Text S2: Diffusive movement in one dimension

Suppose first that animals perform random walks in $\Omega = \mathbb{R}$ (i.e., one dimension) and let $P_m(x, t)$ be the probability density of an animal being at location $x \in \Omega$ at time $t \geq 0$. The initial value problem that determines the evolution of P_m is given by a diffusion equation

$$\frac{\partial P_m}{\partial t} = D \frac{\partial^2 P_m}{\partial x^2}, \quad P_m(x, 0) = \delta(x)$$

and its solution is

$$P_m(x, t) = \frac{1}{\sqrt{4\pi Dt}} \exp \left(-\frac{x^2}{4Dt} \right), \quad x \in \Omega \text{ and } t > 0$$

(1)

The graph of this function is a Gaussian curve that expands because of diffusion.

Mean of P_s: It follows from Eq (4) of Text S1 and the fact that P_m is an even function of x that

$$\mu_s = \int_0^\infty \mu_m(t)P_r(t) \, dt = \int_0^\infty \left(\int_{-\infty}^\infty xP_m \, dx \right)P_r(t) \, dt = \int_0^\infty 0 \cdot P_r(t) \, dt = 0$$

(2)

Scale of P_s: Substituting Eqs (1), (2), and (1*) into Eq (1) of Text S1 yields

$$\sigma_s^2 = \int_{-\infty}^\infty (x - \mu)^2 P_s \, dx = \int_0^\infty \left(\int_{-\infty}^\infty x^2P_m \, dx \right)P_r(t) \, dt = \int_0^\infty (2Dt)P_r(t) \, dt = 2D\mu_r$$

(3)

Shape of P_s: Upon substituting Eqs (1), (2), (3) and Eq (1*) into Eq (1) of Text S1 we obtain

$$\kappa_s = \frac{1}{\sigma_s^4} \int_{-\infty}^\infty (x - \mu_s)^4 P_s \, ds - 3 = \frac{1}{\sigma_s^4} \int_0^\infty \left(\int_{-\infty}^\infty x^4P_m \, dx \right)P_r(t) \, dt - 3$$

(4)

$$= \frac{1}{\sigma_s^4} \int_0^\infty (12D^2t^2)P_r(t) \, dt - 3 = \frac{12D^2}{(2D\mu_r)^2}(\mu_r^2 + \sigma_r^2) - 3$$

(5)

$$= \frac{3\sigma_r^2}{\mu_r^2}$$

(6)

Note that in our derivation of expressions for the summary statistics (i.e., mean, scale and kurtosis above), we did not assume any specific distribution for retention time (P_r).

Furthermore, a counterintuitive feature of our results is that the kurtosis (a key measure of LDD) does not depend on the spatial spreading rate of the animal species (i.e., the diffusion constant D).