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Abstract

Most recent advances in fluorescence microscopy have focused on achieving spatial resolutions below the diffraction limit.
However, the inherent capability of fluorescence microscopy to non-invasively resolve different biochemical or physical
environments in biological samples has not yet been formally described, because an adequate and general theoretical
framework is lacking. Here, we develop a mathematical characterization of the biochemical resolution in fluorescence
detection with Fisher information analysis. To improve the precision and the resolution of quantitative imaging methods,
we demonstrate strategies for the optimization of fluorescence lifetime, fluorescence anisotropy and hyperspectral
detection, as well as different multi-dimensional techniques. We describe optimized imaging protocols, provide
optimization algorithms and describe precision and resolving power in biochemical imaging thanks to the analysis of
the general properties of Fisher information in fluorescence detection. These strategies enable the optimal use of the
information content available within the limited photon-budget typically available in fluorescence microscopy. This
theoretical foundation leads to a generalized strategy for the optimization of multi-dimensional optical detection, and
demonstrates how the parallel detection of all properties of fluorescence can maximize the biochemical resolving power of
fluorescence microscopy, an approach we term Hyper Dimensional Imaging Microscopy (HDIM). Our work provides a
theoretical framework for the description of the biochemical resolution in fluorescence microscopy, irrespective of spatial
resolution, and for the development of a new class of microscopes that exploit multi-parametric detection systems.
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Introduction

Fluorescence microscopy provides an invaluable tool to probe

cell and tissue biochemistry. Fluorophores sensitive to the physico-

chemical properties of the environment or fluorescent sensors

engineered to probe biochemical reactions encode biologically

relevant information into changes of their photophysical proper-

ties. The read-out of these probes is typically performed with the

quantitative detection of specific photophysical properties, e.g.

excited state lifetime, fluorescence anisotropy or emission/excita-

tion spectra. Photon-toxicity, photo-bleaching and the need for

acquisition times compatible with biological processes limits the

maximum number of photons that can be collected during an

experiment. This limited photon budget hinders the capability of

biophysical imaging techniques such as fluorescence lifetime,

anisotropy and spectral imaging to unmix complex biochemical

signatures and to resolve small changes in biochemical systems.

Theoretical frameworks describing the role of photon-statistics in

various techniques have been developed in order to define these

limits and to provide tools that may serve for the optimization of

detection schemes [1–5].

Over the past decade, most academic and industrial develop-

ments in microscopy have focused on spatial super-resolution

techniques [6,7]; however, the capability of fluorescence micros-

copy to discriminate different biochemical and physic-chemical

environments does not depend only on spatial resolution: detection

schemes aiming to enhance biochemical/physico-chemical reso-

lution of fluorescence microscopes are equally fundamental, in

particular for full exploitation in cell biology. Intuitively, multi-

parametric detection [8,9] is an obvious strategy to achieve this

goal. Indeed, various techniques developed in the past decades,

e.g., spectrally resolved lifetime imaging [8], time-resolved anisot-

ropy imaging [10] and spectrally-resolved anisotropy imaging [9],

already provide detailed information concerning certain param-

eters. Detection technologies are mature to integrate all these

modalities into a single instrument. However, these multi-

parametric imaging platforms are sometime met with skepticism

because of the high cost and complexity of multi-parametric or

multi-modal systems and the lack of a rigorous definition of

‘‘biochemical resolving power’’ that would permit to demonstrate

advantages of these detection schemes on theoretical grounds.

Here, we present a theoretical framework that generalizes Fisher

information theory for a system with multiple detection channels

with the aim to provide a mathematical background with which it

is possible to define and to study the biochemical resolving power

of an optical system as a function of photon statistic, independently

from its spatial resolution. Furthermore, we describe strategies to

optimize multi-dimensional detection systems, provide software for

their analysis and review sources of photon-losses that may limit

their efficiencies.
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Fisher information theory has been conveniently used to study

the upper boundary of signal-to-noise ratios (SNR) achievable in

fluorescence detection [1,5]. These works have been primarily

applied to the study of single-photon counting systems because

single photon counting is mostly affected by Poissonian noise. All

other techniques may introduce additional types of noise at the

detriment of SNR. However, at high signal-to-noise ratios and

with optimized detection schemes [3], analog techniques may

converge to the upper boundaries described by Fisher information

potentially providing other benefits, e.g. higher acquisition

throughputs [3]. Therefore, all results obtained with the applica-

tion of the following theoretical framework should be regarded as

the physical limits in the precision of a detection system and any

system that would approach this limit will be defined as ‘‘efficient’’

[3].

Furthermore, we aim to lay down the theoretical foundations

(and justifications) for multi-dimensional techniques and, more

specifically, for spectrally- and polarization- resolved time-corre-

lated single-photon counting that would enable the parallel

detection of all properties of light. For conciseness, this technique

will be referred to as Hyper Dimensional Imaging Microscopy or

HDIM [9]. Furthermore, as phasor transformation [11] has

become widely used in the analysis of biophysical imaging data, we

propose a generalization of this technique to multi-dimensional

datasets. We show that parallel multi-parametric imaging modal-

ities can maximize signal-to-noise ratios and boost the resolving

power of biochemical/biophysical imaging techniques. Thus, our

work lays a theoretical foundation for the development of HDIM

platforms, and demonstrates some of the potential advantages of

such systems in resolving cell biological processes.

Theory

In this work, Fisher information is used in order to define and

describe the physical limit in biochemical resolving power of an

optical system and to characterize how a multi-channel detection

system can attain the highest possible biochemical resolution from

a theoretical standpoint. In this section, we provide definitions and

theorems that enable the description of biochemical precision and

resolution in fluorescence microscopy; the demonstrations can be

found in the Methods section; the validation of the theory and the

description of practical tools for the analysis of optical systems can

be found in the Results section.

A multi-channel optical instrument partitions detected photons

into histograms of photon counts collected over ranges of arrival

times, wavelengths and polarization states. It is possible to

characterize the general properties of the Fisher information

content provided by any given partition and to demonstrate that

detection systems of higher channel number and dimensionality

increase the information content of an experiment as stated in the

‘‘photon partitioning theorem’’ below.

Photon Partitioning Theorem (See also Methods: Proof of

Photon Partitioning Theorem)

Let p be a partition of N photons obtained with m independent

noiseless channels resulting in the observable random variable

~nn~ G1,G2,:::,Gmð Þ, where Gi is the photon-count value measured

by the i-th channel. Let I xð Þ be the Fisher information on the

unknown parameter x. If p’ is a finer partition of the N photons

obtained with m’.m independent noiseless channels then

I ’ xð Þ§I xð Þ.
In analogy to literature related to information theory [12], a

noiseless channel is defined as a channel that does not introduce

errors/noise. In the context of fluorescence, a noiseless channel

reveals shot noise that is caused by the inherently Poissonian

process of photon detection. This is not only a useful and common

abstraction, but it is representative of single photon counting

detectors. The random variable x may represent physical

quantities such as the fluorescence lifetime of a fluorophore,

FRET efficiency or fluorescence anisotropy, or a biochemical

quantity such as pH, a fraction of bound molecules or a relative

enzymatic activity.

Although for a finer partition of photons the Fisher information

may increase, the trivial duplication of a detection channel that

collects light on an identical spectral, polarization and time range,

cannot provide any advantage, but may rather increase only

photon-losses or noise (see practical non-trivial partitioning note

and Text S1 on costs and photo-losses). The following corollary

and note clarifies that maximal Fisher information can be attained

I ’wIð Þ solely if the partitioning of photons is carried out on

partitions that maximize the gradient of the partitioning function

relative to the parameter of interest.

Non-trivial Partitioning Corollary (See also Methods:

Proof of Non-trivial Partitioning Corollary)

For any given detection channel with photon counts Gi there is a

partitioning function 0va x,~ssið Þv1 such that the two newly

defined detection channels will detect aGi and 1{að ÞGi photons,

respectively. a is a function of the unknown parameter x and of the

(hyper-dimensional) spectral properties ~ssið Þ of each detection

channel. If the necessary and sufficient condition La=Lx=0 is

satisfied, the new partition provides a net increase

Gi a 1{að Þ½ �{1 La=Lxð Þ2 of Fisher information I ’wIð Þ and p’ will

be called ‘‘non-trivial’’.

Here, the vector ~ssi defines the boundaries of each detection

channel including the band of observed wavelengths, the

orientation of an analyzer and the time windows of photon arrival

times that is considered in the photon counting process (see also

Proof of Photon Partitioning Theorem). An example of partition-

ing function for the case of fluorescence lifetime imaging is

described in the Methods – Partitioning function: an example.

A fundamental and direct outcome of the photon partitioning

theorem is that multi-channel multi-parametric detection systems

are more photon-efficient (the capability to approach relative

errors limited just by Poissonian noise) [2,3].

Photon-efficiency Corollary (See Methods: Proof of Photon-

efficiency Corollary)

For a non-trivial partitioning of N photons onto m detection

channels, the variance sx
2 of an unbiased estimator of the

parameter x will asymptotically decrease with m increasing, i.e. the

photon-efficiency of a measurement increases with non-trivial

increments of detection channel number.

Photon-efficiency can be described by the figure-of-merit ‘‘F ’’

(or F-value) introduced by Gerritsen et al. [2] for FLIM that can be

easily generalized to F~sxx{1
ffiffiffiffiffi
N
p

, i.e. the ratio between the

relative error sxx{1
� �

that affects the estimate of x compared to

Poissonian noise 1=
ffiffiffiffiffi
N
p� �

. An F-value of 1 signifies that the

estimate of x is affected only by Poissonian noise (it is efficient) and

for an F-value of 2, the estimate of x exhibits twice the noise

compared to a shot-limited measurement as if a fraction equal to

1-221/2 of the detected photons were lost. Therefore, a measure of

photon-efficiency is p~F{1=2 [3] (for an analysis of actual optical

losses see Text S1 - Costs and photon-losses: case studies
and the Practical non-trivial partitioning note). The increased precision

in the detection of photophysical/biochemical quantities results in

enhanced biochemical resolving power as stated below by the

separability and resolving power corollary.

Separability and Resolving Power Corollary (See

Methods: Proof of Separability and Resolving Power Corollary)

Biochemical Resolving Power of Microscopy
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Let consider a photo-physical system that is sensitive to physico-

chemical (biochemical) properties of its environment. If E1 and E2

are two different physico-chemical environments characterized by

the parameter x and distance described by m = |x12x2| then, for a

non-trivial partitioning of N photons onto m detection channels,

the separability S ~ m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

1zs2
2

q
of the detection system will

asymptotically increase with m increasing. Separability [1] is a less

ambiguous (statistical) definition of resolving power; however, it is

possible to define biochemical resolving power also applying the

Rayleigh criterion (i.e., S,2) in analogy to the description of spatial

resolution. The smallest resolvable difference between E1 and E2

at x = x0 (Dx, i.e., the biochemical resolution) can be described thus

by Dx~

ffiffiffiffiffiffiffi
8

pN

r
x0 and, therefore, the biochemical resolving power is

x0

Dx
~

ffiffiffiffiffiffiffi
pN

8

r
. Therefore, at increasing number of channels, the

photon-efficiency p of a fluorescence microscope increases together

with its biochemical resolving power.

This work is concerned with the biochemical resolution of a

microscope; however, when x is a photophysical property (e.g., the

fluorescence lifetime of a fluorophore) a consequence of the

photon partitioning theorem is that the photophysical resolving

power of a fluorescence microscope increases for m increasing.

Therefore, this definition is a generalized description of resolution

useful to define how small photophysical or biochemical quantities

can be resolved either within a pixel of an image or between two

different areas of a sample. The definitions of separability,

resolution and resolving power as affected by the instrument

response function can be found in Methods – Proof of Separability

and Resolving Power Corollary.

Practical Non-trivial Partitioning Note
The photon partitioning theorem and its corollaries were

described in the case of an ideal system in which the addition of a

detection channel can be done without any penalty. This is useful

to define the physical limits in Fisher information, precision and

biochemical resolution of an optical system and not just the limit

imposed by current technologies. In reality, the addition of

detection channels can result in photon-losses (i.e., partial loss of

information) or more general constrains or costs (e.g., the actual

cost of an optical system). If these generalized cost C can be

quantified, a non-trivial partitioning will be practically achievable

if and only if I ’{C’wI{C. The analysis of photon-losses caused

by optical relay systems (see Text S1– Costs and photon-
losses: case studies) or additional sources of noise (see

Methods – Numerical optimization of Fisher informa-
tion) is therefore fundamental for the realization of the physical

limits of the biochemical resolving power of a fluorescence

microscope.

Results

Numerical Optimization of Fisher Information
The non-trivial partitioning of photons with higher channel

density increases the physico-chemical (or biochemical) resolution

of a detection system. Practical implications of the photon

partitioning theorem can be demonstrated by implementing

numerical optimization of a detection system. Fast iterative

algorithms can identify the best number and configuration of

detection channels by the numerical maximization of

G~ a 1{að Þ½ �{1 Da=Dxð Þ2, a factor that is directly proportional

to the absolute gain in Fisher information (see Non-trivial Partitioning

Corollary; D indicates numerical estimations of derivatives). A

detection channel is split into two new detection channels only

when GwC, where C represent the cost of adding a new detection

channel. The physical meaning of C can be, for instance, a photo-

loss (see also Supporting Material – Costs and photon-losses: case

studies) or additional noise (see Methods – numerical optimization of

Fisher information); however, this cost term can be used as a mere

numerical tolerance for the iterative algorithm. Similar algorithms

can be implemented by evaluating the loss Lð Þ of Fisher

information when two channels are merged into one. The optimal

partitions pð Þ obtained with these iterative strategies

maxpG pð ÞDGwC
� �

or minpL pð ÞDLvC can be further optimized by

the numerical minimization minpF pð Þð Þ of the F-value Fð Þ
[2,3,13], i.e. the ratio between the relative error sxx{1

� �
that

affects the estimate x compared to Poissonian noise 1=
ffiffiffiffiffi
N
p� �

:

F~x{1Dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i

f {1
i Dfið Þ2

r
, where fi = Gi/N. Dx is a small

numerical value, for instance in the order of a few percent or a

few thousands of x used for the numerical evaluation of Da and Dfi

(see Methods – numerical optimization of Fisher information and

Supporting Material – Matlab code for Fisher information analysis).

Optimization of Time Gating
Fluorescence lifetime imaging microscopy can be accomplished

with a number of detection schemes, in the time- or frequency-

domain and with single photon counting or analog detection [14–

17]. For simplicity, in this work we consider only time-correlated

single photon counting (TCSPC) [18,19] and time-gating [20]

where photon arrival times relative to repetitive pulsed excitation

are measured and histrogrammed in a number of time bins. The

precision of these time-domain techniques as a function of

instrument parameters (e.g., laser repetition period T, number

and shape of time bins), fluorescence lifetime (t) and photon count

per pixel (N) has been thoroughly described [1,2,21–23].

Therefore, it is instructive to compare results inferred from the

general properties of Fisher information relative to state-of-the-art

optimization techniques. First, we describe how to optimize the

position of time gates by analyzing the simple case of detection

based on just two time gates; second, we generalize this

optimization strategy to detection systems with multiple gates

and TCSPC.

Gerritsen et al. have shown that time gates (channels) of uneven

width can significantly improve the precision of fluorescence

lifetime imaging microscopy compared to a system that provides

the same number of time gates but with uniform width. The

demonstration that time gates of uneven width increase the F-

value in FLIM was obtained with Monte Carlo simulations over a

number of test partitions because analytical solutions are often

difficult or impossible to obtain [2]. These results have been

confirmed also by the analytical description of the F-value that has

been recently evaluated for two gates of uneven width [13].

Figure 1a shows the results of Monte Carlo simulations ran to

identify the time (rt) when the second time gate should start

provided that this time gate will close (at time T) before the next

laser pulse. The optimal value of r that minimizes the F-value

(,1.24) is ,1.58 (e.g., for a lifetime of 2 ns, the second time gate

should start at 3.16 ns). These values are practically identical to

those found analytically (Fbest = 1.25, r = 1.59; see Methods –

Optimal gates for two time gates system for details and Fig. 1a, black

circle) [13].

The photon partitioning theorem, however, permits to solve

optimization problems just by the analysis of the general properties

of Fisher information without requiring laborious Monte Carlo

simulations or analytical solutions. Figure 1b and c show the F-value

Biochemical Resolving Power of Microscopy
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curves obtained by the simple numerical maximization of the gain

function G and the linear regression between the estimated best

value of rt and the simulated value t, respectively. These data

permit to establish that the best F-value achievable for any value of

fluorescence lifetime is 1.24 and that the best position of the start of

the second time gate is at 1.59 times t. Notably, the numerical

maximization of the Fisher information gain provides, in less than

2 ms per tested lifetime, the very same results obtained with lengthy

Monte Carlo simulations (,3hours per simulated SNR) or with

laborious evaluations of an analytical solution. Moreover, analytical

solutions to find optimal gating with multiple time gates are unlikely

to exist; however, a simple optimization algorithm based on the non-

trivial Partitioning Corollary can find solutions very efficiently (,20 ms).

Figure 1d–e shows optimization of gating strategies performed with

either 4 or 8 gates, the number of gates often used in time-gating.

The blue curves show the performance of a standard even partition

of the period T in 4 (Fig. 1d) and 8 (Fig. 1e) gates and the black

curves demark the best performance that can be achieved by

TCPSC (e.g., with a full bin resolution on the arrival times histogram

equal to 256, method equivalent to detect photon counts onto 256

adjacent time gates of equal width). Red and green curves show the

F-value obtained by time-gates that are iteratively optimized with

maxpG pð ÞDGwC and minF pð Þ (optimization software is provided in

Supporting Material). Importantly, the gain of Fisher information is

optimized over a number of fluorescence lifetime values at the same

time (from 0.5 to 3.0 ns) permitting to obtain an optimal response

over a very broad range of possible experimental conditions.

Figure 1f shows the efficiency of each gating scheme relative to

TCSPC as expressed by the average value of the ratio

F{2
time{gating=F{2

TCSPC evaluated over the 0.5–3.0 ns range of

fluorescence lifetime values. A relative efficiency of 75% means

that the precision of the system is as if 25% of photons are lost and,

therefore, the system will have to increase the acquisition time of

0.7521 times in order to recover the same SNR compared to

TCSPC. Therefore, the numerical analysis of Fisher information

theory permit to evaluate which is the best performing and simplest

detection system that should be used for FLIM.

Optimization of Spectral Channels
Spectral detection is the detection of fluorescence over a

number of spectral channels. Detection can be achieved by i)

sequential imaging of fluorescence emission over a number of

spectral bands selected with filters or other devices (spectral

imaging), ii) simultaneous detection of fluorescence emitted over a

few spectral bands with the use of a number of photodetectors

(multi-colour or multi-spectral imaging) or iii) simultaneous

Figure 1. Optimization of time gates. A set of three typical Monte Carlo simulations (a) ran with different photon counts (cyan: 10,000, red: 1,000
and green 250) to evaluate the performance of the system (F-value) as a function of the position of a time gate for a two gate lifetime detection
system. The minima of the curves (the best performance) match the theoretical values. At low photon counts (green curve and arrow) the results
deviate by the others for high values of gate timings because of the presence of bias caused by too low photon counts in the second gate. The F-
value is also estimated numerically by the direct estimation of Fisher information (b). Here the blue curve is the same of panel a and it is plotted for
reference. c) The best position of the time gates (red circles in b and c) is also plotted as a function of the simulated fluorescence lifetimes (from 0.4
to 4.0 ns). The slope of the line identifies the best position of the second gate matching the predictions illustrated in panel a. Numerical optimization
of Fisher information for a system with 4 (d) and 8 (e) gates are also shown; the F -value for 4 or 8 gates is plotted for gates of equal width (blue), for
gates optimized by maxpG pð ÞDGwC (red) followed by minpF pð Þ (green) and for a reference partition over 256 time gates (black, representative of
TCSPC). The vertical lines delimit the regions within which the optimization algorithms were used. The time gating scheme is represented by the

boxes at the bottom of panels d and e. The efficiency of the optimization strategies relative to TCSPC F{2
n{gates=F{2

256{gates

� �
is also plotted versus the

number of gates (f) for gates of equal width (blue, ‘‘even gates’’), for gates optimized by maxpG pð ÞDGwC (red, ‘‘optimization’’) and then followed by
minpF pð Þ (green, ‘‘full optimization’’).
doi:10.1371/journal.pone.0077392.g001
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acquisition of spectral information using a spectrograph and an

array of detectors (hyper-spectral imaging). Nowadays, spectral,

multi-spectral and hyper-spectral imaging techniques are com-

mercially available with high-end laser scanning microscopes and

commonly used for spectral unmixing of many fluorophores.

Neher and Neher characterized the role of photon-statistics in

spectral imaging and discussed the Rao-Cramer limit that can be

achieved with two spectral channels [24]. At the best of our

knowledge, there are no other works that describe the role of

photon-statistics in spectral imaging for applications to fluores-

cence detection.

Figure 2a shows typical spectra representative of fluorophores

like EGFP and mCherry; these spectra were used to test

algorithms developed to optimize the performance of spectral

imaging. Optimization of spectral gating schemes (the assignment

of a specific spectral band to a detection channel) was performed

with 2 or 4 spectral gates and the resulting F-values (see Eq. (21) in

Methods) are shown in Fig. 2b and c, respectively. With well

separated spectra, spectral unmixing can achieve very high

precision (F?1) for a broad range of relative abundances. The

best partitions found with minpL pð ÞDLvC (red curve) and followed

by minpF pð Þ (green curve) are practically matching a spectral

system providing 256 spectral bins. This is also confirmed by the

relative efficiency of partitions of increasing channel number

F{2
n{gates=F{2

256{gates

� �
shown in Fig. 2d. With fluorophores

exhibiting much more overlapping spectra, e.g. EGFP and EYFP,

spectral unmixing deteriorates its performance, but optimization

of spectral channels permit to recover very high efficiency with few

(2–4) spectral channels (Fig. 2e–h).

Figure 3a–c shows true color images, i.e. red-green-blue

representations of how the sample would look like if seen at the

naked eye [9,25], of HeLa cells expressing EGFP-Actin (a), EYFP-

Tubulin (b) or both tagged cytoskeletal proteins (c). The total

photon count for the latter typical measurement is also shown in

Fig. 3d amounting to a few hundreds photons per pixel. The

results of spectral unmixing for a number of spectral gating

strategies with gates of equal width and the reference spectra of the

samples are shown in Fig. 3e–k. Figure 3h–j show images obtained

on the same data, but with spectral data binned together

accordingly to gating strategies with gates of uneven width

optimized by Fisher information analysis. The relative abundance

of actin and tubulin are shown in the green and red channel,

respectively, in a RGB overlay demonstrating good separation of

these two fluorophores. The images demonstrate improvement in

signal-to-noise ratios at increasing channel number (Fig. 3e–g) and

higher signal-to-noise ratio for all optimized detection schemes

(Fig. 3h–j). F-values were evaluated experimentally by repeating

the acquisition of the spectral data five times and analyzing it

independently in order to obtain standard deviations and F-values

on a pixel by pixel basis. The distribution of the F-values are

shown in Fig. S1 and the best F-values are shown in Fig. 3l

confirming better results for optimized gating strategies and trends

towards improved precision for higher number of detection

channels.

The Photon Partitioning Theorem and Multi-parametric
Detection

The photon partitioning theorem and its corollaries permit us to

predict that multi-parametric detection schemes that exploit the

various properties of light can attain higher signal to noise ratios

compared to detection schemes based on fewer detection channels.

This prediction was tested with Monte Carlo simulations for

hyper-spectral imaging (SPEC), for the combined detection of

photon arrival times and wavelength that can be achieved by

spectrally resolved FLIM [26] (SLIM) and for the simultaneous

resolution of photon arrival times, wavelength and polarization

state that can be achieved by Hyper Dimensional Imaging

Microscopy (HDIM). Monte Carlo simulations (see Methods for

details) were carried out with fluorophores exhibiting typical

fluorescence lifetimes (3.0 ns and 2.0 ns), intrinsic anisotropy (0.4

and 0.2), rotational correlation times (12 ns and 1.0 ns) and

spectral width (50 nm); simulations were performed with varying

difference between the spectral peaks of the two fluorophores

(from 0 nm to 20 nm) and central wavelength set to 550 nm. The

resulting Hyper Dimensional Spectral Signatures (HDSS) of the

two fluorophores, i.e. the spectrally and polarization resolved

decays, are shown in Fig. S2 (see also inset in Fig. 4b). Synthetic

images of 256 by 256 pixels were generated with photons

histogrammed on 2,048 channels: 2 polarization states (parallel/

orthogonal to excitation light), 16 spectral bins of equal width

covering the 440–630 nm range and 64 time gates of equal width

spanning 12.5 ns. These acquisition parameters were chosen to

match the properties of existing detection systems (see Methods for

details). Figure 4a illustrates how one axis of the synthetic images

was used to generate a linear gradient of the fractional abundances

of the two fluorophores, whilst the second axis was used to

generate 256 replicates that were used to estimate the precision of

the unmixing algorithms. Synthetic HDIM images were then

generated by using this abundance matrix and then adding

Poissonian noise in each simulated detection channel (250, 1000

and 10000 photons per pixel) in order to test the robustness of the

analysis at low, typical and very high photon count levels.

Figure 4b show the resulting intensity image in the presence of

Poisonian noise for the case where an average of 250 photons per

pixel was simulated. In order to compare analysis of HDIM data

with analyses of datasets representative of spectrally resolved

lifetime imaging and spectral imaging, photon counts from the

HDIM datasets were summed along the polarization and time

dimensions to generate appropriate datasets of lower dimension-

alities.

HDIM data analysis was carried out both over all 2,048

detection channels per pixel and with a data reduction algorithm

based on a generalization of phasor-based data analysis. For this

type of analysis, discrete cosine (DCT) and sine (DST) transfor-

mations were computed over only 2 spectral bands (440–540 nm

and 540–630 nm) similarly to Digman et al. [11], but for both

polarization states. DCT and DST were also computed along the

spectral dimension similarly to Fereidouni et al. [27]. Furthermore,

we generalized the phasor approach to multi-dimensional data by

applying two-dimensional DCT/DST along the combined spec-

tral/time dimension. This strategy resulted in Hyper Dimensional

Phasors (HDPH) that reduced HDIM dimensionality from 2,048

to 16 (see Text S3– Hyper Dimensional Phasors (HDPH)).

Data analysis was then carried out by spectral un-mixing. The

spectral un-mixing problem is described by Eq. (1) for the case of

an HDIM image (iHDIM) with abundances matrix A and the

matrix containing the endmembers signatures emHDSS:

iHDIM~emHDSS|Aznoise: ð1Þ

Similar equations can be written for SLIM, SPEC, and HDPH.

By the inversion of Eq. (1) in the presence of Poissonian noise (250,

1000 and 10000 photons per pixel), we estimated the accuracy and

precision of these various techniques (see Methods).

Figure 4c and d demonstrates the growing accuracy (lower bias)

and precision (lower noise) in the estimations of the abundances of
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the two fluorophores obtained with methods of increasing

dimensionality (SPEC, SLIM and HDIM/HDPH) at decreasing

spectral shift between two fluorophores. Bias was estimated by the

average difference between the simulated abundances and their

estimated values and noise was estimated by the spatially averaged

standard deviations computed over the 256 simulation repeats and

normalized by Poissonian noise
ffiffiffiffiffi
N
p� �

. The error bars represent

standard deviations across repeats at different Poissonian noise

levels (details on the definition of these figures of merits can be

found in Methods – figures of merit for accuracy and precision).

The validity of the photon partition theorem is illustrated by the

increasing precision at higher channel number. The addition of

detection channels along gradients established by the random

variables the experiment attempt to estimate increases the

information content of the measurements; therefore, the acquisi-

tion with a higher number of detection channels results in better

signal to noise ratios.

Biochemical Resolving Power and Fisher Information
We have shown that increasing the number of detection

channels also across different photophysical parameters results in

increased precision. Unmixing was used to demonstrate the

possibility to separate the contribution of two different character-

istic HDSS representative of two fluorophores or two biochem-

ical/photophysical environments. In analogy to the spatial

resolution in fluorescence microscopy, the resolution of biochem-

ical techniques is also limited by photon-statistics. We developed a

simple algorithm (see Supporting Material) that can determine the

F -value of unmixing for all possible detection modalities.

Figure 5a–e shows the results of this analysis applied to the same

HDSS used to generate Fig. 4. Figure 5c shows also the best F -

value for anisotropy imaging (4.37, green curve), FLIM (4.20,

dashed blue curve), time resolved anisotropy (2.99, dashed cyan

curve), spectral imaging (2.87, red curve), spectrally resolved

anisotropy (2.48, dashed yellow curve), SLIM (2.46, fuchsia curve)

and HDIM (2.18, black curve). How many photons are required

to resolve two different biochemical/photophysical signatures? If

Figure 2. Optimization of spectral channels. Spectra representative of fluorophores like EGFP and mCherry (a) or EGFP and EYFP (e) were used
to carry a numerical optimization of the spectral gating scheme as a function of the relative abundance of EGFP. Results are shown for a a system
with 2 (b and f) and 4 (c and g) adjacent spectral channels which relative positions were set equal (blue) or optimized numerically by minpL pð ÞDLwC
(red) and followed by minpF pð Þ (green) with optimization carried over the relative abundance range indicated by the vertical lines. The black curves
represent performance that could be achieved with hyperspectral detection over 256 spectral gates. The spectral gating scheme is represented by
the boxes at the bottom of panels b, c, f and g. The efficiency of the optimization strategies relative to hyperspectral detection achieved with 256

gates F{2
n{gates=F{2

256{gates

� �
is also plotted versus the number of gates (d and h).

doi:10.1371/journal.pone.0077392.g002

Biochemical Resolving Power of Microscopy

PLOS ONE | www.plosone.org 6 October 2013 | Volume 8 | Issue 10 | e77392



unmixing could achieve the ideal singal-to-noise ratio limited by

Poissonian noise, 400 photons would be sufficient to estimate

fluorophore abundances with 5% relative error
ffiffiffiffiffi
N
p� �

. For the

case shown in Fig. 5c, the F -value of FLIM at a relative

abundance ,50% is ,4.2. Therefore, the number of photons

needed to resolve the mixture of the two fluorophores is

,4.22?400,7,100. In the same conditions, spectral imaging

resolves the mixture with ,3,300 photons and HDIM, making

use of all available information, with just 1,900 photons. Although

we have demonstrated that increasing the number of channels

always increases the biochemical resolving power in fluorescence

microscopy, there are instances where simpler techniques can

achieve optimal results already. For instance, if two biochemical

environments exhibit a spectral shift of 20 nm, spectral imaging

(Fig. 5e, F -value , 1.71) resolves these two environments just with

,1,200 photons.

Therefore, the numerical analysis of Fisher information and the

study of its general properties provide a useful tool to maximize the

biochemical resolving power in fluorescence microscopy and to

select the best (and simplest) detection system to achieve this limit

efficiently.

Discussion

In this work, we demonstrate and exemplify the ‘‘photon

partitioning theorem’’ as a tool necessary to define and describe the

biochemical resolving power in fluorescence microscopy/spectros-

copy. The photon partitioning theorem and its corollaries permit

us to generalize the analysis of photon-statistics in fluorescence

detection and to demonstrate the gain in Fisher information that

can be attained theoretically. This provides theoretical tools of

significant practical importance (e.g., the definition and character-

ization of biochemical resolution and methods to optimize

detection systems) and also resolves a common misconception: as

several hundreds or thousands of photons are necessary to fit even

a simple fluorescence lifetime decay [1], the acquisition of data on

separate channels has often been considered unnecessary. More-

over, the detection of many features of light is sometimes even

considered impossible because of the long acquisition and analysis

times that may be required. These statements hold true only if

additional detection channels are acquired sequentially (as in a

multi-modal microscope) or if each detection channel is analyzed

independently from one another. However, whenever acquisition

channels are operated in parallel [8,9] data can be acquired at the

same speed (or faster) because photons are not lost through the use

of filters or analyzers (see Text S1- Costs and photon-losses: case

studies). Furthermore, a net gain in Fisher information results in

higher signal-to-noise ratios whenever data are not analyzed

channel-by-channel but in global approaches [28,29], as implicitly

done in the applications shown in this work.

We have dedicated sections of this work to the description of

practical constrains on achieving the theoretical maxima in Fisher

information. In practice, the addition of a detection channel is

carried out at a certain ‘‘cost’’. This cost can be represented by

photon-losses in the coupling optics, design complexity, additional

read-out noise, or even budget. However, it is important to

distinguish between the theoretical limits imposed by physics

(described here) and the practical limitations of state-of-the-art

Figure 3. Spectral unmixing of fluorescent proteins. True color images of cells expressing EGFP-Actin (a), EYFP-Tubulin (b), both proteins (c)
and total photon count per pixel (d) for the latter. Spectral unmixing was used for different gating schemes (e–j) for gates of even width with 3 (e), 9
(f) and 34 (g) gates and for optimized gates of 2 (h), 4 (i) and 8 (j) gates. The spectra gating scheme is displayed at the bottom of the panels with the
reference spectra (k) overlaid for comparison. In green the signal recovered for GFP-Actin and in red the signal estimated for YFP-Tubulin. The
comparison of the best achievable F-values measured experimentally demonstrate the positive impact of gating optimization and the trend to
provide more precise results at increasing channel number (l).
doi:10.1371/journal.pone.0077392.g003
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technologies. Current HDIM detection systems do suffer losses, for

instance, from the coupling and from the masks between adjacent

anodes. However, single photon detection [30], new designs of

dispersive optics [9] and novel solid state detectors [31,32] – once

integrated – will be capable of achieving or approaching the

theoretical limits described by the photon partitioning theorem.

In this work, we have been concerned with the description of

theoretical aspects of multi-channel and multi-parametric detec-

tion and with the validation of the theory by Monte Carlo

simulations. Furthermore, we have demonstrated the practical

application of the theory for the particular case of spectral

imaging, a technique nowadays available and used in many

laboratories. In order to make the advantages of these theoretical

frameworks accessible, software can be found in the supporting

information. These algorithms can be used to find the minimal

number of detection channels that optimize fluorescence detection

for FLIM or spectral imaging. Furthermore, provided that HDSSs

are known experimentally or can be modeled theoretically, the

best detection scheme including spectral, lifetime and anisotropy

resolution can be identified. In general, Hyper-dimensional

imaging microscopy will achieve the best results; however,

whenever the gradient La=Lx is significantly steeper along one

photophysical property (e.g., fluorescence lifetime, emission spec-

trum or polarization), simpler detection techniques may achieve or

approximate the theoretical best performances. We note that

fluorescence detection can be achieved with sequential excitation

at different wavelengths [9,33]; although this case was not treated

explicitly in this work, sequential measurements with excitation at

a different wavelength can be regarded as independent detection

channels and, therefore, the theory and software presented can be

applied also on this type of data.

Conclusions

Over the last decade, much emphasis has been placed on

methodologies and technologies that increase the spatial resolution

of fluorescence microscopy. With this work, we aim to highlight

that affordable implementations of novel detection schemes can

boost the resolving power of modern microscopes in terms of

physico-chemical or biochemical detection as well. The increased

resolving power and capability to discern biochemical environ-

ments with spatio-temporal resolution together promise funda-

mental tools for applications in biophotonics, biophysics, systems

biology and biomedical research.

Methods

Sample Preparation and Imaging
HeLa cells were transfected with EGFP-actin and EYFP-tubulin

with Effectene (Qiagen) according to the protocol provided by the

suppliers. Cells were fixed after 24–48 hrs with 5% PFA and kept

in PBS. Spectral imaging was performed with a Leica SP5

equipped with a hybrid PMT operated in single photon counting

mode.

Simulations
Simulations were performed with Matlab (MathWorks, Cam-

bridge, UK) on a workstation equipped with an Intel Xeon X5647

CPU and 24 GB of RAM. Images of 256 by 256 pixels were

generated with photons partitioned (i.e., histogrammed) on 2,048

channels. Synthetic images included 64 time gates spanning

12.5 ns, 16 spectral windows covering 440–630 nm and 2

polarization states (parallel/orthogonal to excitation light). These

values were selected to match the properties of HDIM datasets

that can be acquired with commercially available instrumentation

(e.g., two spectral FLIM systems by Becker and Hickl GmbH

(Berlin, DL) coupled with a polarizer beam splitter, unpublished

data). HDSSs were modeled with gamma functions and polariza-

tion-dependent exponential decays [17] as shown in Fig. S2.

Synthetic HDIM images were then generated by using the

abundance matrix shown in Fig. 4 and then adding Poissonian

noise in each simulated detection channel (250, 1000 and 10000

photons per pixel). One simulation was carried out with both

fluorophores exhibiting spectral full width at half maximum of

Figure 4. Accuracy and precision of unmixing based on hyper-
spectral imaging (SPEC), spectrally resolved FLIM (SLIM) and
HDIM. HDIM data was also analyzed with a generalized phasor
transform (Hyper-dimensional Phasors, or HDPH). A linear gradient (a)
of relative fractional contribution of two fluorophores was used to mix
the optical signatures shown in Fig. S1 and illustrated in the inset of
panel b. Simulations were carried out in the presence of Poissonian
noise with expected count per pixel equal to 250 (shown in b), 1,000
and 10,000 photons. The difference between the simulated fractional
contributions and the values estimated by spectral unmixing was used
to compute the bias of various techniques (c). The vertical direction of
these synthetic images was used to estimate statistical errors caused by
Poissonian noise and, therefore, the precision of the analysis techniques
(d). Accuracy and precision are shown for fluorophores with spectral
peaks at various spectral shifts from each other (0 nm, 5 nm, 10 nm,
15 nm and 20 nm) around the central wavelength of 550 nm. The error
bars in panel (c–d) show standard deviations computed across
simulations at different noise photon count levels.
doi:10.1371/journal.pone.0077392.g004
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50 nm and peak wavelength of 500 nm. The other photophysical

properties of the two simulated fluorophores were: fluorescence

lifetime of 3.0 ns and 2.0 ns, rotational correlation time of 12.0 ns

and 1.0 ns, and limiting anisotropy of 0.4 and 0.2, respectively.

Subsequent simulations were carried out keeping all spectral

properties of the two fluorophores unaltered but shifting their peak

wavelengths of 2.5 nm, 5.0 nm, 7.5 nm and 10.0 nm around the

central wavelength of 500 nm, towards lower and higher

wavelengths, respectively. Spectral and SLIM images were

generated simply by binning all photons along the time and

polarization dimensions and only the polarization dimension,

respectively.

The typical solution of the unmixing problem (see Eq. (1)) was

achieved by unconstrained least squares and non-negative least

squares, although at a higher dimensionality compared to hyper-

spectral imaging. Results from unconstrained least squares are

shown because the latter did not show better performances on

synthetic data. In Eq. (1), iHDIM is a 2,048665,563 (channel

number 6 pixel number) matrix, emHDSS is a 2,04862 (channel

number 6 number of fluorophores) matrix and A is a vector of 2

numbers representing the relative concentrations of the two

fluorophores. The two endmembers of the unmixing problem are

the HDSS of the two fluorophores concatenated in the end-

member matrix emHDSS. These two endmembers were estimated

from the synthetic data by the first and last row of the dataset (see

Fig. 4a) where fractional abundances were known to be equal to 1

and 0.

Figures of Merit for Accuracy and Precision
A figure of merit for accuracy (Fig. 4c) was defined as the

average of the differences between the values of the fractional

contributions of a reference fluorphore ( f̂f ) and its respective

estimated value ( f ): FoMa~S f̂f x,yð Þ{f x,yð ÞTx,y. Each x-th

column of the simulated gradients (Fig. 4a) contains 256 repeats of

the same simulation; it was thus used to estimate the variance s2
x

on the estimation of the fractional contribution. A figure of merit

of precision (Fig. 4d) was therefore defined as the average standard

deviation across the gradient normalized by Poissonian noise

1=
ffiffiffiffiffi
N
p� �

: FoMp~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NSs2

xTx

p
. Where N is the total photon count

per pixel and s2
x is defined by the following equation:

s2
x~S f x,yð Þ2Ty{S f x,yð ÞT2

y.

Proof of Photon Partitioning Theorem
Because fluorescence emission is a Poissonian process, if Gi is the

expected count, the probability pi to count ni photons in the i-th

channel is:

pi qð Þ~ G
ni
i xð Þe{Gi xð Þ

ni!
: ð2Þ

Gi represents the expected photon counts in the i-th channel; Gi

is the integral of g x,~ssð Þ, the photon-detection probability; g

depends on various spectral coordinates (~ss) and the parameter x:

Gi xð Þ~
ð~ssiz1

~ssi

g x,~ssð Þd~ss: ð3Þ

Here, x denotes the generic quantity we are interested to

estimate. Therefore, the likelihood and the log-likelihood of the

detection process over m independent channels are:

L ~nn,xð Þ~Pm
i~1

G
ni
i xð Þe{Gi xð Þ

ni!
, ð4aÞ

Figure 5. Biochemical resolving power. Panels a–e show the numerical estimations of the F-value of the same optical signatures used in Fig. 4 at
increasing spectral shift for FLIM (dashed blue curve), spectral imaging (red), anisotropy imaging (green), SLIM (fuchsia), time resolved anisotropy
(dashed cyan curve), spectrally resolved anisotropy (dashed yellow curve) and HDIM (black). Spectral imaging does not achieve F-values in the
regions plotted in panel a and b because of the small spectral shifts considered (0 nm and 5 nm, respectively). Panel c shows also the minimum
F -values for each technique: e.g., with ,2.18, HDIM unmixed the signatures of the two fluorophores with a relative error of ,5% if at least 1,900
photons/pixel are collected. Spectral imaging alone requires ,(2.87/2.18)2 times more photons (,3,300) to achieve the same result.
doi:10.1371/journal.pone.0077392.g005

Biochemical Resolving Power of Microscopy

PLOS ONE | www.plosone.org 9 October 2013 | Volume 8 | Issue 10 | e77392



logL ~nn,xð Þ~

{
Xm

i~1
log ni!z

Xm

i~1
ni log Gi xð Þ{

Xm

i~1
Gi xð Þ:

ð4bÞ

Under basic assumptions of regularity and differentiability, the

analytical representation of the Fisher information can be obtained

computing the negative of the expectation of the second derivative

of the log-likelihood that describes the experiment:

I xð Þ~{E
L2

Lx2
logL ~nn,xð Þ

" #
: ð5Þ

Functions that describe the fluorescence emission of fluoro-

phores at room temperature are regular and smooth, thus this

identity can be considered always true. Therefore, it is simple to

show that:

L
Lx

logL ~nn,xð Þ~
Xm

i~1
ni

1

Gi xð Þ
LGi xð Þ

Lx
{
Xm

i~1

LGi xð Þ
Lx

: ð6Þ

From this follows that:

L2

Lx2
logL ~nn,xð Þ~{

Xm

i~1
ni

1

G2
i xð Þ

LGi xð Þ
Lx

� �2

z
Xm

i~1

L2Gi xð Þ
Lx2

ni
1

Gi xð Þ{1

� �
:

ð7Þ

Because the expectation of E nið Þ~Gi xð Þ, the Fisher informa-

tion in fluorescence detection is described by Eq. (8):

I xð Þ~
Xm

i~1

1

Gi xð Þ
LGi xð Þ

Lx

� �2

: ð8Þ

In order to show that the Fisher information increases with the

addition of photon counting channels, let p’ be a finer partition of

N photons relative to p. If we demonstrated that the partition of

one channel into two independent noiseless channels generally

result into an increase in Fisher information, then this will be true

for more complex finer partitions. Let partition only one channel

of the partition p into two independent noiseless channels (i.e.,

m’ = m+1). It is also convenient to define the function a x,~ssð Þ, the

photon partitioning function, that will describe the fraction of Gm

photons that will be counted in the new channel G’m:

a x,~ssð Þ~

ð~ssm

~ssm{1

g x,~ssð Þd~ss
ð~ssmz1

~ssm{1

g x,~ssð Þd~ss
: ð9Þ

Therefore, the Fisher information carried by the two new

detection channels will be equal to:

I ’m xð ÞzI ’mz1 xð Þ

~
1

aGm

L
Lx

aGmð Þ
� �2

z
1

1{að ÞGm

L
Lx

1{að ÞGmð Þ
� �2

~

Gm

a 1{að Þ
La

Lx

	 
2

z
1

Gm

LGm

Lx

	 
2

[

I ’m xð ÞzI ’mz1 xð Þ~Im xð Þz Gm

a 1{að Þ
La

Lx

	 
2

: ð10Þ

Therefore, inasmuch as the second addendum in Eq. (10) is

always positive or null, we have proven that partitioning the m-th

channel of p into two channels, the Fisher information theory

increases or remain equal. This is applicable for any other i-th

channel. Therefore, for any given finer partition, the Fisher

information will be larger or equal to the Fisher information

related to p:

I ’ xð Þ§I xð Þ ð11Þ

Proof of the Non-trivial Partitioning Corollary
Theoretically, detection channels with different (hyper) spectral

characteristics can be combined to generate a large number of

possible partitions of photons collected in any given experiment.

The trivial duplication of a channel will not increase the Fisher

information. A finer partition p’ of N m’wmð Þ for which I ’ xð Þ is

strictly greater than I xð Þ will be called non-trivial as it will increase

the information content of the experiment on the unknown x.

Provided a partitioning function a x,~ssð Þ with values bound in (0,1)

such that the two new detection channels will count aGi and

1{að ÞGi, respectively, it is possible to infer the following necessary

and sufficient condition from Eqs. (10):

DI xð Þ~ Gi

a 1{að Þ
La

Lx

	 
2

w0u
La

Lx
=0: ð12Þ

We note that the mere duplication of a channel is trivial by

definition and exhibit null derivative of the partitioning function

therefore resulting in no gain of information.

Partitioning Function: An Example
Although the partitioning function has such a fundamental role

in the optimization of detection schemes, we have demonstrated

that optimization can be achieved without analytical solutions, but

simply applying the general principles described by the photon

partitioning theorem and its corollaries. However, it is instructive

to analyze the partitioning functions for the simple case of

fluorescence lifetime detection in the case that the random variable

x is the fluorescence lifetime (t) of the fluorophore. Let’s consider

two time gates delimited by the relative times t1.t2.t3. In this

case, the only spectral property considered for the partitioning is

time and the vector~ssi is simply a number equal to t2, the common

boundary of the two gates. The photon counts in each time gates

are simply the integrals of exponential functions and the
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partitioning function (i.e., the fraction of photons detected within t1
and t2 over the total photons detected within t1 and t3) is:

a t,t2ð Þ~ e{t1=t{e{t2=t

e{t1=t{e{t3=t
: ð13Þ

The derivative of a t,t2ð Þ is clearly defined and continuous for

tw0 and t3.t1, conditions always true. In fluorescence detection

at room temperature, spectra, anisotropy and lifetime decays are

always represented by smooth and continue functions and,

therefore, partitioning functions are always defined.

Proof of Photon-efficiency Corollary
The Fisher information is the inverse of the Rao-Cramer limit

on the variance of an unbiased estimator. It is therefore rather

trivial to demonstrate that for any non-trivial partitioning the

following inequality holds:

s’2xvs2
x: ð14Þ

This implies that with an increasing number of independent

non-trivial noiseless channels the estimate of the unknown will be

measured with decreasing uncertainty. We can therefore gener-

alize the concept of photon-economy (or photon-efficiency) that

has been described for fluorescence lifetime imaging microscopy

[2]. The signal-to-noise ratio with which is possible to estimate x

increases with the non-trivial addition of detection channels. This

can be described by the F-value, F~sxx{1
ffiffiffiffiffi
N
p

, i.e. the ratio

between the relative error sxx{1
� �

that affects the estimate of x

compared to Poissonian noise 1=
ffiffiffiffiffi
N
p� �

. It is rather immediate to

show that when s’2xvs2
x, F ’vF . Furthermore, a definition of

photon-efficiency is p~F{1=2 [3]. For instance, if F = 1, p = 1 and

the SNR sxx{1
� �

in x is the same defined by Poissonian noiseffiffiffiffiffi
N
p� �

; if F = 2, p = 0.25 and the SNR in x twice as large than
ffiffiffiffiffi
N
p

.

In order to recover the same SNR, four times the number of

photon should be detectec and, therefore it is as if 75% of photons

were lost (the photon-efficiency is equal to 0.25). Therefore, when

s’2xvs2
x, p’ .p.

Proof of Separability and Resolving Power Corollary
It is difficult to establish a general criterion for the resolution of

biochemical techniques. In practical cases, however, biochemical

systems are characterized by a parameter x. This parameter may

be FRET efficiency, the fraction of interacting molecules, an

enzymatic activity, etc. The distance between two biochemical

systems can be therefore quantified by the Euclidian distance

between the two values of x: m = |x12x2|. We can thus define the

separability of two biochemical signatures by:

S~m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

1zs2
2

q
: ð15Þ

For non-trivial partitions of higher channel densities, both the

uncertainties s’1 and s’2 will be smaller or equal than s1 and s2,

therefore, the separability of the detection system tend to increase,

i.e., S ’$S. S can be used as a robust metric for the biochemical

resolving power in fluorescence detection. However, it is possible

to apply the typical criteria used to define the spatial resolution in

microscopy. In the approximation of normal distributions, the

Rayleigh criterion correspond to a separability S = 2 and with N

photons measured for both x1 and x2 (assumption inherent in the

Rayleigh criterion). Therefore, the smallest difference Dx that can

be resolved around the value x = x0 can be evaluated by

substituting in Eq. (15) x1, x2, s1 =s2 =s0 (assumption inherent

in the Rayleigh criterion) with x0+Dx/2, x0–Dx/2 and F0x0=
ffiffiffiffiffi
N
p

,

respectively, and solving for Dx: Dx~2
ffiffiffi
2
p

x0=
ffiffiffiffiffi
N
p

. This definition

can be written in a more elegant form, using the photon-efficiency

p:

Dx~

ffiffiffiffiffiffiffi
8

pN

s
x0: ð16Þ

At the net of its spatial resolution, the biochemical/photo-

physical resolving power (x0/Dx) of a fluorescence microscope is

thus:

R~

ffiffiffiffiffiffiffi
pN

8

r
: ð17Þ

As we have demonstrated that for a non-trivial partitioning

of channels increases the photon-efficiency of a detection system

(p’ .p), it implies that the non-trivial partitioning of channels

improves the biochemical/photophysical resolution Dx’vDxð Þ
and resolving power (R’.R) of fluorescence microscopy. For the

effect of the instrument response function of an instrument, see

Text S2– Biochemical Resolving Power.

Optimal Gates for Two Time Gates System: Analytical
Solution

Li et al. have evaluated the analytical description of the F-value

for a time gated system with two time gates of uneven width [13].

For simplicity, we will consider the analytical solution for two

adjacent (non-overlapping) time gates only and redefine the

parameters x, S and R in Eq. (2) in Li et al. [13] substituting

x~e{r, S = 0 (i.e., non-overlapping gates), R~T=rt (i.e., the

second gate ends at the laser period T and starts at time rt). Eq. (2)

in Li et al. [13] is already an approximated analytical solution (see

appendix in [13]), but for further simplicity we can compute

solutions for values of T large enough T&tð Þ to avoid significant

number of photons to be collected in subsequent laser pulses:

FRLD{uneven rð Þ&r{1er
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{e{rð Þe{r

p
: ð18Þ

Therefore, by a simple derivation of Eq. (18), it is possible to

prove that the best (i.e., its minimum) value for FRLD{uneven is 1.24

for r~1:59.

Optimal Gates for Two Time Gates System: Monte Carlo
Simulations

Mono-exponential fluorescence decays with t= 2 ns and 250,

1000 and 10000 photon/pixel were simulated, in the presence of

Poissonian noise, to find the optimal configuration of a two time

gates based system with uneven gate width. The time range

between 0–50 ns was used in order to include all photons emitted

by the simulated fluorophores. Simulated photon counts were

binned into two gates and the F-value was estimated using 15,000
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replicates of the simulation in order to estimate the precision of the

technique. The beginning of the second time gate was scanned

from 0 to 10 ns in 0.05 ns steps. The best F-value for all three

photon-count levels was 1.24 at 1.59t.

Numerical Optimization of Fisher Information
In order to optimize Fisher information, it is possible to

implement numerical iterative strategies that maximize the gain of

Fisher information when creating a denser partition of detection

channels. The Rao-Cramer lower bound for the precision of a

measurement for a given partition is s2
0~I{1

0 . As the number of

channels is increased, the new lower limit is

s2~ I0zDIð Þ{1*s2
0{s4

0DI , where the approximation is pro-

vided by the zeroth and first elements of the Taylor series; the gain

of information DIð Þ can be evaluated numerically by

Gi a 1{að Þ½ �{1 Dað Þ2 Dxð Þ{2
. The addition of a channel may

introduce noise s2
C

� �
: s2
C can be either considered a generic cost, a

numerical tolerance or it can represent actual noise (e.g., a photon-

loss, read-out noise, dark counts) introduced when adding a

detection channel. Therefore, iterative algorithms for the numer-

ical optimization of partitions can impose the requirement

G~ a 1{að Þ½ �{1 Dað Þ2 Dxð Þ{2
ws2

Cs
{2
0 G{1

i to allow a channel

being partitioned into two new channels. s2
0 cannot be always

evaluated, but its lower limit is necessarily Poissonian noise, i.e. Gi.

Therefore, it is convenient to apply a stronger constrain to the

numerical optimization by using the condition GwC with

C~s2
CG

{2
i . The interpretation of the cost is straightforward, but

it will be different for different applications (see also Material S1–
Costs and photon-losses: case studies). For instance, if a

single photon counting system is used, with maximum photon

count rate (MCR) and a dark count rate (DCR), C is equal to

(DCR/MCR)N21, where N is the total count measurable in a given

amount of time. For a typical system with DCR,1 kHz,

MCR,1 MHz and considering 100 photons counted, C*10{5.

The numerical factor G was defined for the case in which photons

initially detected by one channel are then partitioned into two

channels one counting a fraction of photons and the second

counting the fraction 1{a. In this case, an iterative algorithm

using the criterion maxpG pð ÞDGwC can be used. The same

algorithms can be used to evaluate the loss of information L
when merging two channels L~{Gð Þ, thus using the criterion

minpL pð ÞDLvC to search for the best detection system. The

software provided in Supplementary Material relies on the

numerical maximization Fisher information by the analysis of G
for time gating (Fig. 1) and by the analysis of L for spectral gating

in order to offer examples and useful tools to optimize FLIM and

spectral imaging with these bottom-up (increasing channel

number) and top-down (decreasing channel number) strategies.

Fisher information was evaluated numerically using directly Eq.

(8). Substituting Gi with fiN, where fi is the fraction of total photon

number (N) detected by the i-th channel, it is simple to show that

the F-value can be evaluated numerically and minimized using the

factor F~x{1Dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i

f {1
i Dfið Þ2

r
. Optimization strategies with

the direct minimization of F would be computationally expensive.

Therefore, a second iterative algorithm that minimizes F was used

only when the optimal number of detection channels was found

maximizing G or L by the use of the criterion minPF pð Þ.
Contrary to the direct application of the photon partitioning

theorem and its corollaries, the optimization of F is not always

straightforward.

For instance, in the case of spectral imaging, the relative fraction

of one fluorophore depends on the abundances of both

fluorophores. In this case, the Fisher information is a matrix and

its numerical evaluation can be carried out as:

I x1,x2ð Þ~
I1 I12

I21 I2

" #

~
X

i

x1G1izx2G2ið Þ{1
G2

1i G1iG2i

G2iG1i G2
2i

" #
:

ð19Þ

Inverting the Fisher information matrix permits to find the

covariance matrix:

COV x1,x2ð Þ

~
s1 s12

s21 s2

" #
~ I1I2{I2

12

� �{1 I2 {I12

{I12 I1

" #
:
ð20Þ

Many figure of merits can be defined to evaluate the combined

error on the estimation of the relative abundances; for the sake of

example, the software we provide uses the average of relative

errors:

F x1,x2ð Þ~ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I1I2{I2

12

� �{1 I2

x2
1

z
I1

x2
2

	 
s
: ð21Þ

Supporting Information

Figure S1 Spectral unmixing of spectrally overlapping fluores-

cent proteins. Spectral unmixing on images of cells expressing

EGFP-Actin and EYFP-Tubulin is described in the main text and

in Figure 4.

(DOCX)

Figure S2 Hyper Dimensional Spectral Signatures of two

synthetic fluorophores peaked at 540 nm, 560 nm and their

sum. These HDSS have been used to test unmixing algorithms (see

Figs. 4 and 5).

(DOCX)

Text S1 Costs and photon-losses: case studies. A review of

photon losses in optical relay systems.

(DOCX)

Text S2 Biochemical Resolving Power. The definition of

biochemical resolving power.

(DOCX)

Text S3 Hyper Dimensional Phasors (HDPH). The definition of

phasors used to analyse the data.

(DOCX)

Material S1 Matlab code for Fisher information analysis. The

zipped folders contain three subfolders with software designed to

optimize Fisher information numerically, making use of the

photon partitioning theorem and its corollaries: N fpt_flim_fig1

provides examples of optimization of time gates for FLIM. This

software was used to generate some of the panels in Fig. 1. Run

fpt_optimize_time_gates.m to find the best partition. N fpt_spec_fig2

provides examples of optimization of spectral gates for spectral
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imaging. This software was used to generate some of the panels in

Fig. 2. Run fpt_optimize_spectral_gates.m to find the best partition.

N fpt_check_dimensionality_fig5 provides example of optimization for a

generic system. It accepts two HDSSs as an input and it will

provide Fisher information analysis for systems capable of

fluorescence lifetime, spectral and anisotropy detection and all

combinations of these techniques. Run fpt_check_dimensionality.m to

find the best detection system to separate two optical signatures.

This code was used to generate Fig. 5.

(ZIP)
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