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Abstract

Signal transduction systems and ABC transporters often contribute jointly to adaptive bacterial responses to environmental
changes. In Bacillus subtilis, three such pairs are involved in responses to antibiotics: BceRSAB, YvcPQRS and YxdJKLM. They
are characterized by a histidine kinase belonging to the intramembrane sensing kinase family and by a translocator
possessing an unusually large extracytoplasmic loop. It was established here using a phylogenomic approach that systems
of this kind are specific but widespread in Firmicutes, where they originated. The present phylogenetic analyses brought to
light a highly dynamic evolutionary history involving numerous horizontal gene transfers, duplications and lost events,
leading to a great variety of Bce-like repertories in members of this bacterial phylum. Based on these phylogenetic analyses,
it was proposed to subdivide the Bce-like modules into six well-defined subfamilies. Functional studies were performed on
members of subfamily IV comprising BceRSAB from B. subtilis, the expression of which was found to require the signal
transduction system as well as the ABC transporter itself. The present results suggest, for the members of this subfamily, the
occurrence of interactions between one component of each partner, the kinase and the corresponding translocator. At
functional and/or structural levels, bacitracin dependent expression of bceAB and bacitracin resistance processes require the
presence of the BceB translocator loop. Some other members of subfamily IV were also found to participate in bacitracin
resistance processes. Taken together our study suggests that this regulatory mechanism might constitute an important
common antibiotic resistance mechanism in Firmicutes. [Supplemental material is available online at http://www.genome.

org.]
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Introduction

Survival of microorganisms in their natural habitat depends on
their ability to cope with fast environmental changes by controlling
parameters such as ionic strength and osmotic pressure, making
use of the nutriments available and resisting any toxic compounds
present in the environment. Microorganisms have developed
sophisticated signal transduction systems whereby extracellular
stimuli are detected by membrane-integrated sensors [1]. The
signals generated by these sensors are then usually transmitted
across the cytoplasmic membrane via a phosphorylation cascade
[2]. In the simplest systems of this kind, which are known as two-
component systems, a two-step phosphorus transfer process is
effected by a histidine protein kinase (HK) and a response
regulator protein (RR). Kinases were recently classified in three
major groups based on their structural properties [1]. The first and
largest group consists of extracellular sensing kinases with a large
extracytoplasmic detection domain. The second group is com-
posed of kinases in which 2 to 20 transmembrane segments are

@ PLoS ONE | www.plosone.org

connected by very short linkers. These kinases are able to detect
membrane or membrane-associated stimuli and have therefore
been called intra-membrane sensing kinases. The third group
contains kinases with a cytoplasmic sensor domain. Once a
stimulus has been sensed, the kinase autophosphorylates a
conserved histidine residue present in its transmitter domain.
The phosphoryl group is subsequently transferred to a conserved
aspartate residue in the regulator receiver domain, which controls
the expression of target genes [3]. There exist other, more complex
regulatory systems involving the activation of a four-step
phosphorylation cascade via extra receiver and transmitter
domains [4].

Transport proteins also play an important role in microorgan-
1sms’ adaptation to their environment by carrying the substrates
detected across the cell cytoplasmic membrane. The role of these
proteins is not restricted to transport and in some cases, they may
also transmit information. There exist increasing evidences that
signal transduction systems can be associated with transporters
acting as co-sensors [5,6]. Among the transporters, those of the
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ABC type are widespread, since they are present in all living
organisms and they constitute one of the largest protein families
[7]. These transporters are membrane proteins that hydrolyse
ATP and thus energize the translocation of various solutes (such as
ions, sugars, amino acids, vitamins, peptides, polysaccharides,
hormones, lipids and xenobiotics, etc.) across the cell membrane
[7,8,9]. ABC transporters are usually composed of two nucleotide
binding domains (NBDs), which bind and hydrolyse ATP, and two
membrane spanning domains (MSDs), which have also been
called permease or translocators, containing multiple transmem-
brane segments [10]. In bacteria, ABC transporters are usually
encoded by genes that are part of the same or neighbouring
operons [11].

The Bacillus subtilis BceRSAB proteins involved in bacitracin
resistance constitute one of the most fully studied systems in which
an ABC transporter (BceAB) is combined with a signal
transduction (BceRS) system [6]. It has been established in recent
experimental studies that bacitracin response of course requires
the BceRS signal transmission system but also a functional BceAB
ABC transporter [12] and therefore involves an original and
complex regulatory process. The B. subtilis BceAB belongs to ABC
transporter family 9, all the members of which are thought to be
involved in antibiotic resistance [13]. The genome of B. subtilis
encodes two additional systems homologous to BceRSAB, namely
YvcRSPQ and YxdLM]JK, the expression of which is induced by
enduracidin and cathelicidin LL-37, respectively. Interestingly,
these three systems show several common features. First, each
system is encoded by neighbouring genes on the chromosome.
Secondly, the BeeS, YvcQ and YxdK kinases are composed of two
nearly contiguous transmembrane segments (TMS) separated by a
short extra-cytoplasmic linker (consisting of less than 11 amino-
acids, Figure 1). These kinases therefore belong to the intra-
membrane sensing histidine kinase family [1]. Lastly, the BceB,
YvcS and YxdM MSD components harbour exactly 10 TMS with
an unusually large extracytoplasmic loop (from 197 to 213
residues) located between helix number 7 and helix number 8
(Figure 1). It was recently suggested that this loop might play a
crucial role in the response of B. subtilis BceRSAB to bacitracin
[14]. The functional association between an ABC transporter and
a two-component system showing the different features described
above will be referred to from now on as the Bee-like module.

In this study, phylogenetic analysis was performed on the four
components of the Bee-like modules [13] present in the complete
genomes available. These modules are widespread in Firmicutes
(le. low G+C Gram-positive bacteria) and apart from one
exception, they are restricted to this bacterial phylum, where they
probably originated. The presence of multiple Bce-like copies
observed in many Firmicutes suggests that these modules might
contribute importantly to antibiotic resistance in this bacterial
phylum. We also established that horizontal gene transfer and
duplication/loss events have played an important role in the
evolutionary history of Bee-like modules, leading to the acquisition
of new antibiotic resistance mechanisms. Based on the present
analyses, a phylogenetic classification of Bce-like modules 1is
proposed, which could serve as a reference for functional analyses.

To further investigate the role of the ABC transporter and of the
large extracytoplasmic MSD loop in the signal transduction
process, Bce-like module translocators belonging to the same
subfamily as the B. subtilis BceB were investigated. Using B. subtilis
as a recipient, several members of this group were found to be
involved in bacitracin resistance mechanisms. It was also observed
that the presence of the large BeeB loop is essential not only to the
bacitracin dependent expression of bceAB but also to the resistance
of the bacteria to this antibiotic.
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Figure 1. Predicted membrane topologies of histidine kinase
and ABC transporter translocators in Bacillus subtilis Bce-like
modaules. The three pairs of B. subtilis signal transduction system/ABC
transporters: Bce, Yxd and Yvc systems. Transmembrane segments (TM)
are numbered from 1 to 10 in the translocator. The extracytoplasmic
loop between the two TMs of the kinase varied in length from 3 to 11
residues, whereas TM7 and TM8 of the translocators are separated by
197 to 213 residues.

doi:10.1371/journal.pone.0015951.g001

Results

Taxonomic distribution and genetic organisation of the
four components of the Bce-like modules

A search was performed for homologues of each of the four Bce-
like module components in the 778 completely sequenced
genomes available at the NCBI in February 2009 and a
phylogenetic analysis was then conducted using maximum
likelihood methods. This search yielded 999, 579, 1000 and 314
homologues of BceR (RR), BceS (HK), BceA (NBD) and BceB
(MSD), respectively. The BceR and the BceS homologues were
mainly found to exist in Bacteria, whereas BceA homologues were
also present in Archaea, whereas the taxonomic distribution of
BceB homologues was restricted to Firmicutes and to one
Spirochaete (i.e. Treponema denticola ATCC 35405) (Table S1).

Among the 579 BceS homologues collected, 212 showed the
same architectural features as B. subtilis BceS, 1.e. exactly two TMS
separated by a loop consisting of 12 amino acids or less. This
number did not increase significantly when the threshold loop
length was set at 14, since 214 homologues were detected in this
case. The 212 HK showing the same architectural features as BceS
will be referred to hereafter as BeeS-like. Interestingly, with only a
few exceptions, BceS-like sequences formed a monophyletic group
in the maximum likelihood BceS tree (Figure S1). Apart from this
cluster, however, most of the BceS homologues showed different
features (i.e. either more or less than two TMs segments and/or
longer loops, Figure S1). This suggests that all the BceS
homologues in which there are two TMs connected by a short
linker have a single evolutionary origin. The non canonical
architectural features observed in a few BceS-like sequences such
as those found to occur in Lysinibacillus sphaericus (YP_00169681)
and Bacillus halodurans (NP_241142) represented therefore second-
ary modifications, whereas the presence of a few BceS-like
sequences outside this group probably resulted from sporadic
convergences (Figure S1). Similar findings and conclusions can be
reached on the 293 MSD sequences which, like B. subtilis BceB,
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were found to harbour exactly ten TMS and to have a long
extracytoplasmic loop (i.e. more than 170 amino acids) located
between TMS numbers 7 and 8 (Figure S2). Interestingly, BceS-
like and BceB-like families showed similar taxonomic patterns of
distribution: apart from one exception, they were both restricted to
and specific to Firmicutes (Figures S1 and S2).

The phylogenies of the two remaining components (RR and
NBD) harboured a monophyletic cluster, which was quite similar
in terms of the taxonomic distribution to those obtained with
BeeS-like and BceB-like homologues (data not shown). The
sequences recorded in these clusters will be referred hereafter as
BceR-like and BeeA-like.

The fact that the taxonomic distribution of the Bce-like
component is restricted to Firmicutes strongly suggests that they
originated in this phylum. To pursue this point further, a Bayesian
phylogenetic analysis was performed on each Bce-like component.
Although the four resulting trees were not completely resolved,
they showed very similar topologies (Figures 2-3 and Figures S3
S4). This indicates that the four components underwent the same
evolutionary history after their emergence in Firmicutes.

This hypothesis was supported by our survey of the genomic
sequences, which showed that apart a few exceptions, the genes
encoding a bee-like component formed a cluster containing at least
one copy of each component (Table SI). The fact that their
physical proximity in the genomes was highly conserved might
account for the co-evolution of the genes encoding Bce
components, which was highlighted by the results of the present
phylogenetic analyses. These findings also suggest that ancestors of
these genes already formed a single cluster corresponding to a
functional module.

Interestingly, although most clusters contain only one gene copy
of each bce-like element, some of them contain several genes
coding for MSD and/or NBD components (Table S1). Most of
these additional copies (e.g. the three MSD sequences of Bacillus
wethenstephanensis KBAB4 (YP_001647460, YP_001647461 and
YP_001647463) resulted from recent gene duplication events,
Figure 2). This suggests either that some signal transduction
systems might control the expression of several ABC transporter
coding genes or that ABC transporter might be formed by
heteroduplex rather than simple homodimer (NBD-MSD),.
Another atypical situation was previously encountered with bced-
and bceB-like genes such as SalX (NP_269896) and SalY
(NP_269895) from Steptococcus pyogenes which have been found to
be involved in salivaricin resistance [15]. These genes are clustered
together with genes encoding for RR and HK that are not
homologous to B. subtilis BceS and BceR. This indicates that a
secondary association of genes coding for ABC transporters was
formed with regulatory/transduction coding genes from other
systems.

Toward a classification of Bce-like modules

Based on the phylogenetic analysis of the components of Bce-
like modules, these modules were subdivided into six subfamilies.
Subfamily I was observed in trees based on MSD, RR and NBD
(branches in green, Posterior Probability (PP) =1.00, 1.00 and
0.74 respectively, Figures 2-3 and Figure S4) and mainly included
sequences from Clostridiales. In the kinase based tree, this
subfamily consisted of two parts (Figure S3), possibly due to a
rather weak overall resolution of this phylogeny. Subfamily II was
mainly found in Lactobacillales and Clostridiales, but also in some
Spirochaetes sequences (branches in light pink, PP =1.00 (MSD),
0.50 (RR), 1.00 (HK) and 1.00 (NBD), Figures 2-3 and Figures
S3-S4). The emergence of Treponema denticola ATCC 35405 Bcee-
like sequences in subfamily II indicated that this spirochaete had
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acquired the four genes from a single Firmicutes donor via a single
horizontal gene transfer. This subfamily was also found to include
the BceRSAB module (components NP_721401 to 721404) and
the YP_001835606, YP_001835607 ABC transporter, which are
known to participate in bacitracin resistance in Streplococcus mutans
[16,17] and S. preumoniae [18,19], respectively. Subfamily III was
mainly present in Clostridiales and Bacillales (branches in dark
pink, PP=0.81 (MSD), 1.00 (RR), 1.00 (HK), 0.81 (NBD),
Figures 2-3 and Figures S3-S4). However, the corresponding
group in the NBD tree also included a few sequences belonging to
the fifth subfamily (see below) (Figure S4). This subfamily included
sequences from the Yxd and Yvc modules of B. subtilis which are
activated by LL-37 and enduracidin, respectively. Subfamily IV
contains the components of the B. subtilis Bce module, as well as
sequences coding for the VraFG ABC transporter (YP_416104,
YP_416105) coupled to the GraRS two-component system
(YP_416102, YP_416103) from Staphylococcus aureus, which are
involved in vancomycin resistance [20]. This subfamily was found
to occur mainly in Bacillales (branches in orange, PP =1.00 in the
fourth trees, Figures 2-3 and Figures S3-S4). Subfamily V had a
widespread pattern of occurrence in Firmicutes and included
sequences from Clostridiales, Bacillales and Lactobacillales. This
was the least strongly supported family, which was only detected
and weakly supported in mainly the BceR tree (branches in blue,
PP =0.50, Figure 3), however in the other trees, the corresponding
sequences often occurred close together, which suggests that they
might be related. The BeeA-like and BeeB-like trees contained the
AnrAB ABC transporter (NP_465638, NP_465639) which has
been reported to be involved in Listeria monocytogenes bacitracin
resistance [21]. They also included MSD and NBD components of
the ABC transporter which are encoded in Streptococcus pyogenes
genomes by salX and salY (NP_269895 and NP_269896, Figures 2
and S4. See also Table 1). Contrary to the other Bee-like modules
on which functional data are available, the S. pyogenes transporter is
not involved in antibiotic resistance, but in antibiotic biosynthesis.
More specifically, the corresponding genes were found in a cluster
involved in salivaricin biosynthesis which, in addition to sa/X and
salY, contained the sald salivaricin structural gene, the sa/B and
salT enzyme modification genes, and sa/R and salK, encoding a
signal transduction system which is not homologous to BceRS.
Lastly, subfamily VI was mainly found to occur in Bacillales and
Lactobacillales. Unlike the other subfamilies, it contains only
BeeB- and BeeA-like components (purple branches, PP=1.00 in
both trees, Figure 2 and Figure S3). This means that no BceR- or
BceS-like sequences belong to this family.

The similarities in the topology of these four trees indicate that
the components have undergone similar evolutionary histories and
thus, that they have co-evolved. It is worth noting that in each
subfamily, the phylogeny of the sequences did not follow the
phylogeny of the corresponding species. For example, Staphylococcus
sequences belonging to subfamily II were more closely related to
Lactobacillales and Clostridiales sequences than to sequences of
other Bacillales (Figures 2-3, and Figures S3-S6). In addition, the
taxonomic distribution of these subfamilies showed that closely
related species may harbour very different gene repertories. For
instance, Geobacillus thermodenitrificans contained only components
from subfamily III, whereas its close relatives Geobacillus kaustophi-
lius and Anoxybacillus flavithermus harboured only components from
subfamily IV or no components at all, respectively (Figure S5b).
The great disparity between organisms and gene phylogeny
suggest that the genes coding for these components have been
extensively transferred during the evolution of Firmicutes. It is also
difficult to trace the evolutionary history of Bce-like modules
because of gene duplication events such as those involving MSD
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Figure 2. Phylogeny of the BceB-like proteins (MSD components). Bayesian tree showing the relationships in a subsample of 164 BceB-like
sequences. The accession number of each sequence is provided. Numbers at nodes are posterior probabilities. The scale bar indicates the average
number of substitutions per site. Based on the phylogeny of each component, six subfamilies (numbered from | to VI) were defined; they are
indicated here by brackets and colours. Symbols represent Bce-like components encoded by genes located in the neighbourhood of bceB-like
homologs: triangles correspond to MSD, crescents to regulators, circles to kinases, squares to NBD, and numbers indicate the number of non bce-like
genes. The arrow indicates the direction of transcription. Color of the symbols indicates to which family they belong and corresponds to the color of
the tree branchs (green [; light pink II; dark pink Ill; orange IV; blue V, purple VI, whereas black is used to designate unclassified homologs and white
symbols indicate non homologous regulators, kinases, NBDs or MSDs). BceB, YvcS and YxdM from B. subtilis homologs are indicated in red and by a
thick arrow. The unique non Firmicutes BceB-like homologue from T. denticola is shown in light blue. The length of the alignment used to construct
the tree was 251 residues. BceB-like proteins used for recombinant strain construction were indicated in bold characters.

doi:10.1371/journal.pone.0015951.9g002

components from Bacillus anthracis belonging to subfamily III
(Figure 2) and because of gene losses: our detailed survey of
complete genomes brought to light a number of degenerated
sequences, which were annotated as pseudogenes (some of them
were tested experimentally) (Table S1). This suggests that although
the acquisition of genes coding for components of the Bce-like
system occurred relatively frequently as the result of horizontal
gene transfer and/or gene duplication events, these genes were
also frequently lost, which would explain the great variability
observed among the bce-like genes. Accordingly, the evolutionary
history of these genes must have been highly complex and it
cannot be completely explained. In particular, it is impossible to
say from which lineage of Firmicutes the ancestral Bee-like module
emerged. However, the wide pattern of distribution shown by this
module among Firmicutes suggests that these systems play an
important functional role in this group of bacteria.

This clarification of the evolutionary relationships between Bce-
like modules should provide a good starting point for functional
studies as indicated below.

Determining the role of the ABC transporter: the case of
subfamily IV

1) At the bacitracin resistance level. In subfamily IV,
several transporters have been either found or thought to confer
bacitracin resistance to the bacterium in which they are expressed.
This was found to be the case with BceAB from B. subtilis [22—24]
and might also the case with its closest homologues, YtsCD
(YP_081283 and YP_081282) from B. licheniyformis because it has
been established that ytsCD genes are up-regulated in the presence
of bacitracin [25]. It has also been suggested that VraDE
(YP_418021 and YP-418022) may participate in bacitracin
resistance in S. aureus [26]. Contrasting with the specificity of
subfamily IV members toward bacitracin, Vral'G (YP_416104
and YP_416105) from S. aureus also respond to vancomycin [20].
BceAB (NP_244781 and NP_244782) from B. halodurans, the
functional role of which has not yet been elucidated, are very
closely related to B. subtilis BceAB. To further investigate how they
contribute to bacitracin resistance, the corresponding genes were
introduced into B. subtilis at the bceAB locus under the control of
the bcedB promoter (1tsCDBL;, BeeABBh;, ViaDESa,; and ViaFGSay;
strains, Table S2). 6 His codons were added at the 5 terminus of
the transporter’s NBD coding genes to facilitate the detection of
the protein (see Material and Methods). Control assays were
carried out using a strain in which the B. subtilis bceAB genes were
reintroduced into B. subtilis using the same procedure (BeeABBs,;
strain). All strains were then tested to determine their bacitracin
1C50 levels (the bacitracin concentration giving a 50% growth
inhibition). In comparison with the BSGYO005 strain, which
includes a wild type bce locus (IC50 =281%61 pg.ml ™', Table 1),
the control bceABBs,; strain was found to be less resistant
(IC50=98+22 ug.ml ™!, Table 1). This difference might be due
to the addition of a His6-tag at the NH2 terminus of the BeeA
NBD protein. As all the strains contained an NBD gene expressing

@ PLoS ONE | www.plosone.org

a protein bearing this slight modification, their IC50 were
compared with that of the bceABBs,; strain 1CG50. The ytsCDBI;
strain  showed the same level of bacitracin resistance
(IC50=90%22, Table 1) suggesting that the B. /licheniformis
YtsCD ABC transporter may have a similar function to that of
the B. subtilis BceAB ABC transporter. A lower level of resistance
was observed with the beeABBh, strain (IC50=13%0.8, Table 1).
Surprisingly, the vraDESa,; strain and the vraFGSa,; both showed no
resistance to bacitracin: both strains had similar IC50 values to
that of the AbcedB strain (IC50=1.4 pg.ml ™', Table 1). A decrease
in ABC transporter expression might explain either the partial or
complete absence of complementation observed with the various
strains. To test the ABC transporter efficiency without any
bacitracin induction, pDGbceR was introduced into the various
strains and BceR was overproduced by IPTG induction. These
conditions were found to mimic the bacitracin signal and the bceS
deleted strain overproducing BceR was as resistant to bacitracin as
the WT strain (unpublished data). Western blot analysis with a
His-tag detection system showed that under IPTG induction
conditions, each reconstituted ABC transporter was synthesized in
a fairly similar level to that of the wild type strain and was
expressed at membrane level (data not shown). No significant
effects of IPTG on the IC50 values were detected in any of the
strains except for bceABBh,;, where a faint increase in the IC50 was
observed (IPTG fold induction =2.3, Table 1), which indicates
that this reconstituted ABC transporter is partially functional in B.
subtilis. All in all, the results of these experiments suggest that a)
bacitracin resistance decreases with the phylogenetic distance
between BceAB and the substituted transporter (from B.
lichenaformis YtsCD to S. aureus VraDE), although the amounts of
reconstituted ABC  transporter at the cell membrane in the
corresponding strains were fairly similar to those of the wild type
strain; b) it was established here for the first time to our knowledge
that YtsCDB/: and BceABBha confer bacitracin resistance on the
bacteria in which they are expressed.

2) At the bacitracin induction level. To test the ability of
the reconstituted ABC transporter to participate in PbcedB
promoter activation in the presence of bacitracin, a PbcedB::lacg
transcriptional fusion was introduced at the available amyZ locus in
all the strains (WT, AbcedB, bceABBs,;, ytsCDBL;, bceABBh;,
vaDESa;; and  vral'GSa;). The activity of this fusion was
monitored when the strains were grown in either the presence
or absence of bacitracin.

Without bacitracin, almost no B-galactosidase activity
(=0.6%0.4 unit) was detected in any of the strains (Table 2).
When bacitracin (4 pg.ml~ ') was added to the cell culture, no B-
galactosidase activity (=0.2 unit) was observed in wraDESa,; or
vral'GSay; strains, whereas bceABBs,; and ytsCDBL; strains were
perfectly able to respond even more strongly to bacitracin than in
the case of the BSGY005 strain (61%15units, 38*6 units and
39=11 units, respectively). Lastly, a very faint P-galactosidase
activity was observed when the bceABBh,; strain was grown in the
presence of bacitracin (2* lunits, Table 2).
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Figure 3. Phylogeny of the BceR-like proteins (regulators). Bayesian tree showing the relationships in a subsample of 96 BceR sequences. The
accession number of each sequence is provided. Numbers at nodes are posterior probabilities. The scale bar indicates the average number of
substitutions per site. For details about colours and symbols, see the legend to Figure 2. The length of the alignment used to construct the tree was

187 residues.
doi:10.1371/journal.pone.0015951.g003

These results show that a) the presence of the His tag at BceA
NH2 terminus did not hamper the ability of the reconstituted ABC
transporter to produce a sustained response to bacitracin b) the
response decreased rapidly as the phylogenetic distance between
the replacing transporter and B. subtilis BceAB increased, and only
B. lichensformis YtsCD, the most closely related ABC transporter,
was able to even partially compensate for this decrease.

The presence of the large extra-cytoplasmic BceB loop is
essential to bceAB promoter induction and bacitracin
resistance

To determine the functional role of the BceB loop, a B. subtilis
beeBAloop strain and a B. subtilis strain in which the encoding BceB
loop region was reintroduced into bceB using the procedure
described in Material and Methods (bceBloopBceBBs,; strain) were
compared in terms of their ability to activate the bced promoter in
the presence of bacitracin: the two strains tested here carried a
PbeeAB::lacl transcriptional fusion at the amyE locus. As was to be
expected, no significant P-galactosidase activity above the
background levels (0.7#0.2 unit) was detected in any of these
strains when bacitracin was omitted (Table 2). In the presence of
bacitracin (4 pg.ml™ '), almost no activity was recorded in the
beeBAloop (0.6%0.3 unit, Table 2), whereas a greater level of
response than that recorded with the BSGY005 strain (containing
a wild type bce locus) occurred in the bceBloopBceBBs,; strain
(75%15 units, Table 2). This shows that the BceAB ABC
transporter was completely restored by reintroducing the BceB
loop. These results show that normal bacitracin induced bcedB
expression requires the presence of the BeeB loop.

Table 1. Bacitracin resistance of various B. subtilis strains.

The bacitracin IC50 value was then determined in the two
strains mentioned above. The IC50 value of the bceBAloop strain
was similar to that of the AbeeAB strain (1.9%0.1 ug.ml™ ', Table 1).
This value was more than two orders of magnitude lower than the
1C50 of the BSGY005 strain (around 280 pg ml-1). This result is
in good agreement with the inability of the bceBAloop strain to
activate the PbcedB promoter in the presence of bacitracin (Table 2)
and thus to synthesize the BceABceBAloop transporter. All these
strains were then tested under bceR over-expression conditions and
the beeBAloop pDGbceR strain was found to be as sensitive to
bacitracin  (IC50=3.2*1.5 uygml™") as the AbceedB pDGbeeR
strain (Table 1). However, the bceBloopBceBBs,; pDGbeeR strain
and the bceABBs,; pDGbceR strain used as a control showed
practically the same significant increase in bacitracin resistance
(IC50 values around 140 ug.ml™', Table 1), which indicates that
bacitracin resistance in B. subtilis requires the presence of the BceB
loop.

The Aloop BceAB ABC transporter is expressed at
membrane level

The lack of bacitracin resistance observed in the bceBAloop,
pDGbeeR strain grown in medium containing IPTG might be
attributable to a defective BceAB ABC transporter insertion into
the bacterial membrane. Western blots obtained using an anti-
BeeA polyclonal antibody clearly showed the presence of the BceA
protein in the IPTG induced bceBAloop pDGbceR strain, both in
the crude extract (Figure 4, lane 1) and in the cell lysate obtained
after eliminating the cell debris (Figure 4, lane 2). Upon subjecting
the cell lysate to sub-cellular fractionation and testing the sub-

- IPTG + IPTG Ratio +/—
Strains mean + SD  Strains mean += SD
BSGY005 281*61 pDGbceR 316*28 1.1
AbceAB 1+0.4 AbceAB, pDGbceR 1.3%+0.3 nc
BceABBs,; (B. subtilis NP_390916/NP_390915) 98+22 bceABBs,;, pDGbceR 142+19 14
YtsCDBIy; (B. licheniformis YP_081283/YP_081282) 9022 ytsCDBI,;, pDGbceR 133+7 15
BceABBh,; (B. halodurans NP_244781/NP_244782) 13+0.8 bceABBh,;, pDGbceR 30*4 23
VraDESay; (S. aureus RF122 YP_418021/YP_418022) 1.4+03 vraDESa,;, pDGbceR 2+1.1 nc
VraFGSay,; (S. aureus RF122 YP_416104/YP_416105) 1.2+0.5 vraFGSa,;, pDGbceR 1.1+0.1 nc
bceBBsAloop (B. subtilis NP_390915 Aloop) 1.9%+0.1 bceBBsAloop, pDGbceR 32*15 nc
ytsDBIAloop (B. licheniformis YP_081282 Aloop) 1x1 ytsDBIAloop, pDGbceR 1.5+0.9 nc
BceBloopBceBBs,; (B. subtilis NP_390915 with B. subtilis NP_390915 loop) 110+11 bceBloopBceBBs,;, pDGbceR 140+23 13
BceBloopYtsDBI,; (B. subtilis NP_390915 with B. licheniformis YP_081282 loop) 28*14 bceBloopYtsDBI,;, pDGbceR 24x1.1 nc
BceBloopBceBBh,; (B. subtilis NP_390915 with B. halodurans NP_244782 loop) 2.5+0.5 bceBloopBceBBh,;, pDGbceR  2.4+0.9 nc
BceBloopYvcsBs,; (B. subtilis NP_390915 with B. subtilis NP_391349 loop) 14+0.2 bceBloopYvcsBs,;, pDGbceR 1.7%1.2 nc

The names of the proteins introduced into B. subtilis to completely or partly replace the B. subtilis BceAB transporter and the species to which they belong are indicated
between brackets on the left of the table. All MSD proteins are members of sub-family IV except NP_391349, which belongs to sub-family IIl. Strains (;; means that the
corresponding ABC transporter was reconstituted/introduced into the appropriate B. subtilis background, see Table S2) were grown in medium alone (—IPTG) or in

medium containing 1 mM IPTG (+ IPTG) to induce bceR expression and then tested to determine their bacitracin resistance in 96-well microtiter trays [22]. At the end of
the incubation period, OD at 600 hm was monitored using a TECAN microtiter tray reader. IC50 is defined as bacitracin concentration (ug.ml~") giving 50% growth
inhibition. Results are expressed as mean IC50 values obtained in at least 3 different experiments * standard deviations. The ratio (IC50 with IPTG (+)/IC50 without IPTG
(=) is given in the case of IC50 values >5 (nc: not calculated).

doi:10.1371/journal.pone.0015951.t001
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Table 2. -Galactosidase specific activity of various B. subtilis
strains.

Bacitracin SD

0 ug.ml~’ 4 pg.ml~’
Strains
BSGY005 0.6+0.2 3911
AbceAB 0.6+0.4 1+1
bceABBs,; 0.6+0.3 54+9
ytsCDBIy; 0.4+0.1 38+6
bceABBh;; 0.3+0.2 2+1
vraDESay; 0.3+0.1 0.2+0.1
vraFGSay; 0.3%0.1 0.1%0.1
bceBBsAloop 0.5+0.1 0.6+0.3
ytsDBIAloop 0.5+0.4 0.6+0,2
bceBloopBceBBs,; 0.7+0.2 75+15
bceBloopYtsDBI,; 0.7+0.1 10+4
bceBloopBceBBh,; 0.4+0.5 0.6+0.2
bceBloopYvcsBs,; 0.3+0.2 0.3+0.2
Strains (;;, see Table 1), containing a PbceA:lacZ transcriptional fusion at the
amyE locus, were grown for 1 hour in LB medium with and without 4 pg.ml™ of
bacitracin as indicated. B-galactosidase specific activities are given as the mean
values obtained in at least 3 experiments * standard deviations.
doi:10.1371/journal.pone.0015951.t002

fractions by performing Western blot experiments, no BceA
protein was recovered in the supernatant obtained after ultracen-
trifugation (Figure 4, lane 3), but this protein was clearly detected
in the pellet corresponding to the membrane fraction (Figure 4,
lane 4). The nucleotide binding protein of an ABC transporter
interacts tightly and specifically with its MSD membrane partner
[27]. Therefore, the fact that BceA was detected in the membrane
preparation suggested that the entire BceAB ABC transporter was
correctly located in the cytoplasmic membrane despite the absence
of the BeeB loop.

This strongly suggests that correct localisation of the transporter
in the cellular membrane does not require the BeceB loop, although
the presence of this loop is required to obtain a completely
functional ABC transporter for both bacitracin induction and
resistance processes in B. subtilis.

1 2 3 4

Figure 4. BceA cellular localisation followed by Western blot
analysis. The bceBAloop pDGbceR strain was grown in medium
containing IPTG (1 mM). Cells were disrupted and subjected to sub-
cellular fractionation. Lane 1, crude lysate; lane 2, supernatant resulting
from low speed centrifugation; lane 3, supernatant resulting from high
speed centrifugation; lane 4, pellet resulting from high speed
centrifugation (membrane fraction). Western blots were probed with
a rabbit anti-BceA antibody.

doi:10.1371/journal.pone.0015951.g004
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The loops of the most homologous BceB are poorly
conserved

The question then arose as to whether other loops in subfamily
IV ABC transporters involved in responses to bacitracin might
play a similar functional role to that of the large extra-cytoplasmic
B. subtilis BceB loop. When the B. licheniformis YtsCD transporter
deleted from the MSD large loop was expressed in B. subtilis, both
the responses and resistance to bacitracin were abolished in the
bacterium, which shows that as in the case of B. subtilis BceAB, the
loop was required to obtain a fully functional ABC transporter
(Table 1 and Table 2). We therefore examined the seven closest
relatives of BeeB, which formed a well defined branch in the MSD
tree (i.e. proteins from B. subtilis, B. lichenyformis, B. amyloliquefaciens,
B. halodurans, B. pumilus, G. kaustophilus, B. clausii and O. iheyensis,
Figure 2) with a view to characterizing their large extra-
cytoplasmic loops. The corresponding MSD sequences were
aligned using the Muscle software program. The resulting
alignment showed that contrary to expectations, the large
extracytoplasmic loop (corresponding to O4) was less highly
conserved than other regions of these proteins (i.e. other loops or
TMS) (Figure S6). To obtain a closer picture, we computed the
similarity between BceB from B. subtilis and that from the seven
other proteins in each region of the proteins. The large
extracytoplasmic loop O4 was systematically found to be the least
highly conserved element, giving a mean identity of 0.38%0.1,
whereas the values obtained in the other regions ranged between
0.52%0.13 (0O2) and 0.88%0.07 (TM7) (Figure S7). This finding
was at odds with the possible functional or structural importance
of the loop.

Did the loop have to be present simply to serve as a particular
linker or did it confer its substrate specificity to the ABC
transporter? With a view to answering these questions, the BceB
loop from B. subtilis was replaced by either the B. licheniformis YtsD
loop, the B. halodurans BeeB loop or the distantly related B. subtilis
YvcS loop (subfamily III), using the appropriate strategy for
obtaining the bceBloopBceBBs,; strain. After introducing the
PbceAB::lacZ transcriptional fusion at the amyk locus, these strains
were tested to determine their ability to respond to bacitracin.
Except for the bceBloopBceBBs,; strain (see above), only the B.
lichenyformis YtsD loop induced partial recovery of the response,
whereas both the B. halodurans BeceB loop and the B. subtilis YvcS
loop failed to restore the response to bacitracin (Table 2). It is
worth noting that the bceBloopYtsDBl; strain overexpressing BceR
was not found to be resistant to bacitracin (Table 1) even if the
chimeric ABC transporter was membrane detected by western blot
experiments (data not shown). These results indicate clearly that a)
the functional and/or structural importance of the MSD loop does
not depend only on the presence of a protein fragment with an
appropriate length b) only the most closely related loop (B.
lichenaformes YtsD loop) partly restored the functional integrity of B.
subtilis BeeB c) the entire BceB MSD loop was required to obtain a
completely functional ABC transporter.

Discussion

The results of the present comprehensive study on B. subtilis Bee,
Yvc and Yxd module homologues in complete genomes clearly
show that 1) these modules composed of a two-component signal
transduction system (with an intra-membrane sensing HK)
combined with an ABC transporter (with an MSD possessing an
unusually large extra-cytoplasmic loop) are restricted in Firmicutes
with a wide occurrence in this phylum; 2) the four components
(RR, HK, NBD and MSD) composing Bce-like modules have co-
evolved since they emerged in Firmicutes; 3) the Bce-like module
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coding genes have been frequently transferred, duplicated and/or
lost during their evolution; and 4) the chromosomal proximity
between their respective genes has been highly conserved during
evolution.

Based on the detailed phylogenetic analyses performed here, a
system of classification of the Bce-like modules into six subfamilies
was proposed. Most of the functional data available on Bce-like
modules so far have suggested that these modules may be involved
in antibiotic resistance mechanisms (against bacitracin, vancomy-
cin, LL-37, enduracidin, etc.). This might explain the crucial role
played by horizontal gene transfer and duplication/loss events
occurring during their evolutionary history which have lead to the
emergence of a large repertory of Bce-like module in some
Firmicutes such as pathogenic Bacillus or Clostridia (Figure S5-S6).

To further investigate the functional links existing between the
various components of these modules, we studied several members
of the Bce-like subfamily IV, some of whose ABC transporters
proved to be involved in bacitracin resistance mechanisms (B.
subtilis BceRSAB, S. aureus VraDE) or to be up-regulated in the
presence of bacitracin (B. lcheniformis YtsCD). The AbceAB B.
subtilis strain was complemented with genes encoding these
modules. In all the bacitracin induction and bacitracin resistance
tests performed, the same pattern was consistently observed: the
responses of the strains decreased rapidly with the phylogenetic
distance between B. subtilis BceAB and the replacing ABC
transporter. At the induction level, this pattern may be attributed
to the need for protein interactions during the process. The ability
to interact may indeed decrease when one of the two partners are
replaced by a more phylogenetically distant protein. This is in line
with our previous suggestion that interactions between one of the
BceAB subunits and BeeS may activate the HK and induce the
response to bacitracin [12]. We have previously described the
crucial role of UPP in the response of B. subtilis to bacitracin, and
suggested that a UPP/bacitracin complex rather than bacitracin
alone might participate in the activation of the BceRS system [12].
Undecaprenyl pyrophosphate (UPP) is the bacterial molecular
target of bacitracin [28], and its sequestration by the antibiotic
leads to the inhibition of peptidoglycan biosynthesis, which is
lethal to the bacterium. How does the presence of bacitracin result
in BceS kinase activation? As mentioned above, we have
hypothesized that interactions may occur between the transporter
and the kinase [12]. BceAB might therefore recognize the UPP/
bacitracin complex and then make a change of conformation. In
this new conformational state, BceAB might interact with and
activate BceS. In this case, BceAB would be the first proteins to
sense the presence of bacitracin. Might this antibiotic induction
mechanism apply to all Bce-like modules? Some of the data
available seem to suggest that this is the case: other modules seem
to function like the B. subtilis Bce module, such as the Yvc module,
which requires the presence of the YvcRS ABC transporter to
induce a response to enduracidin in B. subtilis (our unpublished
data). Likewise, in the Bce module from S. mutans, the BceAB
transporter acts as a bacitracin co-sensor with the BceRS two-
component [16]. Also, the S. auwreus GraRS signal transduction
system up-regulates the expression of the genes coding for the
Vral'G ABC transporter in the presence of vancomycin, and this
process seems to require the presence of at least VraG [20].

Despite the fairly high levels of membrane expression of the
various ABC transporters, their ability to protect bacteria from
bacitracin decreases or is lost when they are expressed under
heterologous conditions. Differences in the cellular context, such
as changes in the peptidoglycan structure or the protein
environment, might explain this finding. For instance, the VraDE
transporter, which was previously found to participate in S. aureus
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bacitracin resistance, fails to complement BceAB in B. subtilis,
whereas B. licheniformis YtsCD and B. halodurans BceAB, two closer
homologues of BceAB, at least partly restore bacitracin resistance
in B. subtilis. It is worth mentioning that these are the first
experimental data supporting the putative contribution of these
two transporters to bacitracin resistance in their respective genuine
bacterial hosts. The up-regulation of B. lichensformus ytsC gene found
to occur in the presence of bacitracin in both B. licheniformis DSM13
and ATCC10716 strains supports these findings [26]. At least four
ABC transporters belonging to subfamily IV recognize bacitracin
as a substrate: BceABBs, YtsCDBI, BceABBh and VraDESa [26
and the present results). This specificity is not restricted to
subfamily IV, since BeceAB (NP_721401, NP_721402) in Strepto-
coccus mutans, YP_001835606 and YP_ 001835607 in Streptococcus
pneumoniae, both of which belong to subfamily II, and the subfamily
V AnrAB proteins (NP_465638, NP_465639) from Listeria
monocytogenes confer bacitracin resistance on their respective
bacterial hosts [16,17,18,19,21]. This indicates that very distantly
related modules can have the same specificity. In addition,
members of the same subfamily can have different specificities,
such as VraF'GSa, which belongs to subfamily IV and was found to
contribute to vancomycin resistance in S. aureus [20]. These data
indicate that the antibiotic recognized by each Bce-like module
may be difficult to predict on the basis of phylogenomic data, with
the exception of some very close relatives. However, the fact that
the target of all the antibiotics involved in known modules is the
bacterial cell envelope constitutes a common feature among all of
them.

The specificity of the ABC transporter is puzzling because it
raises questions about the recognition of the antibiotic by the
MSD. This specificity can be either restricted, as in the case of the
B. subtilis BceAB transporter, which specifically recognizes
bacitracin, based on our previous results [24] or very broad, as
in the case of the BceAB from S. mutans, the S. pneumoniae
YP_001835606/YP_001835606 ABC transporter and the L.
monocytogenes AnrAB transporter, all of which recognize several
antibiotics [18,19,21]. Interestingly, some Firmicutes seem to have
acquired multi-antibiotic resistant ABC transporter as the result of
either gene duplication, horizontal gene transfer and/or recom-
bination events leading to the extension of the Bce-like module’s
repertory. This seems to have already occurred in some bacteria,
especially in human pathogenic bacteria such as S. mutans and S.
pneumoniae (see above) or B. cereus and B. anthracis (Figures 2 and S4),
which suggests that they are better equipped to resist several
antibiotics.

Upon examining the sequence of the B. subtilis BceB’s closest
homologues belonging to subfamily IV, we noted that the loop is
the least conserved domain. This contrasts with our finding that
the presence of the loop is required not only for induction but also
for antibiotic resistance processes. When the B. subtilis BceB loop
was replaced by loops from subfamily IV ABC transporters with
the same specificity, none of the heterologous ABC transporter
loops was found to restore bacitracin resistance to this bacterium.
Although the loop might be required for the proper folding and
activity of the transporter to occur, the possibility that it might
have a more specific function cannot be ruled out. Indeed, the
most closely related loop (the B. Licheniformis YtsCD loop) partially
restored the bacitracin response in the B. subtilis BceBAloop strain.
The occurrence of interactions between the loop and some other
domain(s) in the transporter might explain the latter result and in
this context, phylogenetically distantly related loops might loose
their ability to take part in these interactions. Large extracyto-
plasmic loops have been previously found to be involved in specific
functions in an ABC transporter belonging to the exporter family
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in the case of E. coli, where LolC and LolD along with the LolD
NBD constitute the LolCDE ABC transporter. This transporter
carries out the first step in lipoprotein transport from the inner to
the outer membrane of the Gram negative bacteria [29]. It has
been predicted that LolE and LolC each contain four TMS and a
large extracytoplasmic loop located between TMS number 1 and
2. These loops interact directly with lipoproteins and are involved
in their transfer to the LolA periplasmic molecular chaperone
[30,31]. It therefore seems possible that the BeeB-like loops might
also constitute important functional domains for the corresponding
ABC transporter.

Conclusions

The results obtained throughout the present study consistently
indicate that Bce-like modules are involved in resistance
mechanisms against antibiotics targeting the membrane. The data
obtained here, along with those available in the literature, suggest
that a common mechanism of action is involved. These modules
include an ABC transporter possessing a translocator with a very
large extracytoplasmic loop, which seems to be functionally and/
or structurally required by all of them. In addition, the translocator
seems to act as the primary antibiotic sensor, which transfers the
information it detects to the histidine kinase. This unusual mode of
functioning makes these particular Bce-like modules interesting
targets for further studies. Better knowledge about this resistance
mechanism and how these modules developed and spread in
Firmicutes might provide interesting clues to designing more
appropriate means of treating diseases due to pathogens belonging
to this bacterial phylum.

Materials and Methods

Bacterial strains, plasmids and growth conditions

Bacterial strains and plasmids used in this study are listed in
Tables S2 and S3, respectively. The sequence of each recombinant
plasmid was checked by DNA sequencing (Cogenics). B. subtilis
strains were grown in Luria broth (LB) at 37°C with aeration. The
pDG148bceR plasmid [32] was used to induce over-expression of
BeeR in B. subtilis. IPTG was also added at a final concentration of
I mM when necessary. Recombinant strains were grown in
medium containing antibiotics at the following concentrations:
chloramphenicol (5 ug.ml™"), tetracycline (10 ug.ml™") and spec-
tinomycin (100 ug.ml~"). Bacitracin and all other antibiotics were
from Sigma-Aldrich.

General Molecular Biology Techniques

Unless otherwise stated, all molecular biology procedures were
carried out as described in [33]. DNA fragments were purified
using the Qiaquick nucleotide removal kit (Qiagen). Cloning of
DNA was performed in E. coli DH5a strain. PrimeSTAR (Takara
Bio. Inc.) was used to perform PCR amplifications in a final
volume of 50 pl under the conditions recommended by the
manufacturer. Plasmid purifications were carried out using either
Plasmid Midi Kit or Plasmid Mini Kit from Qiagen.

All the oligonucleotides used in this study are listed in Table S4.

Plasmid and strain construction procedure

General strategy for bceAB deletion, ABC transporter
gene introduction and loop exchange in B. subtilis. Three
plasmids were designed and produced, each containing a bcedB
DNA flanking region so that a DNA fragment could be either
deleted or inserted at this locus by inducing a double
recombination event.
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1) The pbTy plasmid was obtained by cloning a three partner
PCR product into the pGEM-T vector (Promega). PCR products
were obtained as follows: PCR1 fragment (351 base pairs (bp)),
comprising in the following order part of the bced promoter, the
beed start codon followed by 6 histidine encoding codons, a Pmll
restriction site (CACGTG, where CAC is the last histidine codon)
and an Aes/ restriction site (GGCGCGCC), was obtained using
Pbceal and Pbcea2-ml primers. The 401 bp long PCR3 fragment
including the end of the bceB gene and the beginning of the ytd
gene was obtained using yttAl-tet and yttA2 primers. B. subtilis
genomic DNA was used as a template in both cases. PCR2, which
corresponds to a tetracycline resistance cassette, was obtained
using Tetl-asc and Tet2-lin primers with the pDG1515 plasmid as
a template [34]. PCR1/PCR2 and PCR2/PCR3 possess 20-bp
and 24-bp long fragments, respectively, with identical sequences,
so that amplification can be performed using pbceAl and ytta2 as
primers with a mixture of the three fragments at an equimolecular
ratio. Pmll, Ascl and BstEIl (end of the Tet cassette) are unique
restriction sites in phTy.

The pbTy vector was used to construct the pbSy vector (see
below) and to clone entire ABC transporter genes at Pmll/ Ascl sites
in order to replace bceAB genes.

2) The pbSy plasmid was obtained from pbTy by replacing the
tetracycline cassette by a spectinomycin cassette. The latter was
obtained by performing PCR amplification using spec-asc and
spec-bst primers and pDG1726 as a template [34]. After digestion
with Ascl/ BstEII the cassette was cloned into the Ascl/ BstEII pb'Ty
digested plasmid, giving the pbSy plasmid. The latter was used to
obtain a AbceAB mutant in B. subtilis via a double recombination
event.

3) The pbTybceABAloop plasmid was obtained from the pbTy
plasmid. A DNA fragment comprising bced gene and the bceB gene
with the loop deleted was obtained as follows: using B. subtilis
genomic DNA as template and bceABBs-pml with loopl/FseBbv
or loop2/FseBbv with bceABBs-asc as pairs of primers, we
obtained PCR4 and PCR5 fragments respectively. Since these
fragments had identical 21-bp fragments, double partner ampli-
fication was performed with PCR4 and PCR) as templates (in a
1/1 molar ratio) using bceABBs-pml and bceABBs-asc as primers.
After a digestion step with Pmll and Ascl, the PCR fragment was
cloned into the Pmil, Ascl digested pbTy plasmid, giving the
pbTybceABAloop plasmid. As the cloned fragment contained two
restriction sites (Fsel, BbvCl) replacing the loop encoding sequence,
which were not present in the pbTy plasmid, a loop encoding
sequence could be reintroduced. By reintroducing the BeeB loop
in this way, three additional amino acids were introduced on both
sides of the loop (GLS and VLS) in comparison with the wild type
sequence. The pbTybceABAloop plasmid was also used to obtain
the bceeBAloop strain from the bceAB mutant via a double
recombination event.

Cloning of ABC transporter genes into the pbTy plasmid
and reintroducing the genes into B. subtilis. bceAB from B.
subtilis, ytsCD from B. licheniformis, beeAB from B. halodurans, vraDE
and vral'G from S. aureus, genes were obtained by PCR amplification
using  bceABBs-pml/bceABBs-asc, ytsCDBIl-pml/ytsCDBl-asc,
bceABBh-pml/bceABBh-asc, vraDE-Pmll/vraDE-asc and
vraFG- Pmll/vraFG-asc as pairs of primers, respectively, with
the corresponding genomic DNAs as templates. Each
amplification product was Pmil/AscI double digested and cloned
in the Pmll/AscI double digested pbTy plasmid. Each of the
resulting plasmids was used to reintroduce the B. subtilis bceAB
genes, B. lchenyformis ytsCD genes, B. halodurans bceAB genes, S.
aureus vraDE and S. aureus vraFG genes into the B. sublilis bceAB
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mutant, giving the boeABBs,, ytsCDBL; boeABBh;, vraDESa,; and
vral'GSa,; strains, respectively.

Cloning of sequences encoding MSD loops into the
pbTybceABAloop plasmid and reintroducing the corre-
sponding ABC transporter genes into B. subtilis. bceBBs,
ytsDBl or beeBBl loop sequences were obtained by performing PCR
amplification using loop-BceBBs_fse /loop-BeeBBs_bbv, loop-ytsD-
Bl_fse/loop-ytsD-Bl_bbv and loop-BceBBh_fse/loop-BceBBh_bbv
pairs of primers, respectively, with the corresponding genomic
DNAs as templates. Each amplification product was Fsel/ BbvCl
double digested and cloned into the Fsel/ BbvCI double digested
pbTybceABAloop plasmid. Each of the resulting plasmids was used
to reintroduce either the BeeBBs loop, the YtscDBI loop or the
BceeBBh loop into the AbceAB strain, giving the beeBloopBeeBBs,;,
beeBloopYtsDBl;, and beceBloopBceBBh,; strains.

Using this general strategy, all the strains except the AbceAB
strain expressed a BceA protein possessing a 6-his N terminal tag
making detection by His-probing proteins possible if required.

B-galactosidase assay
The procedure used here has been previously described [12].

Measurement of bacitracin resistance

The antibiotic concentration of giving 50% growth inhibition
(IC50) was determined using the microtiter tray assay described
previously [22].

Cell lysate and membrane preparation
The procedure used here has been previously described [35].

Western blot experiments

Proteins were separated by performing SDS-page and the gels
were blotted onto Hybond ECL paper (Amersham Biosciences)
using a semi-dry transfer apparatus (Bio-rad) in line with the
manufacturer’s recommendations. BceA protein was detected either
with a rabbit polyclonal anti-BceA antibody and a second antibody
(mouse anti-rabbit Ig coupled to horse radish peroxydase from
Sigma-Aldrich) or with a His-probe Horseradish peroxydase (super
signal west Hisprobe kit from Thermo Scientific). In both cases, the
SuperSignal West Pico chemoluminescent substrate from Pierce
was used in line with the manufacturer’s recommendations.

Bioinformatic analysis

Homologues of the four components of the B. subtilis Bce-
modules were retrieved from the 779 complete genomes available
in February 2009 at the NCBI using the BLASTp program [36].
Sequences from the Bce-module of B. subtilis (i.e. BceR (034951)
231 amino acids, BceS (035044) 334 amino acids, BceA (034697)
253 amino acids, BeeB (034741), 646 amino acids) were used as
seeds.

The sequences retrieved were aligned using the MUSCLE
software program [37]. Resulting alignments were inspected
visually and refined manually using the MUST software program
[38]. Regions where alignment was doubtful were removed before
the phylogenetic analyses were carried out using MUST.

Phylogenetic analyses were performed using the Maximum
Likelihood method implemented in PHYML [39], with the Le and
Gascuel model (LG model) including an estimated proportion of
invariant sites and a correction by a I'-law to account for rate
among site variations (four categories of sites, an estimated alpha
parameter). Refined phylogenetic analyses were performed on
each Bce-like component, using a reduced taxonomic sampling
method, where only one strain was conserved in each species. The
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Bayesian method implemented in MrBayes 3.0B4 [40] was used
with a mixed model based on amino acid substitution and a I'-law
(four discrete categories plus a proportion of invariant sites) to
account for among site rate variation. MrBayes was run with four
chains for 1 million generations and trees were sampled every 100
generations. To construct the consensus tree, the first 1500 trees
were discarded as burning.

Lastly, the TM segments of the BceS and BceB homologues
were investigated using the filter_tmhmmv2.pl program (C.
Brochier-Armanet., unpublished). Sequences were sorted depend-
ing on their length, the number of TMs, the position and the
length of their extracytoplasmic loops. Among the 578 BceS
homologs, we searched for sequences having a length ranging
from 50 to 1000 amino acids, exactly two TM segments and a
short loop (i.e. composed of 1-20 amino acids) located between the
first and second TM segments. In the case of 314 BceB homologs,
we examined sequences having a length ranging from 400 to 1000
amino acids, exactly ten TM segments and a long loop (e
composed of 100400 amino acids) located between the seventh
and eighth TM segments.

Supporting Information

Figure S1 Phylogeny of BceS homologues. Maximum
Likelihood tree showing the 579 BceS homologues retrieved from
complete genomes. Sequences with the name in green correspond
to kinases that harbour exactly 2 TM separated by a short linker
(<12 amino acids), whereas sequences with the name in orange
correspond to BeeS with different characteristics (more or less TM,
longer linker, etc). The great majority of these sequences are
clustered together, which indicates that this characteristic was
present in the ancestor and conserved during the evolution of this
group. The few sequences outside the clusters correspond to
sporadic convergences occurring during the evolution of this large
family. The scale bar gives the average number of substitutions per
site.

(PDF)

Figure S2 Phylogeny of BceB homologues. Maximum
likelihood tree showing the 314 BceB homologues retrieved from
complete genomes. Sequences with the name in green correspond
to MSD that harbour exactly 10 TM, and TM7 and TM8 are
separated by a long extracytoplasmic loop (>197 amino acids),
whereas sequences with the name in orange correspond to BceB
with different characteristics (more or less TM, longer linker, etc).
The scale bar gives the average number of substitutions per site.

(PDF)

Figure S3 Phylogeny of the BceS-like proteins (kinase
components). Bayesian tree showing the relationships in a
subsample of 98 BceS sequences. The accession number of each
sequence is provided. Numbers at nodes are posterior probabil-
ities. The scale bar gives the average number of substitutions per
site. For details about colours and symbols, see the legend to
Figure 5. The length of the alignment used to construct the tree
was 171 residues.

(PDF)

Figure S4 Phylogeny of the BceA-like proteins (NBD
components). Bayesian tree showing the relationships in a
subsample of 152 BceA sequences. The accession number of each
sequence is provided. Numbers at nodes are posterior probabil-
ities. The scale bar gives the average number of substitutions per
site. For details about colours and symbols, see the legend to
Figure 5. The length of the alignment used to construct the tree
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was 205 residues. BceA-like proteins used for recombinant strain
construction were indicated in bold characters.

(PDF)

Figure S5 Bce-like repertories. Type and distribution of
Bce-like systems in the four main Firmicutes lineages: (A)
Clostridiales, (B) Bacillales, (C) Mollicutes and (D) Lactobacillales.
For details about symbols and colours, sce the legend of Figure 5.
(TIF)

Figure S6 Alignment of the B. subtilis BceB sequence
with its seven closest relatives belonging to subfamily
IV. Regions designated by Il to I6 are intracellular segments,
those annotated O1 to O5 correspond to extracellular loops (O4 is
the large loop), and TM stands for transmembrane segments. In
the line entitled “Clustal Consensus”, stars correspond to positions
harbouring residues that are different but that have similar
features. In this alignment, the region corresponding to O4 is the
least highly conserved.

(TIF)

Figure S7 Similarities between B. subtilis BceB regions
and those of the closest BceB-like homologs. The Y axis
gives the evolutionary distances and the X axis gives the domain of
interest in the BceB-like proteins. Whole: entire proteins, I:
mntracytoplasmic domains, TM: transmembrane segments, O:
extracytoplasmic or outside domains. SD Numbering of the
domains corresponds to the predicted topology of BceB-like
proteins (Figure S6). In each region of the proteins, the mean
distance between the B. subtilis BceB transporter and the seven
most closely related BeeB-like proteins belonging to subfamily IV
(proteins from B. licheniformis, B. amyloliquefaciens, B. halodurans, B.
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Bce-like proteins in grey. Light colors correspond to pseudogenes
or misannotated genes that have been manually detected using
tblastn with complete genomes. For each gene cluster, the name of
the subfamily to which it belongs is indicated.

(XLS)

Table S2 Bacterial strains used in this study.

(PDF)

Table S3 Plasmids used in this study.
(PDE)

Table S4 List of oligonucleotides used in this study.
(PDF)

Acknowledgments

The authors greatly appreciate helpful discussions with Dr Vincent
Mé¢jean.

Author Contributions

Conceived and designed the experiments: SCF CBA AG FD MF.
Performed the experiments: SCF CBA AG FD. Analyzed the data: SCF
CBA FD MF. Contributed reagents/materials/analysis tools: SCF CBA
AG FD. Wrote the paper: SCF CBA FD MF.

Ouyang J, Tian X, Versey J, Wishart A, Li Y (2010) The BceABRS Four-
Component System Regulates Bacitracin-Induced Cell Envelope Stress
Response in  Streptococcus mutans. Antimicrob Agents Chemother (published
ahead of print on 6 July 2010. doi:10.1128/AAC.01802-09).

. Tsuda H, Yamashita Y, Shibata Y, Nakano Y, Koga T (2002) Genes involved in
bacitracin resistance in Streptococcus mutans. Antimicrob Agents Chemother 46:
3756-3764.

. Becker P, Hakenbeck R, Henrich B (2009) An ABC transporter of Streptococcus
pneumoniae involved in susceptibility to vancoresmycin and bacitracin. Anti-
microb Agents Chemother 53: 2034-2041.

. Majchrzykiewicz JA, Kuipers OP, Bijlsma JJE (2010) Generic and specific

adaptive responses of Streptococcus pneumoniae to challenge with three distinct

antimicrobial peptides, bacitracin, 11-37, and nisin. Antimicrob Agents Che-

mother 54: 440-451.

Meechl M, Herbert S, Gétz F, Cheung A (2007) Interaction of the GraRS two-

component system with the VralFG ABC transporter to support vancomycin-

intermediate resistance in Staphylococcus aureus. Antimicrob Agents Chemother 51:

2679-2689.

. Collins B, Curtis N, Cotter PD, Hill C, Ross RP (2010) The ABC transporter

Anrab contributes to the innate resistance of Listeria monocylogenes to nisin,

bacitracin, and various beta-lactam antibiotics. Antimicrob Agents Chemother

54: 4416-4423.

Ohki R, Giyanto, Tateno K, Masuyama W, Moriya S, et al. (2003) The BceRS

two-component regulatory system induces expression of the bacitracin

transporter, BeeAB, in Bacillus subtilis. Mol Microbiol 49: 1135-1144.

Mascher T, Margulis NG, Wang T, Ye RW, Helmann JD (2003) Cell wall stress

responses in Bacillus subtilis: the regulatory network of the bacitracin stimulon.

Mol Microbiol 50: 1591-1604.

Bernard R, Joseph P, Guiseppi A, Chippaux M, Denizot F (2003) YtsCD and

YwoA, two independent systems that confer bacitracin resistance to Bacillus

subtilis. FEMS Microbiol Lett 228: 93-97.

. Wecke T, Veith B, Ehrenreich A, Mascher T (2006) Cell envelope stress

response in Bacillus licheniyformis: integrating comparative genomics, transcrip-

tional profiling, and regulon mining to decipher a complex regulatory network.

J Bacteriol 188: 7500-7511.

Pietidinen M, Frangois P, Hyyrylainen H, Tangomo M, Sass V, et al. (2009)

Transcriptome analysis of the responses of Staphylococcus aureus to antimicrobial

peptides and characterization of the réles of VraDE and VraSR in antimicrobial

resistance. BMC Genomics 10: 429.

20.

22.
23.

24.

26.

January 2011 | Volume 6 | Issue 1 | e15951



27.

29.

30.

31.

32.

Liu PQ, Ames GF (1998) In vitro disassembly and reassembly of an ABC
transporter, the histidine permease. Proc Natl Acad Sci U S A 95:
3495-3500.

Stone KJ, Strominger JL (1971) Mechanism of action of bacitracin:
complexation with metal ion and C 55 -isoprenyl pyrophosphate. Proc Natl
Acad Sci U S A 68: 3223-3227.

Narita S, Tokuda H (2006) An ABC transporter mediating the membrane
detachment of bacterial lipoproteins depending on their sorting signals. FEBS
Lett 580: 1164-1170.

Yakushi T, Masuda K, Narita S, Matsuyama S, Tokuda H (2000) A new ABC
transporter mediating the detachment of lipid-modified proteins from mem-
branes. Nat Cell Biol 2: 212-218.

Okuda S, Tokuda H (2009) Model of mouth-to-mouth transfer of bacterial
lipoproteins  through inner membrane LolC, periplasmic LolA, and outer
membrane LolB. Proc Nath Acad Sci U S A 106: 5877-5882.

Joseph P, Fantino JR, Herbaud ML, Denizot I (2001) Rapid orientated cloning
in a shuttle vector allowing modulated gene expression in Bacillus subtilis. FEMS
Microbiol Lett 205(1): 91.7.

@ PLoS ONE | www.plosone.org

13

33.

34.

36.

37.

38.

40.

A New Antibiotic Sensing/Resistance Pathway

Sambrook J, Russell D (2001) Molecular cloning: A laboratory manual, 3rd edition.
Cold Spring Harbor, New-York: Cold Spring Harbor Laboratory Press.
Guérout-Fleury AM, Shazand K, Frandsen N, Stragier P (1995) Antibiotic-
resistance cassettes for Bacillus subtilis. Gene 167: 335-336.

. Bernard R, El Ghachi M, Mengin-Lecreulx D, Chippaux M, Denizot F (2005)

BerC from Bacillus subtilis acts as an undecaprenyl pyrophosphate phosphatase in
bacitracin resistance. J Biol Chem 280: 28852-28857.

Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, et al. (1997) Gapped
blast and psi-blast: a new generation of protein database search programs.
Nucleic Acids Res 25: 3389-3402.

Edgar RC (2004) Muscle: multiple sequence alignment with high accuracy and
high throughput. Nucleic Acids Res 32: 1792-1797.

Philippe H (1993) Must, a computer package of management utilities for
sequences and trees. Nucleic Acids Res 21: 5264-5272.

Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate
large phylogenies by maximum likelihood. Syst Biol 52: 696-704.

Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference
under mixed models. Bioinformatics 19: 1572-1574.

January 2011 | Volume 6 | Issue 1 | e15951



