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Background. There is great current interest in developing microarray platforms for measuring mRNA abundance at both gene
level and exon level. The Affymetrix Exon Array is a new high-density gene expression microarray platform, with over six
million probes targeting all annotated and predicted exons in a genome. An important question for the analysis of exon array
data is how to compute overall gene expression indexes. Because of the complexity of the design of exon array probes, this
problem is different in nature from summarizing gene-level expression from traditional 39 expression arrays. Methodology/

Principal Findings. In this manuscript, we use exon array data from 11 human tissues to study methods for computing gene-
level expression. We showed that for most genes there is a subset of exon array probes having highly correlated intensities
across multiple samples. We suggest that these probes could be used as reliable indicators of overall gene expression levels.
We developed a probe selection algorithm to select such a subset of highly correlated probes for each gene, and computed
gene expression indexes using the selected probes. Conclusions/Significance. Our results demonstrate that probe selection
improves gene expression estimates from exon arrays. The selected probes can be used in future analyses of other exon array
datasets to compute gene expression indexes.
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INTRODUCTION
Microarrays have become one of the most popular technologies

for profiling gene expression since its invention more than a decade

ago [1–3]. Expression microarrays use probes targeting specific

genes based on nucleotide sequence complementarity to quanti-

tatively measure mRNA levels for tens of thousands of genes. A

variety of gene expression microarray platforms are used today,

including spotted cDNA arrays, Affymetrix GeneChip arrays,

Agilent ink-jet arrays and Illumina long-oligonucleotide bead-

based arrays [4,5]. These microarray platforms differ in their

probe design, hybridization protocol, labeling and production

methods [4,5]. Despite their differences, traditional gene expres-

sion microarray platforms share a common goal–obtaining a single

value for each gene representing its overall mRNA abundance in

a given sample. For example, the traditional Affymetrix Gene-

Chips use one or more probesets consisting of 11 perfect-match

(PM) and 11 mismatch (MM) probes targeting the 39 end of the

mRNA sequence. The signals from multiple probes are summa-

rized into a single value as the gene expression index [6].

Throughout this manuscript we will refer to the traditional

Affymetrix GeneChips, such as the Affymetrix human U133-

PLUS2 arrays as the 39 expression arrays.

Recently, global analyses of mammalian transcriptomes suggest

that alternative splicing is an important and prevalent form of

transcript variation in many species [7]. Alternative splicing refers

to the production of multiple transcript isoforms from a single

gene, due to variations in pre-mRNA splicing [8]. Genome-wide

analyses of expressed sequences indicate that 40–60% of human

genes have multiple splice forms [9]. Since alternative splicing has

been largely ignored throughout the probe design of traditional

expression microarrays, these findings have motivated the de-

velopment of a new generation of microarray platforms, which use

probes targeting individual exons to interrogate pre-mRNA

splicing at the genomic scale [10–14].

Last year, Affymetrix released ‘exon arrays’, a high-density

microarray platform with a total of ,6.5 million probes targeting

all the annotated and predicted exons in the genome. Exon arrays

differ significantly from 39 expression arrays in the number and

placement of the oligonucleotide probes. In the 39 expression

arrays a probeset consisting of 11 probes is selected from the 39

end of the mRNA sequence. In contrast, in exon arrays 4 probes

are selected from each putative exonic region (Figure 1, modified

from Affymetrix Exon Array design datasheet [15]). Many genes

have more than a hundred probes on the exon array. Exon array

probesets are classified based on the level of annotational

confidence. Briefly, probes targeting exons with RefSeq mRNA

evidence are regarded as the most confident and are referred to as

‘‘core probes’’. Probes targeting exons with EST evidence are

referred to as ‘‘extended probes’’. Probes targeting putative

computational exon predictions have the least confidence and

are referred to as ‘‘full probes’’. For further details, see the

Affymetrix technical documentation for Exon Array probe

annotations [16].

An important question for the analysis of exon array data is how

to compute overall gene expression indexes. In the context of exon

array analyses, we define the overall gene expression index as the

total abundance of all molecules transcribed from a single gene,

including various alternative splice forms, alternative 59 tran-

scripts, alternative poly A transcripts, etc. The whole-transcrip-
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tome amplification protocol and probe design of exon arrays allow

a more precise monitoring of such overall gene expression indexes.

The gene-level expression estimates from Exon Arrays can be used

in standard high-level analyses of microarrays (such as clustering).

They also provide the basis for subsequent analyses of RNA

alternative splicing [17]. However, because of the complexity of

the design of exon array probes, this problem is different in nature

from summarizing gene-level expression from traditional 39

expression arrays. In this manuscript, we present our probe-level

analysis of the exon array data, and describe a probe selection

strategy for computing gene expression indexes from Exon Arrays.

MATERIALS AND METHODS

Processing of probe-level data
We downloaded the public Human Exon 1.0 ST Array tissue panel

dataset (http://www.affymetrix.com/support/technical/sample_

data/exon_array_data.affx) consisting of 11 human tissues (breast,

cerebellum, heart, kidney, liver, muscle, pancreas, prostate, spleen,

testes, and thyroid) each with three replicates. We normalized

the data by sketch normalization using the Affymetrix Exon

Array Computational Tool (ExACT) (http://www.affymetrix.

com/products/software/specific/exact.affx). For each gene (referred

to as a ‘transcript cluster’ on the exon array platform), we calculated

the Pearson correlation coefficient of the signal intensities of all

possible pairs of probes across the 11 tissues (a total of 33 samples).

We visualized the correlation matrix of the probe intensities as

a heatmap using R (http:///www.r-project.org).

Probe selection algorithm
In this section, we describe an algorithm to automatically select

a subset of core probes for each gene as the reliable indicators of

overall gene expression. Although alternative splicing is prevalent

in the human genome and occurs in nearly three quarters of multi-

exon human genes, within each gene the majority of exons are still

constitutively spliced [18]. We reason that the majority of probes

targeting those constitutive exons show correlated intensities across

various human tissues, and reflect the overall mRNA abundance

of the gene. Therefore, our algorithm seeks to identify the largest

subset of highly correlated probes.

Because the traditional Affymetrix GeneChips had 11 perfect-

match probes in each probeset of a gene, we decided to select at

least 11 probes for each gene on the exon array. If a gene had less

than 11 core probes, we skipped probe selection and simply used all

the core probes for computing gene expression indexes. The probe

selection procedure is summarized below. Briefly, we calculated the

Pearson correlation coefficient of the signal intensities of all probe

pairs across the 11 tissues (a total of 33 samples). Using (1-Pearson

correlation coefficient) as the distance metric, we performed

average-linkage hierarchical clustering for all core probes. Next,

we cut the clustering dendrogram at different heights h = (0.1, 0.2,

0.3…1.0), and calculated the size of the biggest subcluster under

each cutoff, excluding probes from probesets with only one probe

in the biggest subcluster. We chose a cutoff to achieve a balance

between the size of the biggest subcluster and the average

correlation within the biggest subcluster.

Exon Array probe selection algorithm:

a) If the number of core probes is less than 11 for a transcript

cluster, we select all the core probes.

b) If the number of core probes is greater than 11:

a. We apply hierarchical clustering to the 11-tissue data

for all core probes (distance metric: 1-Pearson

correlation; average linkage clustering). We cut the

clustering dendrogram at various heights h = (0.1, 0.2,

0.3…1.0) and calculate the size (S) of the biggest

subcluster at each cutoff, excluding probesets with

only 1 probe in the biggest cluster. A small h means

that we cut the clustering dendrogram near its

bottom, while a large h means that we cut the

clustering dendrogram near its top. We choose the

smallest h (h0) with the corresponding S (S0). = 11.

b. If h0. = 0.5, we choose hfinal = h0.

c. If h0, = 0.4, we choose the hfinal from h0, h0+0.1…0.4

to maximize
S

(150%)(h{h0)=0:1
. Intuitively, this means

if we want to increase the tree cutoff by 0.1, the size of

the biggest subcluster needs to increase by at least

50%. We chose this number (50%) from our empirical

analysis of exon array data in a number of genes.

d. Cut the clustering dendrogram at hfinal, and select

probes in the biggest subcluster, excluding probesets

with only one core probe in the biggest subcluster.

Figure 1. Probe design of exon arrays. (A) Exon-intron structure of a gene. Black boxes represent exons. Gray boxes represent introns. Introns are not
drawn to scale. (B) Probe design of exon arrays. Exon arrays have four probes targeting each exon of the gene. (C) Probe design of 39 expression
arrays. Probes on 39 expression arrays target 39 end of the mRNA sequence.
doi:10.1371/journal.pone.0000088.g001
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Gene expression index computation
We computed the gene expression indexes for each gene across the

11 human tissues (a total of 33 samples), by fitting the probe level

data to the Li-Wong model [6], implemented in the affy package

of Bioconductor (http://www.bioconductor.org/).

We compiled a list of genes differentially expressed between liver

and muscle based on 39 expression array data. We downloaded the

Affymetrix human U133-PLUS2 array dataset on the same tissue

samples (http://www.affymetrix.com/support/technical/sample_

data/exon_array_data.affx). We normalized the data (quantile-

normalization) and computed the gene expression indexes (Li-Wong

model [6]) using dChip (http://biosun1.harvard.edu/complab/

dchip/). To select differentially expressed genes, we required

a probeset to have a fold change of at least 5, and an absolute

difference in gene expression indexes of at least 200. We matched

human U133-PLUS2 probesets and human Exon Array transcript

clusters using the mapping provided by Affymetrix.

RESULTS

Visualization of the probe-level data
Our heatmap visualization of the probe-level data reveals

interesting patterns. Figure 2 shows the heatmap plotted for two

human genes, each with well-annotated gene structure and/or

patterns of alternative splicing. Each cell of the heatmap reflects

the Pearson correlation coefficient of two probes’ intensities in 33

samples. In Figure 2A, we visualize the entire correlation matrix

for all probes belonging to the gene HLA-DMB (transcript cluster

2950263), including 24 core probes and 28 extended probes.

HLA-DMB has six exons and plays an important role in class II

antigen presentation [19]. From the heatmap, it is apparent that

about half of the probes of HLA-DMB are highly correlated with

each other across the 11 human tissues (top right corner of the

correlation matrix), while the remaining probes are very poorly

correlated with other probes of this gene. It is interesting to note

that the vast majority of core probes are located in the top right

corner of the heatmap, suggesting that their intensities change

coordinately across different samples. In contrast, most of the

extended probes show poor correlation with each other and with

the core probes, suggesting that they are mostly reflecting

background noise and are poor indicators of overall gene

expression. This is a typical pattern (i.e. core probes tend to be

correlated) for the majority of genes on the exon array. In

addition, core probes usually have much stronger signals than

extended and full probes, consistent with the design that core

probes target high-confidence exons in the genome. Taken

together, these data suggest that extended and full probes are

usually poor indicators of overall gene expression.

Figure 2. Heatmap visualization of exon array pairwise probe correlations. (A) Heatmap visualization of probe intensities of HLA-DMB (transcript cluster
2950263). Each cell of the heatmap shows the correlation of two probes in 11 tissues. The top color bar indicates the probe type. Core probes are
colored in red. Extended probes are colored in blue. The signal intensities of core probes usually have a high correlation (the top right corner of the
heatmap). (B) Heatmap visualization of probe intensities of core probes in CD44 (transcript cluster 3326635). Probes targeting the 59 and 39 regions
(constitutive exons) of CD44 show highly correlated signals in 11 tissues (the top right corner of the heatmap). (C) Heatmap visualization of probe
intensities of core probes in CD44 (transcript cluster 3326635). Probes are ordered from top to bottom based on their genomic coordinates (59 to 39).
doi:10.1371/journal.pone.0000088.g002
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Can we simply take all the core probes of a gene to compute its

expression indexes? The answer is no. Some core probes have low

affinity and their intensities are largely saturated by background

noise. Some core probes cross-hybridize to other gene targets.

Some core probes target alternatively spliced regions of the genes.

These probes are not good indicators of overall gene expression.

To illustrate such effects, Figure 2B shows the correlation matrix of

core probes of CD44 (transcript cluster 3326635). CD44 has 20

exons and its alternative splicing pattern has been well

characterized [20,21]. The exons in the 59 and 39 regions of

CD44 are constitutively spliced, while ten exons in the middle of

the gene undergo extensive alternative splicing in various tissues

and cancers. The heatmap (see Figure 2B) indicates a large group

of probes with highly correlated intensities (the top right corner of

the heatmap). There is a second group of correlated probes

(between the center and the bottom left corner of the heatmap)

with weaker correlation with the first group. Checking the exon

array probe annotation through the Integrated Genome Browser

(http://www.affymetrix.com/support/developer/tools/downloa-

d_igb.affx), we saw that the first group had probes targeting

constitutively exons at the 59 and 39 regions of CD44, while the

second group had probes targeting the alternative exons in the

middle of CD44 transcripts (also see Figure 2C, in which CD44

probes were ordered based on their genomic coordinates). In

addition, a few core probes (at the bottom left corner of the

heatmap) are poorly correlated with all other core probes. Based

on the probe-level data and our knowledge of CD44 alternative

splicing, probes in the top right corner of the heatmap should be

used for summarizing overall gene expression indexes.

Our exploration of the probe-level exon array data indicates the

existence of a subset of exon array probes with highly correlated

signals in multiple human tissues. These probes tend to have the

highest annotational confidence (i.e. core probes) and target the

constitutive exons of a gene.

Probe selection using the human tissue-panel

dataset
We used our probe selection algorithm (see Materials and Methods)

to select probes from the 11-tissue exon array data. For the reasons

stated in the previous section, we applied our probe selection

algorithm to core probes of each gene. Using this procedure, we

selected 44 core probes for CD44 (42% of its core probes), at the tree

cutoff (hfinal) of 0.1 (see Figure 3). These 44 core probes targeted the

constitutive exons at the 59 and 39 ends of the CD44 transcripts.

Core probes targeting middle exons of CD44 were not selected.

We applied our probe selection algorithm to 17056 transcript

clusters with at least 11 core probes on the human Exon Array.

Over the entire dataset, we selected 47.1% of core probes. On

average, we selected 26.5 core probes for each transcript cluster.

Considering the number of probes for each gene on the traditional

Affymetrix GeneChips (typically 11 perfect-match probes), the

selected exon array probes using our algorithm should be sufficient

for computing gene expression indexes.

Figure 3. Hierarchical clustering of probe intensities of CD44 core probes. Core probes of CD44 are clustered by average linkage hierarchical clustering
based on their intensities in 11 tissues (a total of 33 samples). The distance metric is (1-Pearson correlation coefficient). A total of 44 core probes are
selected when we cut the clustering dendrogram at h = 0.1 (indicated by the dashed horizontal line).
doi:10.1371/journal.pone.0000088.g003
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Effects of probe selection on gene expression index

estimation
We computed the gene expression indexes for each gene across the

11 human tissues (a total of 33 samples), by fitting the probe level

data to the Li-Wong model [6] implemented in the affy package of

Bioconductor (http://www.bioconductor.org/). We used probe

level data from three different sets of probes: all probes, all core

probes, or selected core probes. Our analysis shows that including

all the probes to compute the gene expression indexes often results

in low gene expression estimates across all the samples. This is due

to the fact that the vast majority of extended and full probes don’t

target real exons and have very weak signals on the arrays. To

examine the effect of our probe selection, we compared the gene

expression indexes computed from all core probes and selected

core probes. Figure 4 shows two typical effects of probe selection.

Figure 4. Gene expression indexes computed using all probes, all core probes, and selected core probes. (A) Gene expression indexes of transcript cluster
2899110 (HFE) are computed using all probes (black circles), all core probes (red triangles) and selected probes (green rectangles). Probe selection
increases the gene expression indexes computed for all the samples. The relative expression levels in different tissues remain unaltered. (B) Gene
expression indexes of transcript cluster 3833500 (SPTBN4, a gene known to be overexpressed in brain and cerebellum). Probe selection strengthens
the pattern of overexpression in cerebellum (sample #4, #5 and #6).
doi:10.1371/journal.pone.0000088.g004
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In many transcript clusters such as 2899110 (HFE, a gene

important in iron metabolism) shown in Figure 4A, probe selection

increased the absolute values of gene expression indexes (green

rectangles vs red triangles) in each sample. This was expected,

because high-affinity probes were less affected by background

noise and were more likely to show correlated intensities.

Therefore, such probes were more likely to be selected by our

probe selection algorithm, increasing the estimated gene expres-

sion indexes. Interestingly, in some genes probe selection altered

relative gene expression levels among tissues. Figure 4B shows the

gene expression indexes computed for beta-spectrin 4 (SPTBN4,

transcript cluster 3833500), a gene known to be overexpressed in

brain and cerebellum [22]. The gene expression indexes computed

from the selected probes strengthened the pattern of over-

expression in cerebellum samples.

To assess the second effect systematically, we compiled a list of

genes differentially expressed between liver and muscle based on

39 expression array data (see Materials and Methods). Although

false positives may be present, the majority of genes in this list

should be truly differentially expressed between these two tissues.

For 438 transcript clusters overexpressed in liver relative to

muscle, we used the exon array data to calculate the average gene

expression fold change in three liver samples over three muscle

samples. A scatter plot of the fold change shows that our probe

selection procedure increased the absolute fold change between

liver and muscle (Figure 5A), especially for genes whose original

fold change values (without probe selection) were low (Figure 5B).

We observed the same trend when we analyzed 500 transcript

clusters overexpressed in muscle relative to liver (Figure 5C and

5D). We repeated our analysis in a pairwise comparison of

cerebellum and heart samples, and observed a similar trend (data

not shown). Therefore, our analysis suggests that we can detect

differential gene expression more sensitively using the selected

probes from the exon arrays.

Probe selection is more reliable when gene

expression levels are high
The reliability of probe selection was affected by gene expression

levels in these 11 tissues. For 11485 genes, we selected the

probes by cutting the clustering dendrogram near its bottom

(h_final, = 0.4, see the definition of h_final in Materials and

Methods). These genes tend to have high expression levels in some

of the 11 tissues (see Table 1). In contrast, for 5571 genes whose

h_final. = 0.5, their expression levels in the 11 tissues were much

lower (see Table 1). We further grouped 17056 transcript clusters

into ten distinct bins according to the height where we cut the

clustering dendrogram (h_final). The values of h_final were

negatively correlated with gene expression levels in the 11 tissues

(see Figure 6). Our analysis suggests that the result of probe

selection was less reliable for lowly expressed genes in the 11

tissues, since we had to cut near the top of the clustering

dendrogram to obtain enough selected probes. One explanation is

that the signals of most probes of lowly expressed genes are

saturated by background or random noise on the arrays, making it

difficult to obtain a large group of probes with coordinated

changes. For such genes, running probe selection on data from

more diverse (e.g. embryonic) cell types (where the genes might be

highly expressed) will improve the reliability and reproducibility of

selected probes.

DISCUSSION
It has been widely realized that not all probes on the microarray

are good indicators of overall gene expression [6,23]. Selecting

good probes for robust estimates of gene expression indexes is

a common practice in the analysis of oligonucleotide microarray

data [6,23–25]. For example, dChip uses a model-based approach

to detect one or several outlier probes from the 39 expression

arrays, and excludes those outlier probes from subsequent analyses

[6]. Such a simple probe selection strategy, however, might be

insufficient for the analysis of exon array data, considering the

huge increase in the number of probes, as well as the complexity of

these probes’ target regions (high-confidence exons, exons only

supported by ESTs, computationally predicted exons, etc). Our

analysis of the exon array probe level data demonstrates that most

extended and full probes have weak signals and are poor indicators

of overall gene expression. Even within the core probes, there are

probes that cross-hybridize or target alternatively spliced regions of

a gene. Sometimes more than half of the core probes are not

reliable indicators of overall gene expression (e.g. in the example of

CD44, see Figure 2B). A new strategy of probe selection is needed

for exon array data analysis.

In this manuscript, we propose a novel probe selection

algorithm for the Affymetrix Exon Arrays. We used our method

to choose a subset of highly correlated core probes from a public

exon array dataset on 11 human tissues. Our analysis of

differentially expressed genes among human tissues suggests that

probe selection enables a more sensitive detection of gene

expression differences. This effect is most prominent when the

estimated fold change based on all core probes is low (see Figure 5B

and 5D).

We want to emphasize that our probe selection algorithm is

a general method that can be adjusted in many flexible ways. For

example, for genes with low expression levels in the 11 tissues, our

probe selection produced less reliable results. For such genes, it is

favorable to run the probe selection algorithm on a larger dataset

including samples from other tissues or developmental stages.

Another possible adjustment is to consider other types of probes

(extended and full probes) in our probe selection procedure. This

will be particularly useful if we want to calculate gene expression

indexes for poorly annotated or computationally predicted genes

on the exon array (which lack core probes). It’s also possible to use

a model-based approach to iteratively select probes until we reach

a fixed number (e.g. 11), such as the IterPLIER algorithm

proposed by Affymetrix [26]. Finally, it will be valuable to have

a probe selection tool that integrates microarray data and

sequence data (such as ESTs). However, this is a non-trivial

problem, because sequence data such as ESTs contain various

artifacts [9,27] and are poor indicators of differential splicing [28].

Our selected probes can assist future analyses of other exon

array datasets. For 11485 genes, we selected probes from the

bottom of the clustering dendrogram from the 11-tissue dataset

(see Table 1). These selected probes may already be reliable

enough for inference of gene-level expression in new experiments.

Probe selection on the remaining genes may await data from more

diverse (e.g. embryonic) cell types. In fact, by combining the

Affymetrix tissue-panel data with our in-house exon array data on

human embryonic stem cells, we could achieve reliable probe

selection for 14077 transcript clusters (data not shown). For

investigators with a large set of exon arrays, an alternative is to use

our algorithm to detect reliable probes based on their own data.

It’s also possible to combine their own data with other public data

(such as the Affymetrix tissue panel) before running probe

selection. The gene expression indexes computed from selected

probes can be used in standard high-level analyses of expression

data, such as clustering, differential expression detection, etc. They

also provide a more accurate ‘‘baseline’’ for subsequent analysis of

RNA alternative splicing from Exon Arrays.
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Figure 5. Effects of probe selection on genes differentially expressed between liver and muscle. (A) 438 transcript clusters were defined as overexpressed
in liver relative to muscle, based on 39 expression array data (see Materials and Methods). Using gene expression indexes computed from all core
probes or the selected core probes, we calculated the average gene expression fold change in three liver samples over three muscle samples. The X-
axis shows the fold change using all core probes, and the Y-axis shows the fold change using selected core probes. The red line indicates the 45-
degree line (Y = X). (B) A magnification of (A) when the fold change computed from all core probes was less than 6. (C) 500 transcript clusters were
defined as overexpressed in muscle relative to liver, based on 39 expression array data (see Materials and Methods). Using gene expression indexes
computed from all core probes or the selected core probes, we calculated the average gene expression fold change in three muscle samples over
three liver samples. The X-axis shows the fold change using all core probes, and the Y-axis shows the fold change using selected core probes. The red
line indicates the 45-degree line (Y = X). (D) A magnification of (C) when the fold change computed from all core probes was less than 6.
doi:10.1371/journal.pone.0000088.g005

Table 1. The impact of gene expression levels on probe selection
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Tree cutoff (h_final) # Transcript Clusters Peak Expression Indexes in 11 tissues Mean Expression Indexes in 11 tissues

, = 0.4 11485 Average = 737.2 Average = 264.8

. = 0.5 5571 Average = 228.4 Average = 128.6

doi:10.1371/journal.pone.0000088.t001..
..

..
..

..
..

..
..

..
..

..
..
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SUPPORTING INFORMATION

Figure S1 Heatmap visualization (high-resolution) of probe

intensities of HLA-DMB (transcript cluster 2950263). Each cell

of the heatmap shows the correlation of two probes in 11 tissues.

The top color bar indicates the probe type. Core probes are

colored in red. Extended probes are colored in blue. The signal

intensities of core probes usually have a high correlation (the top

right corner of the heatmap).

Found at: doi:10.1371/journal.pone.0000088.s001 (0.09 MB

PDF)

Figure S2 Heatmap visualization (high-resolution) of probe

intensities of core probes in CD44 (transcript cluster 3326635).

Probes targeting the 5’ and 3’ regions (constitutive exons) of CD44

show highly correlated signals in 11 tissues (the top right corner of

the heatmap).

Found at: doi:10.1371/journal.pone.0000088.s002 (0.28 MB

PDF)

Figure S3 Heatmap visualization (high-resolution) of probe

intensities of core probes in CD44 (transcript cluster 3326635).

Probes are ordered from top to bottom based on their genomic

coordinates (5’ to 3’).

Found at: doi:10.1371/journal.pone.0000088.s003 (0.05 MB

PDF)
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