Version history

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>V0.1</td>
<td>25/3/21</td>
<td>Out for comments</td>
</tr>
<tr>
<td>V0.2</td>
<td>1/4/21</td>
<td>Spencer Keene comments</td>
</tr>
<tr>
<td>V0.3</td>
<td>5/4/21</td>
<td>Cathie Sudlow comments, updated relevant phenotypes, added tables</td>
</tr>
<tr>
<td>V0.4</td>
<td>7/4/21</td>
<td>Munir Pirmohamed comments, Cathie Sudlow comments, updated phenotypes, added pre and post COVID analysis, added skeleton tables post Angela Wood comments, added thrombophilia to phenotypes, altering of DVT codes after Spencer Keene suggestions</td>
</tr>
<tr>
<td>V0.5</td>
<td>8/4/21</td>
<td>Altered follow up time periods to 1,2,3,4,8,12,20,39 weeks, updated to 4-character ICD-10 when possible, new COVID phenotypes matched to prior long COVID application</td>
</tr>
<tr>
<td>V0.6</td>
<td>9/4/21</td>
<td>Updated to include pregnancy related venous thrombosis codes and separate into a category, outcomes now in better table in appendix, updated tables and analyses</td>
</tr>
<tr>
<td>V0.7</td>
<td>11/4/21</td>
<td>Updated to include SAH, retinal infarction in list of codes, removed time since registration from population definition and changing practice</td>
</tr>
<tr>
<td>V0.8</td>
<td>12/4/21</td>
<td>Added instructions for follow up time from Angela Wood</td>
</tr>
<tr>
<td>V0.9</td>
<td>15/4/21</td>
<td>Aziz Sheikh comments, dates of follow up for COVID and vaccine populations, sensitivity date, added drug recoding from Venexia Walker</td>
</tr>
<tr>
<td>V0.10</td>
<td>26/4/21</td>
<td>Updated statistical methods, clarified COVID terminology, updated DVT phenotype to I80$ and ischaemic stroke to I63$ excluding I63.6, with further comments from Jonathan Sterne, Spencer Keene, Angela Wood. Updated ordering outcomes to first recorded only in SUS and ONS death rather than any position.</td>
</tr>
<tr>
<td>V0.11</td>
<td>27/4/21</td>
<td>Changes to spelling and grammar, added time from second vaccine</td>
</tr>
<tr>
<td>V1.0</td>
<td>27/4/21</td>
<td>To GitHub</td>
</tr>
<tr>
<td>V1.1</td>
<td>28/4/21</td>
<td>Changes to ischaemic stroke phenotype, added lower limb fracture phenotype, added more detail to modelling strategy after reviewing power available for various analyses</td>
</tr>
<tr>
<td>V1.2</td>
<td>5/5/21</td>
<td>Further details of statistical analyses, including stratification and inverse probability weighting of Cox models, approaches to control of confounding, dealing with missing data and subgroup analyses.</td>
</tr>
</tbody>
</table>
Lay summary

Some people have had illnesses related to blood clotting after COVID-19 vaccination. The illness that is of most concern is a very rare condition of clotting of the veins in unusual places like the brain and the gut, which has been associated with low levels of platelets, which are fragments of cells in our blood that form clots and help stop bleeding.

We will study all adults alive in England at the beginning of the COVID-19 pandemic (January 2020) with data included in the NHS Digital Trusted Research Environment. We will find out which people had a disease with blood clots in the arteries, like stroke or heart attack, or in the veins, like deep vein thrombosis, pulmonary embolism or clots in the veins of the brain or gut. We will also find out which of these people were diagnosed with low levels of platelets at the time of their blood clot.

We will compare the risk of developing one of these conditions among people who have had a COVID-19 vaccine with the risk in those who have not had a vaccine. We will account for differences between vaccinated and unvaccinated people (such as age, sex, ethnic group and previous medical history) that might affect the risk of these conditions. We will assess the risks of clotting events of different types, for different vaccines, in people who have had one or two vaccine doses, and for people with different characteristics. We will also compare the risk of these conditions following COVID-19 disease with the risk in people who do not have COVID-19.

This research is needed to provide reliable information about any risks associated with COVID-19 vaccines to medicine regulators, the UK Departments of Health, health professionals, and the public. Because clotting events are rare, it will be important to understand not only whether there is an increased risk with a COVID vaccine but also the size of any increased risk and whether it only applies to particular groups of people. It will also be important to understand how any risk compares with the benefits of the vaccine, which are known to be substantial.
COVID-19 vaccination and disease and the risks of major venous and arterial vascular events

BACKGROUND

There have been reports of intracranial venous sinus thrombosis with intracranial haemorrhage, mesenteric thrombosis, thrombocytopenia and disseminated intravascular coagulation after Oxford-Astra Zeneca severe acute respiratory syndrome coronavirus 2 vaccination (henceforth ‘COVID-19 vaccination’).\(^1\)\(^-\)\(^3\) Whether these events are caused by the vaccine is uncertain. It has been proposed that antibodies to platelet factor 4 lead to a haematological syndrome, analogous to heparin induced thrombocytopenia. Coronavirus-19 associated disease (henceforth ‘COVID-19 disease’) itself is associated with increased antibody-mediated procoagulant platelets.\(^4\)

Vaccination in adulthood against other infections leads to a transient increase in inflammatory markers as the immune system begins an acute inflammatory response. Although higher levels of markers associated with inflammation are associated with a higher risk of myocardial infarction and stroke, there is little evidence that vaccination in adults increases the risk of myocardial infarction or stroke. A study based on UK electronic health records found no increase in incident myocardial infarction (MI) or stroke after influenza, tetanus, or pneumococcal vaccination;\(^5\) this finding was replicated in a cohort of older American men who received pneumococcal vaccination.\(^6\)

People who have been vaccinated tend to be in better health than those not vaccinated, at least at the time of vaccination. This may be why some case-control studies have found that pneumococcal vaccination is associated with a reduced risk of MI.\(^7\) COVID vaccination was prioritised for older individuals and those with co-morbidities who may be in worse health (hence had a higher risk of thrombotic events), but those who were very unwell at the time of their vaccine appointment were encouraged to delay it.

Any increased risk of serious complications arising from COVID-19 vaccination needs to be balanced against the risk of these complications with COVID-19 disease, in the context of the rate of these events in individuals without COVID-19 vaccination or disease. Therefore, a comprehensive assessment of haemorrhagic and thrombotic vascular events after COVID-19 vaccination and COVID-19 disease, accounting as far as possible for confounding factors, is needed.

RESEARCH HYPOTHESES

1. There is a higher risk of venous or arterial thrombosis, or haemorrhage (particularly intracranial) after COVID-19 vaccination than before or without vaccination, that varies with vaccine type, and is associated with thrombocytopenia.
2. There is a higher risk of venous and arterial thrombosis or embolism after COVID-19 disease than before or without infection.

DATA SOURCES

NHS Digital TRE for England (up to latest release)
- Primary care data (GP Data for Pandemic Planning and Research via General Practice Extraction Service, GPES)
- Secondary Use Service (SUS) hospital data
- Pillar 1 and Pillar 2 COVID-19 infection laboratory testing data
- Hospital episode statistics Admitted Patient Care (HES APC)
- Office of National Statistics (ONS) death registration records
- Community dispensing data
- COVID-19 vaccination data
RESEARCH QUESTIONS
1. What is the age- and sex-specific incidence of each outcome event in 2018 and 2019 (before the pandemic) and in 2020 (during the pandemic)?
2. In people who have had COVID-19 vaccination compared with people who have not, are there higher rates (expressed as hazard ratios with time since vaccination) of fatal or non-fatal ischaemic stroke or MI (‘arterial’); intracranial venous thrombosis, mesenteric or portal vein thrombosis, pulmonary embolism (PE) or deep vein thrombosis (DVT) (‘venous thromboembolism’); before and after adjustment for potential confounders (age, sex, ethnicity, socio-economic status and comorbidities)?
3. In people who have had COVID-19 disease compared with people who have not, are there higher rates (expressed as hazard ratios with time since COVID-19-disease) of fatal or non-fatal ischaemic stroke or MI (‘arterial’); cerebral sinus thrombosis, mesenteric or portal vein thrombosis, PE or DVT (‘venous thromboembolism’); before and after adjustment for potential confounders?

STUDY POPULATION

Population for incidence of events during 2018-2020
Whole population of England, estimated by mid-2019 population from ONS

Population for COVID analyses
Follow-up period: 1/1/20 to 7/12/20
Patients will be included if they meet ALL the following criteria:
• An age of ≥18 can be calculated on 1st January 2020;
• Known sex;
• Have a record in the primary care extract;
• Alive on 1st January 2020.

Population for vaccine analyses
Follow up period: 8/12/20 until date of latest data release
Patients will be included if they meet ALL the following criteria:
• An age of ≥18 can be calculated on 8th December 2020;
• Known sex;
• Have a record in the primary care extract;
• Alive on 8th December 2020.
EXPOSURES

PRIMARY – COVID-19 VACCINE
- Astra Zeneca
 - Batch number, dose number (first or second)
- Pfizer
 - Batch number, dose number (first or second)
- Similarly, for other vaccines when they become available

PRIMARY – COVID-19 DISEASE
- A positive PCR test and date of test available in laboratory data

SECONDARY – COVID-19 DISEASE
- All detected: positive test and/or any clinical code (i.e. 1, 2, or 3 in table below)

<table>
<thead>
<tr>
<th>Test</th>
<th>+</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any clinical code (COVID-19)</td>
<td>1. Confirmed diagnosis</td>
<td>2. Clinical diagnosis only</td>
</tr>
<tr>
<td></td>
<td>3. Asymptomatic [or asymptomatic code]</td>
<td>4. No known positive test or diagnosis</td>
</tr>
</tbody>
</table>

STATISTICAL METHODS

Follow up for each person will begin at the start of the follow up period and be censored at the first of: death; the outcome event, or the end of the follow up period. In analyses of the effects of individual vaccine types, follow up will be censored at receipt of another vaccine type. In analyses of first vaccine dose, follow up will be censored on the date of receipt of second dose. In analyses of second vaccine dose, follow up will start on the date of receipt of first dose.

We will split follow up time for each person into periods before and after exposure (COVID-19 vaccine or COVID-19 disease), and into time periods since exposure (Appendix 2). Outcome events of interest are listed below. We will tabulate numbers of outcome events, person-years of follow-up and rates of events before and with time since exposure.

We will fit survival models (Cox models or parametric survival models) in which time zero is defined as the calendar date of the start of follow up. This will ensure that all analyses account for changes with calendar time in rates of the outcome event. Using this approach, we will estimate hazard ratios for events of different types before and after exposure, and by time since exposure. For computational efficiency, Cox models will be fitted to datasets including all people with the outcome event and a random subset (for example, 10%) of people without the outcome event, with analyses incorporating inverse probability weights (for example, 10) for data from people without the outcome event, and confidence intervals derived using robust standard errors. All models will be stratified on region (so that risk sets are constructed within region, hence accounting for between-region variation in the baseline hazard). In sensitivity analyses we will confirm that results do not change markedly when we stratify on LSOA.

Potential confounding factors (factors that predict both exposure and outcome, listed below) will be based on data recorded on or before the start of follow up in each analysis. We will estimate (i) crude; (ii) age and sex adjusted and (iii) fully adjusted HRs (when there are sufficiently many outcome events). The following risk factors for venous thrombotic events will be included as confounders: sex, age, ethnicity, deprivation, anticoagulant prescription, combined oral contraceptive pill prescription, hormone replacement therapy prescription, history of pulmonary embolism or deep vein thrombosis, and history of coronavirus infection; and the following confounders for arterial thromboembolic events: sex, age, ethnicity,
deprivation, diabetes, hypertension, smoking, anti-platelet prescription, blood pressure lowering prescription, lipid lowering prescription, anticoagulant prescription, history of stroke, and history of MI. Other variables to be adjusted for will be selected from the list of potential confounders using a backwards stepwise procedure with p value threshold 0.2, from models using MI as an outcome (separately for males and females and for older and younger individuals). Variables selected in any model will be adjusted for in all models. The same selected variables will be adjusted for in models for all outcomes.

Missing data
All analyses will be “complete-case” analyses (note that many potential confounders are defined using the presence versus absence of specific codes in the EHRs, so by definition have no missing values). We will not use multiple imputation or indicators for missing data.

Subgroup analyses
We will estimate post-exposure hazard ratios:

- Following any vaccination, and separately after Pfizer, Oxford/Astra Zeneca and other vaccinations;
- Separately within age groups, for all people and in males and females;
- When there are sufficiently many outcome events, by separate calendar periods (e.g. before or after June 2020 between the two waves of COVID-19; month since 8th December 2020 (from the start of vaccination); before or after 18th March 2021 (the date on which a possible risk of thrombotic events associated with COVID-19 vaccination was first reported by the EMA).

When there are at least 400 outcome events, we will estimate post-exposure hazard ratios:

- Separately in people with and without a history of cardiovascular disease.
- Separately within subgroups of particular interest (see “effect modifiers”) below.

These subgroup analyses will allow for different baseline hazard functions and differential confounding effects within subgroups, because associations between exposures and confounders and between confounders and outcomes may vary between subgroups.

When there are fewer than 400 outcome events, we will conduct sensitivity analyses in which the baseline hazard is additionally stratified by sex, and hazard ratios for males and females are estimated using the data on both sexes but allowing for exposure-sex interactions. Such an approach assumes the effect of covariates on the outcome to be the same in males and females, but avoids fitting a model including a large number of potential confounding variables to datasets with a small number of outcome events.
OUTCOMES (see appendix for code lists)

Each outcome is defined as the first event of that type following exposure in one of the following datasets: SUS, primary care or ONS death registry. For the primary analyses, we will use events in the primary position where recorded in SUS or death records, and in sensitivity analyses of the main results, events in any position. Some outcomes (largely venous) do not appear in the primary care data because the relevant codes are not included in the primary care extract available in the NHS Digital Trusted Research Environment, so will only be ascertained in SUS or death records.

Events will be defined as fatal if they are followed by death of any cause within 28 days, or are only recorded as fatal (i.e. reported only in death records). We will examine all events and fatal events in separate analyses. Lower limb fractures are included as an outcome that is unlikely to be affected by infection or vaccination.

Composite events:

- **Arterial events**: first of ischaemic stroke or stroke of unknown type or retinal infarction or myocardial infarction or other arterial thrombosis
- **Arterial events + thrombocytopenia** (i.e. any arterial event + any thrombocytopenia code present during in same spell), and no prior history of thrombocytopenia
- **Venous events**: first of pulmonary embolism or lower limb deep venous thrombosis or intracranial venous thrombosis or intracranial venous thrombosis during pregnancy or portal vein thrombus or other deep vein thrombosis
- **Venous events + thrombocytopenia** (i.e. both codes present during same spell) and no prior history of thrombocytopenia
- **ICVT + thrombocytopenia** (i.e. both codes present during same spell) and no prior history of thrombocytopenia

Individual events of different types

Arterial
- Incident myocardial infarction in primary care or SUS or ONS death
- Incident ischaemic stroke or stroke of unknown type or retinal infarction in primary care or SUS or ONS death
- Incident non-stroke non-MI arterial embolism in primary care or SUS or ONS death

Venous
- Pulmonary embolism in SUS or ONS death
- Deep vein thrombosis in SUS or ONS death
- Portal vein thrombosis in SUS or ONS death
- Other deep vein thrombosis in SUS or ONS death
- Thrombosis during pregnancy (excluding intracranial venous thrombosis) in SUS or ONS death
- Intracranial venous thrombosis during pregnancy in SUS or ONS death
- Intracranial venous thrombosis in SUS or ONS death

Haematological
- Disseminated intravascular coagulation in SUS or ONS death
- Thrombotic thrombocytopenic purpura in SUS or ONS death
- Thrombocytopenia in SUS or ONS death

Other
- Intracerebral haemorrhage in primary care or SUS or ONS death
- Mesenteric thrombus in SUS or ONS death
- Spinal stroke in SUS or ONS death
- Lower limb fracture in SUS or ONS death

Date of onset defined as: of date of start of SUS or APC spell with event; OR date of GP consultation with event; OR death with event (whichever comes first)
POTENTIAL CONFOUNDERS
Defined on the inception date (defined henceforth as 1st January 2020 for COVID-19 disease analysis and 8th December 2020 for COVID-19 vaccine analysis), with a look back in GP and HES APC for each person:

- **Sex:** categorical, GP;
- **Age in years** continuous, at inception; GP;
- **Ethnicity** 5 categorical, most recent recorded prior to inception; GP and if missing from GP data then from HES;
- **Deprivation** continuous, most recent recorded prior to inception; HES or GP;
- **Region** East of England, London, Midlands, NE and Yorkshire, North West, South East, South West, Scotland, Wales, most recent residence prior to inception; GP;
- **Consultation rate:** number of primary care contacts in the year prior to inception; GP;
- **Medications:** total number of medications by BNF chapters prescribed within three months prior to the inception date; GP;
- **Diabetes:** yes/not recorded from start of record to inception; GP or HES APC;
- **Depression:** yes/not recorded from start of record to inception; GP or HES APC;
- **Obesity:** yes/not recorded from start of record to inception or BMI>30; GP
- **Cancer:** yes/not recorded from start of record to inception; GP or HES APC;
- **COPD:** yes/not recorded from start of record to inception; GP or HES APC;
- **CKD:** yes/not recorded from start of record to inception; GP or HES APC;
- **Liver disease:** yes/not recorded from start of record to inception; GP or HES APC;
- **Major Surgery:** yes/not recorded from start of record to inception; GP or HES APC;
- **Hypertension:** yes/not recorded from start of record to inception; GP or HES APC;
- **Dementia:** yes/not recorded from start of record to date of linkage; GP or HES APC;
- **Smoking:** current/ex/never/unknown most recent prior to inception; GP;
- **Antiplatelet:** yes/no/unknown (unknown if patient’s GP practice not in prescription extract) BNF codes starting ‘0209’ with at least one prescription within three months prior to the inception date; dispensing;
- **BP lowering:** yes/no/unknown (unknown if patient’s GP practice not in prescription extract) BNF codes starting with any of the following patterns provided below with at least one prescription within three months prior to the inception date, Aliskiren: 0205053A0 Alpha blockers: 020504 Beta blockers: 0204 (exclude: 0204000R0, 0204000Q0) Calcium channel blockers: 020602 Centrally acting antihypertensives: 020502 (exclude: 0205020G, 0205052AE) Potassium sparing diuretics: 020203 Thiazide diuretics: 020201 Vasodilator antihypertensives: 020501 Angiotensin-converting enzyme inhibitors: 0205051 Angiotensin-II receptor antagonists: 0205052 dispensing;
- **Lipid lowering:** yes/no/unknown (unknown if patient’s GP practice not in prescription extract) BNF codes starting ‘0212’ at least one prescription within three months prior to the inception date; dispensing;
- **Anticoagulant:** yes/no/unknown (unknown if patient’s GP practice not in prescription extract) BNF codes starting ‘020802’ (exclude: 0208020I, 0208020W) with at least one prescription within three months prior to the inception date; dispensing;
- **COCP:** yes/no/unknown (unknown if patient’s GP practice not in prescription extract) BNF codes starting ‘070301’ with at least one prescription within three months prior to the inception date; dispensing;
- **HRT:** yes/no/unknown (unknown if patient’s GP practice not in prescription extract) BNF codes starting ‘0604011’ with at least one prescription within three months prior to the inception date; dispensing;
- **History of stroke:** yes/not recorded any stroke type (from ‘outcomes above, ischaemic stroke, intracranial haemorrhage, or stroke of unknown type) recorded from start of record to inception; GP or HES APC;
- **History of MI:** yes/not recorded any MI type (from ‘outcomes above) recorded from start of record to inception; GP or HES APC;
- **History of VT**: yes/not recorded and venous event (from ‘outcomes above) recorded from start of record to inception; GP or HES APC;
- **History of thrombophilia**: yes/not recorded from start of record to inception, defined as ICD-10 D68.5 D68.6; acquired or inherited; GP or HES APC;
- **History of thrombocytopenia** (from outcomes above) yes/not recorded from start of record to inception; GP or HES APC;
- **History of coronavirus infection before vaccination**, defined as a positive PCR test or a clinical episode of COVID from 1st January 2020 until 8th December 2020 (only for vaccine analysis); GP or HES APC;

EFFECT MODIFIERS (see definitions in list of confounders above)

- Age
 - within age group categories
- Sex:
 - categorical
- Ethnicity:
 - categorical
- Medication:
 - yes/no for each of antiplatelet, BP lowering, lipid lowering, anticoagulant, COCP/HRT;
- Diabetes
 - yes/not known
- Deprivation
 - fifths of deprivation distribution
- Calendar month
 - and before and after 18th March
- Prior CVD events
 - yes/not known
- Prior low platelets
 - yes/not known
REFERENCES

Appendix 1: Outcome definitions

Composite events, composed of more than one phenotype

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arterial event</td>
<td>First of ischaemic stroke or stroke of unknown type or myocardial infarction or retinal infarction or other arterial embolism</td>
</tr>
<tr>
<td>Arterial events + thrombocytopenia</td>
<td>Any arterial event + any thrombocytopenia code present during in same spell and no prior history of thrombocytopenia</td>
</tr>
<tr>
<td>Venous event</td>
<td>First of pulmonary embolism or deep venous thrombosis or other deep vein thrombosis or portal vein thrombosis or intracranial venous thrombosis</td>
</tr>
<tr>
<td>Venous events + thrombocytopenia</td>
<td>Any venous event + any thrombocytopenia code present during in same spell and no prior history of thrombocytopenia</td>
</tr>
</tbody>
</table>

Individual events

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Phenotype</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
</table>

Arterial

- Incident myocardial infarction I21* Acute myocardial infarction
- Incident myocardial infarction I22* Subsequent myocardial infarction
- Incident myocardial infarction I23* Certain current complications following acute myocardial infarction
- Incident myocardial infarction [primary care codes, type=1] SNOMED codes

- Retinal infarction H34* Retinal vascular occlusion
- Ischaemic stroke I63* Cerebral infarction, excluding I63.6
- Ischaemic stroke [primary care codes type=1] SNOMED codes

- Stroke of unknown type I64* Stroke, not specified as haemorrhage or infarction
- Stroke of unknown type [Primary care codes =1] SNOMED codes

- Stroke, subarachnoid haemorrhage I60* Nontraumatic subarachnoid haemorrhage
- Other arterial embolism I74* Arterial embolism and thrombosis

Venous

- Pulmonary embolism I26.0 Pulmonary embolism without mention of acute cor pulmonale
- Pulmonary embolism I26.9 Pulmonary embolism with mention of acute cor pulmonale
- Deep vein thrombosis I80* Phlebitis and thrombophlebitis of other sites
- Portal vein thrombosis I81* Portal vein thrombosis
- Other deep vein thrombosis I82.0 Budd Chiari Syndrome

- Other deep vein thrombosis I82.2 Embolism and thrombosis of vena cava
- Other deep vein thrombosis I82.3 Embolism and thrombosis of renal vein
- Other deep vein thrombosis I82.8 Embolism and thrombosis of other specified veins
- Other deep vein thrombosis I82.9 Embolism and thrombosis of unspecified vein
- Thrombosis during pregnancy and puerperium O22.3 Deep phlebothrombosis in pregnancy

- Thrombosis during pregnancy and puerperium O87.1 Deep phlebothrombosis in the puerperium
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>O87.9</td>
<td>Venous complication in the puerperium, unspecified</td>
</tr>
<tr>
<td>O88.2</td>
<td>Obstetric blood-clot embolism</td>
</tr>
<tr>
<td>O22.5</td>
<td>Cerebral venous thrombosis in pregnancy</td>
</tr>
<tr>
<td>O87.3</td>
<td>Cerebral venous thrombosis in the puerperium</td>
</tr>
<tr>
<td>G08*</td>
<td>Intracranial and intraspinal phlebitis and thrombophlebitis</td>
</tr>
<tr>
<td>I67.6</td>
<td>Nonpyogenic thrombosis of intracranial venous system</td>
</tr>
<tr>
<td>I63.6</td>
<td>Cerebral infarction due to cerebral venous thrombosis, nonpyogenic</td>
</tr>
<tr>
<td>D69.3</td>
<td>Idiopathic thrombocytopenic purpura</td>
</tr>
<tr>
<td>D69.4</td>
<td>Other primary thrombocytopenic purpura</td>
</tr>
<tr>
<td>D69.5</td>
<td>Secondary thrombocytopenic purpuna</td>
</tr>
<tr>
<td>D69.6</td>
<td>Thrombocytopenia, unspecified</td>
</tr>
<tr>
<td>D65*</td>
<td>Disseminated intravascular coagulation</td>
</tr>
<tr>
<td>M31.1</td>
<td>Thrombotic microangiopathy</td>
</tr>
<tr>
<td>K55.9</td>
<td>Vascular disorders of intestine, unspecified (arterial or venous)</td>
</tr>
<tr>
<td>K55.0</td>
<td>Acute vascular disorders of intestine (arterial or venous)</td>
</tr>
<tr>
<td>I61*</td>
<td>Intracerebral haemorrhage</td>
</tr>
<tr>
<td>G95.1</td>
<td>Vascular myelopathies (arterial or venous)</td>
</tr>
<tr>
<td>S720</td>
<td>Fracture of neck of femur</td>
</tr>
<tr>
<td>S721</td>
<td>Pertrochanteric fracture</td>
</tr>
<tr>
<td>S723</td>
<td>Fracture of shaft of femur</td>
</tr>
<tr>
<td>S724</td>
<td>Fracture of lower end of femur</td>
</tr>
<tr>
<td>S727</td>
<td>Multiple fractures of femur</td>
</tr>
<tr>
<td>S728</td>
<td>Fractures of other parts of femur</td>
</tr>
<tr>
<td>S729</td>
<td>Fracture of femur, part unspecified</td>
</tr>
<tr>
<td>S820</td>
<td>Fracture of patella</td>
</tr>
<tr>
<td>S821</td>
<td>Fracture of upper end of tibia (and fibula)</td>
</tr>
<tr>
<td>S822</td>
<td>Fracture of shaft of tibia (and fibula)</td>
</tr>
<tr>
<td>S823</td>
<td>Fracture of lower end of tibia (and fibula)</td>
</tr>
<tr>
<td>S824</td>
<td>Fracture of fibula alone</td>
</tr>
<tr>
<td>S825</td>
<td>Fracture of medial malleolus</td>
</tr>
<tr>
<td>S826</td>
<td>Fracture of lateral malleolus</td>
</tr>
<tr>
<td>S827</td>
<td>Multiple fractures of lower leg</td>
</tr>
<tr>
<td>S828</td>
<td>Fractures of other parts of lower leg</td>
</tr>
<tr>
<td>S829</td>
<td>Fracture of lower leg, part unspecified</td>
</tr>
<tr>
<td>S920</td>
<td>Fracture of calcaneus</td>
</tr>
<tr>
<td>S921</td>
<td>Fracture of talus</td>
</tr>
<tr>
<td>S922</td>
<td>Fracture of other tarsal bone(s)</td>
</tr>
<tr>
<td>Fractures</td>
<td>Lower limb fracture</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Fractures</td>
<td>Lower limb fracture</td>
</tr>
</tbody>
</table>
Appendix 2: splitting follow up according to time since the start of follow up and since exposure.

Definitions

Time scale – days since 1/1/2020 (for analyses examining hazard ratios after COVID-19 disease) or days since 8/12/2020 (for analyses examining hazard ratios after COVID-19 vaccination)

Outcome of interest – time to event D (T_D, I_D)

Exposure of interest – binary exposure E (COVID disease or COVID vaccination) measured at T_E with indicator I_E, parameterised as days since T_E, categorised for example into $E1 = 0-13.999$; $E2=14-27.999$; $E3=28-41.999$; $E4=42-55.999$; $E5=56-70$ days (although time interval may change depending on the number of events of different types)

Administrative Censoring time – set as day T_C

For individuals without exposure and without event then $T_D=T_C$, $I_D = 0$, $T_E=T_C$, $I_E=0$ (e.g., individual 1 in table below)

For individuals without exposure and with event at time t then $T_D=t$, $I_D = 1$, $T_E=t$, $I_E=0$ (e.g. individual 2 in table below)

For individuals with exposure at T_E and without event then: (1) split follow-up time at T_E, and (2) split follow-up time $>T_E$ at T_E+14; T_E+28; T_E+42; T_E+56 and then censor at earliest of T_E+70 or T_C (e.g., individual 3 in table below)

For individuals with exposure at T_E and event at T_D, then first (1) split follow-up time at T_E, and then (2) split follow-up time $>T_E$ at T_E+14; T_E+28; T_E+42; T_E+56 and then censor at earliest of T_E+70 or T_D (e.g., individual 4 in table below)

In example I have set $T_C = 300$

<table>
<thead>
<tr>
<th>id</th>
<th>T_E</th>
<th>T_D</th>
<th>T_C</th>
<th>$T0$</th>
<th>$T1$</th>
<th>I_E</th>
<th>I_D</th>
<th>$E1$</th>
<th>$E2$</th>
<th>$E3$</th>
<th>$E4$</th>
<th>$E5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>0</td>
<td>300</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>47</td>
<td>300</td>
<td>47</td>
<td>0</td>
<td>47</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>35</td>
<td>300</td>
<td>35</td>
<td>0</td>
<td>35</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>35</td>
<td>300</td>
<td>49</td>
<td>49</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>35</td>
<td>300</td>
<td>63</td>
<td>63</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>35</td>
<td>300</td>
<td>77</td>
<td>77</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>35</td>
<td>300</td>
<td>91</td>
<td>91</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>105</td>
<td>136</td>
<td>105</td>
<td>0</td>
<td>105</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>105</td>
<td>136</td>
<td>129</td>
<td>129</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>105</td>
<td>136</td>
<td>136</td>
<td>136</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Cox model in R:

Coxph(Surv(T0, T1, I_D) ~ E1+E2+E3+E4+E5)