Text S3: Modelling adult age-dependent mortality

Similar to Hancock et al. [21], age-dependent mortality in adult mosquitoes is modelled using a Weibull function. Adults are also assumed to experience a ‘background’ risk of mortality that is independent of age. In mosquitoes uninfected with Wolbachia, adult survival to age a is given by

$$\theta_{A_U}(a) = \exp \left(- \int_0^a \mu_{A_U}(\tau) d\tau \right); \quad \mu_{A_U}(a) = c_U + \gamma_U r_U (r_U a_U)^{\gamma_U-1}$$ \hfill (C1)

where $\mu_{A_U}(a)$ is the daily rate of adult mortality, c_U is a constant term representing age-independent mortality and γ_U and r_U are the shape and rate parameters of the Weibull function representing age-dependent mortality. Mortality in adult mosquitoes infected with Wolbachia is described by the same function with different parameters, replacing the subscript U with subscript W.

Parameterising adult age-dependent mortality

We use laboratory survival data for Anopheles stephensi [23] to estimate the parameters of the Weibull function describing age-dependent adult mortality in mosquitoes uninfected with Wolbachia, γ_U and r_U (eqn C1). To incorporate the additional mortality experienced by mosquitoes in nature, we set the constant term c_U in eqn (C1) to a value typically recorded for field populations of Anopheles (Table 1).

We use data from laboratory colonies of Aedes aegypti infected with the life-shortening Wolbachia strain wMelPop to estimate the effect of Wolbachia infection on adult mortality [6]. For a given value of the Weibull shape parameter ($\gamma_U = \gamma_W$) we found that the effect of wMelPop infection on adult survival could be well-approximated by doubling the Weibull rate parameter ($r_W = 2 r_U$) (Table 1). Both infected and uninfected adults are assumed to experience the same risk of ‘background’ age-independent mortality ($c_U = c_W$).