, 48uC for 15 s, and 60uC for 40 s) for IRF5. Each

measurement was performed in duplicates. PCR efficiency was

determined using the LinRegPCR program [41] v.11.1 according

to the described method [42]. Ratios between distal and proximal

PCR products were then calculated and significance was tested

performing a T-test.

Identifying causal SNPs affecting polyadenylation
We obtained all the proxy SNPs for all SNPs identified as cis-

regulating the choice of polyadenylation site. To do this we used

bi-allelic SNPs that pass QC from the 1000G European panel

(v3.20101123) and took all SNPs that were in linkage disequilib-

rium with the query SNPs (R2$0.8, distance between SNPs within

250 kb).

From this list of cis-regulating SNPs in linkage disequilibrium,

we kept only SNPs, which were located in the cis-regulated

genes. The filtering was performed by intersecting .bed files

containing SNPs coordinates and coordinates of cis-regulated

genes from RefSeq database, using table browser tool in UCSC

genome browser and the overlap intervals tool in Galaxy

(version 1.0.0).

Intersection of SNPs with validated and predicted polyadenyl-

ation sites was performed using annotation in the PolyA-DB

database (PolyA_DB 1 and PolyA_SVM) on UCSC (table browser

tool). Detection of SNPs within polyadenylation signals was

performed by extracting the strand specific sequence five

nucleotide upstream and downstream each SNP (using table

browser tool in UCSC) and performing a motif search using

custom Perl script. Canonical and non-canonical polyA motifs

searched were AATAAA, ATTAAA, TATAAA, AGTAAA,

AAGAAA, AATATA, AATACA, CATAAA, GATAA, AAT-

GAA, TTTAAA, ACTAAA, and AATAGA. For every SNP

located in a putative polyadenylation signal motif, the distance to

validated and predicted polyadenylation sites from PolyA-DB was

calculated. Only motifs within a distance of 30 nucleotides from a

polyadenylation site were considered true polyadenylation signals.

Newly formed polyadenylation signals were detected by changing

the reference allele of the SNP with the alternative allele, followed

by the same polyadenylation signal motif search using custom Perl

scripts.

For the cis-regulated genes where the SNP is located within a

true polyadenylation signal, we retrieved the coverage of every

SAGE tag upstream and downstream the putative affected

polyadenylation site and calculated the ratio between proximal

and distal tags for the different genotypes to confirm the expected

effects of polyadenylation site formation or disruption.

RNA-seq datasets
For the meta-analysis we combined DeepSAGE data with two

published RNA-seq datasets. The first dataset was 37 bp paired-

end RNA-sequencing data from HapMap individuals ([8],

[ArrayExpress:E-MTAB-197]): RNA from lymphoblastoid cell

lines of 60 HapMap CEPH individuals was sequenced on the

Illumina GAII sequencer, while genotype data had already been

generated within the HapMap project.

The second dataset was single-end RNA-sequencing data from

HapMap individuals [9,43] [GEO:GSE19480 and at http://eqtl.

uchicago.edu/RNA_Seq_data/]: RNA was sequenced from

lymphoblastoid cell lines of 72 HapMap Yoruba individuals from

Nigeria on the Illumina GAII platform in two sequencing centers:

Yale (using 35 bp reads) and Argonne (using 46 bp reads).

Since the Montgomery et al. paper used genotype data for some

individuals that were not in the HapMap3 panel (NA0851,

NA12004, NA12414 and NA12717), we imputed these individuals

using Beagle v3.1.0, with HapMap2 release 24 as a reference.

RNA-seq read mapping
Reads from single- and paired-end RNA-sequencing were

mapped to the human genome NCBI build 37 (reference

annotation from Ensembl GRCh37.65) using Tophat v. 1.3.3

[30] – a splice-aware aligner that maps RNA-seq reads to the

reference genome using Bowtie [21]. We used default settings

(maximum 2 mismatches, 20 possible alignments per read) with a

segment length value of 17 bp. Reads that corresponded to the

flag 1796 in the .bam alignment file (read unmapped, not primary

alignment, read fail quality check, read is PCR or optical

duplicate) were filtered out. The numbers of raw and mapped

reads for each dataset are given in Table 5.

Read quantification
To estimate expression levels in RNA-seq data, reads that

overlapped with exons from known transcripts (GRCh37.65) were

quantified using the coverageBed method from BEDTools suite

[39].

For transcript level quantification the read count Ctr
s for sample

s for transcript tr was calculated as a sum of expression values over

all exons contained in this transcript:

Ctr
s ~106:

X

e[fEtrg
ne
:Be,

where

fEtrg – set of all exons of transcript tr,

ne– number of reads overlapping exon e by not less than half of

read’s length,

Be– breadth of coverage for exon e (% of exon length covered by

the reads mapping to that exon).

In case a read mapped to multiple transcripts, the read was

counted for all transcripts, since the short reads are difficult to

assign to a specific transcript. Multiplication by breadth of

coverage was performed to help in distinguishing between different

isoforms by assigning higher weight to exons fully covered by reads

in contrast to alternative exons covered only partly.

Because different methods have different capacity to identify

alternative splicing events, we subsequently summarized our

eQTL results to unique genes.

Meta-analysis
Meta-analysis was conducted by using a weighted Z-method,

weighing each of the datasets by the square root of the number of

samples per dataset [6].

Microarray datasets
We compared the results to corresponding microarray dataset

eQTL mapping results. For each of the 94 individuals from NTR-

NESDA study, Affymetrix HG-U219 expression data were

generated at the Rutgers University Cell and DNA Repository

(RUCDR, http://www.rucdr.org). NTR and NESDA samples
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were randomly assigned to plates with seven plates containing

subjects from both studies to better inform array QC and study

comparability. Gene expression data were required to pass

standard Affymetrix QC metrics (Affymetrix expression console)

before further analysis. Probe sets were removed when their

mapping location was ambiguous or if their location intersected a

polymorphic SNP (dropped if the probe oligonucleotide sequence

did not map uniquely to hg19 or if the probe contained a

polymorphic SNP based on HapMap3 [44] and 1000 Genomes

[45] project data). Expression values were obtained using RMA

normalization implemented in Affymetrix Power Tools (APT, v

1.12.0). MixupMapper revealed no sample mix-ups [46].

For RNA-seq data we used corresponding microarray datasets

that were available for most of the individuals present in RNA-seq

datasets. We used Illumina expression data provided by Stranger et

al. [3] of the 72 HapMap YRI individuals (56 of which were also

present in RNA-seq dataset from Pickrell et al.) and 60 HapMap

CEU individuals provided by Montgomery et al. (58 of which were

also present in RNA-seq dataset from Montgomery et al.).

The same normalization procedure was performed as for the

sequencing-based datasets: quantile normalization, and subse-

quent probe set centering to zero, z-score transformation, and

scaling to a standard deviation of one.

Data access
The newly generated DeepSAGE data for NTR-NESDA

dataset is available in ArrayExpress under accession number E-

MTAB-1181 (ENA: ERP001544).

Supporting Information

Figure S1 Correlation of GC content with principal component

1 (PC1) eigenvector coefficients for all the three datasets. Pearson

correlation coefficient and corresponding p-value are shown in the

plot.

(EPS)

Figure S2 Blood cell counts in DeepSAGE data captured by the

eigenvector coefficients on principal components PC7 (left) and

PC11 (right). Experimentally determined blood cell counts at the

time of RNA isolation were available for 36/94 samples. Blood cell

counts are expressed as (number of cells)6109/L. Pearson

correlation coefficients and corresponding p-values are shown in

the plot.

(EPS)

Figure S3 Replication of Affymetrix eQTLs in DeepSAGE

dataset and DeepSAGE eQTLs in Affymetrix data. The numbers

of unique cis-regulated genes is given after each filtering step.

(EPS)

Table S1 List of detected eQTLs in tag-wise eQTL mapping.

(XLS)

Table S2 Trait-associated SNPs affecting the expression of

DeepSAGE tags of 94 peripheral blood samples.
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tion event detected using a permissive strategy.
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Table S4 Replications between RNA-seq and DeepSAGE

eQTLs.
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Table S5 Replication of RNA-seq eQTLs in microarray-based

datasets.

(XLS)

Table S6 List of detected eQTLs in the meta-analysis.
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Text S1 Additional details on principal component analysis of

DeepSAGE expression data.
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