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Abstract
Understanding global gene regulation depends critically on accurate annotation of regula-

tory elements that are functional in a given cell type. CENTIPEDE, a powerful, probabilistic

framework for identifying transcription factor binding sites from tissue-specific DNase I

cleavage patterns and genomic sequence content, leverages the hypersensitivity of factor-

bound chromatin and the information in the DNase I spatial cleavage profile characteristic

of each DNA binding protein to accurately infer functional factor binding sites. However, the

model for the spatial profile in this framework fails to account for the substantial variation in

the DNase I cleavage profiles across different binding sites. Neither does it account for vari-

ation in the profiles at the same binding site across multiple replicate DNase I experiments,

which are increasingly available. In this work, we introduce new methods, based on multi-

scale models for inhomogeneous Poisson processes, to account for such variation in

DNase I cleavage patterns both within and across binding sites. These models account for

the spatial structure in the heterogeneity in DNase I cleavage patterns for each factor.

Using DNase-seq measurements assayed in a lymphoblastoid cell line, we demonstrate

the improved performance of this model for several transcription factors by comparing

against the Chip-seq peaks for those factors. Finally, we explore the effects of DNase I

sequence bias on inference of factor binding using a simple extension to our framework that

allows for a more flexible background model. The proposed model can also be easily

applied to paired-end ATAC-seq and DNase-seq data. msCentipede, a Python implementa-

tion of our algorithm, is available at http://rajanil.github.io/msCentipede.
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Introduction
A central challenge in modern genomics is the accurate identification of all the regulatory
sequences that are active in a given cell type and a description of the mechanisms by which
they regulate gene expression. One key mechanism is by recruiting transcription factors which
bind to the DNA at characteristic nucleotide sequences. Chromatin immunoprecipitation fol-
lowed by sequencing (ChIP-seq) provides a direct measurement of DNA sequences bound by
transcription factors (either directly or through a co-factor); however, each ChIP-seq experi-
ment provides information for only one transcription factor at a time. DNase-seq [1, 2] pro-
vides an indirect measurement of active regulatory sequences by exploiting the increased
sensitivity of nucleosome-depleted chromatin to DNase I enzyme. While DNase-seq provides
information on the active regulatory regions in the genome, identifying which transcription
factors are bound to these regions and their organization requires statistical modelling of the
spatial structure in DNase sensitivity in active regulatory regions [3–7].

Pique-Regi et al. [3] introduced a probabilistic framework to infer sequence motif instances
that are bound by transcription factors, by combining sequence information with the informa-
tion in DNase I cleavage patterns measured from DNase-seq assays. The model, CENTIPEDE,
relies on two observations: (1) chromatin around motif instances bound by transcription fac-
tors typically has higher DNase I sensitivity than chromatin around unbound motif instances,
and (2) each transcription factor has a characteristic DNase I cleavage profile around bound
motif instances. Based on these observations, given a putative bound motif instance, CENTI-
PEDE models the number of reads mapped to each base pair along a window around the motif
site as a mixture of two components (bound vs unbound), and infers the probability that each
site is bound. Specifically, conditional on being bound (or unbound), CENTIPEDE models (1)
the total number of DNase-seq reads using a negative binomial distribution, and (2) DNase-
seq read counts along a window, conditional on the total number of reads, using a multinomial
distribution, with independent sets of parameters for bound and unbound sites.

A limitation of the CENTIPEDE model is that it ignores variation in binding profiles across
sites: it assumes that, given enough number of reads, the DNase I read count profiles would be
the same at all bound sites, and that any variation in observed count profiles is due to multino-
mial sampling error from finite sequence coverage. However, in practice we have observed that
read count profiles often have excess variation across factor-bound genomic locations and
across replicate DNase-seq measurements compared with a multinomial model. Based on this,
we hypothesized that improved modeling of this variation would improve predictions of tran-
scription factor binding, particularly when multiple replicate DNase-seq datasets are available.
Furthermore, when multiple replicate DNase-seq measurements are available for the same cell
type, CENTIPEDE has often been applied after pooling replicates. If there is substantial hetero-
geneity between replicates, then pooling replicates tends to introduce more variation in the
read count profiles, exacerbating the limitation of the multinomial model in this framework.
The increasing availability of such replicate data [8] make improved performance in this setting
particularly desirable.

Fig 1 illustrates the excess variation in read count profiles noted above. The figure compares
the distribution of the observed proportion of reads mapping to each half of a genomic window
around each motif instance with its expectations under a multinomial sampling model (see S1
Methods for details). The distribution of observed (‘true’) proportions clearly exhibits a higher
variance than expected under the multinomial model, demonstrating that multinomial sam-
pling variation is insufficient to model the variation in read profiles across factor-bound geno-
mic sites. Analagous plots at finer scales (smaller windows) show similar evidence for
overdispersion (not shown).

msCentipede: Inferring Transcription Factor Binding

PLOS ONE | DOI:10.1371/journal.pone.0138030 September 25, 2015 2 / 15

Competing Interests: The authors have declared
that no competing interests exist.



Motivated by these observations, we have developed methods to better model heterogeneity
in the read profiles across genomic locations and across replicate measurements of chromatin
accessibility. Our methods are based on extending recent work using multi-scale methods for
analyses of high-throughput sequencing data [9, 10]. A key feature of these multi-scale meth-
ods is that they allow for spatial structure in the heterogeneity across sites, with different
amounts of variation at each spatial scale, and automatic identification of relevant scales during
inference.

In addition to modelling heterogeneity among sites, the multi-scale methods provide a sim-
ple way to model the background cleavage model for DNase I. We have also implemented a
flexible background model, and explored the improvement in performance when DNase-seq
data from naked DNA are available to estimate its parameters.

Methods and Data
Suppose we have S replicate DNase-seq measurements for a particular cell type or experimental
condition. Consider a genomic window (site) of length L centered around each of N putative
binding motifs, with L assumed to be a power of 2 (L = 2J). Let Xn = (Xn,1, . . ., Xn,S), where

Xn;s ¼ ðXn;s
l ÞLl¼1 is the sequence of read counts in the nth site for the sth replicate and Xn;s

l is read
count at lth base pair in the site. Let Zn denote a binary indicator for whether the nth site is

Fig 1. Illustration that DNase I cleavage profiles exhibit excess variation compared with a multinomial
model. For a set of 1000 SP1 motif instances with high ChIP-seq signal, we computed, for a 100bp window
around each motif instance, the ratio of number of DNase I cuts mapped to the left half of the window to the
number of DNase I cuts mapped to the entire window. The histogram of these ‘observed ratios’ is shown in
orange. Under a multinomial model the number of reads mapping to each half of the window should have a
binomial distribution, and we used this fact to simulate ‘expected ratios’ (gray line); see S1 Methods for more
details. The observed ratios are clearly overdispersed compared with the expectation under a multinomial
model.

doi:10.1371/journal.pone.0138030.g001
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bound (Zn = 1). Following the model in CENTIPEDE [3], a mixture model at the nth site can
be written as

PðXnÞ ¼ PðXnjZn ¼ 1ÞPðZn ¼ 1Þ þ PðXnjZn ¼ 0ÞPðZn ¼ 0Þ; ð1Þ
where

PðXnjZn ¼ zÞ ¼
YS

s¼1

PðXn;sjZn ¼ zÞ for z ¼ 0; 1 ð2Þ

and the mixing proportion P(Zn = 1) = zn is modeled as a logistic function of genomic informa-
tion (e.g. motif position weight matrix score and motif sequence conservation score). Note that
Eq (2) treats the S replicates for each site as independent given the bound/unbound status Zn.
In the following sections, we first detail our model for one replicate (here we drop the super-
script s) and then describe its extension to multiple replicates.

msCentipede model at bound motifs
Wemodeled the profile of read counts at the nth site Xn conditional on Zn = 1 using a Poisson
model: Xn

l � Poisðmn
l Þ for l = 1, . . ., L. We allowed the mean read profile mn ¼ ðmn

1; . . . ; m
n
LÞ to

vary across sites by using a hierarchical version of the multi-scale model for inhomogeneous
Poisson processes introduced by Kolaczyk [11], and Timmermann and Nowak [12].

To introduce the ideas behind the multi-scale model, consider a single site with parameter
vector μ = (μ1, . . ., μL) (so drop the superscript

n for simplicity). The key idea behind multi-
scale Poisson models is to reparameterize this model in terms of parameters that capture spatial

variation in μ at multiple scales, as follows. Let ½mþ�ba denote the sum
Pb

j¼a mj. At the “zeroth”

scale, define a single intensity parameter λ0 that captures the total intensity in the region

l0 :¼ ½mþ�L1 ð3Þ

At the first scale define a single parameter that captures the relative intensity in the first half of
the region vs the entire region:

p11 ¼
½mþ�L=21

½mþ�L1
: ð4Þ

At the second scale, define two parameters: one that captures the relative intensity in the first
quarter of the region vs the first half; and one that captures the relative intensity in the third
quarter vs the second half.

p21 ¼
½mþ�L=41

½mþ�L=21

; p22 ¼
½mþ�3L=4L=2þ1

½mþ�LL=2þ1

: ð5Þ

At the third scale there are four parameters p31, . . ., p34 that similarly capture the relative inten-
sity of an eighth of the region vs each quarter. This continues up to the Jth scale (where recall J
= log2(L)), in which there are L/2 = 2J−1 parameters of the form

pJ1 ¼ m1=ðm1 þ m2Þ; pJ2 ¼ m3=ðm3 þ m4Þ; � � � ð6Þ

Combining across scales 0 to J this defines a total of L parameters, p = (λ0, p11, p21, p22, . . ., pJ(L/
2)), which are a one-to-one function of μ. That is, this defines a reparameterization of the
model from μ = (μ1, . . ., μL) to p = (λ0, p11, p21, p22, . . ., pJ(L/2)).
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This reparameterization has two key features: i) the likelihood P(Xjp) factorizes into a prod-
uct form over the L elements of p (just as the likelihood P(Xjμ) factorizes into a product over
the L elements of μ). Indeed, from elementary properties of the Poisson distribution, this fac-
torization includes a Poisson likelihood for λ0 and a Binomial likelihood for each of the other
parameters in p; see S1 Methods and [11] for details. ii) spatially-structured perturbations to
the vector μ are captured by large perturbations in just a few elements of p. (By a spatially-
structured perturbation, we mean a modification μi ! μi+δi such that δi tends to be similar to
δj when ji − jj is small.) This property is related to the similar key property of wavelets [13],
which are perhaps the best known multi-scale methods: spatially smooth signals tend to be
concentrated into a small number of wavelet coefficients.

As a consequence of ii) we modeled spatially-smooth heterogeneity in μ1, . . ., μN across N
putative binding sites using a simple hierarchical model for p1, . . ., pN (where we have reintro-

duced superscript n to index sites). Specifically, we introduced parameters �p ¼
ð�l0; �p11; �p21; �p22; . . . ; �pJðL=2ÞÞ to represent the mean cleavage pattern across sites, and then

assumed that site specific parameters p1, . . ., pN are independent and identically distributed
given �p, with

ln
0j�p;Zn ¼ 1 � gammaða; a=�l0Þ ð7Þ

pnjkj�p;Zn ¼ 1 � betað�pjktj; ð1� �pjkÞtjÞ ð8Þ

for k = 1, . . ., 2j−1 and j = 1, . . ., J, where α and τj are hyperparameters (estimated from the
data) that control variability in the parameters at different scales. To ensure that the beta distri-
butions in Eq (8) are unimodal, we constrain the hyperparameters ð�p; tÞ such that �pjktj � 1

and ð1� �pjkÞtj � 1 for all k = 1, . . ., 2j−1 and j = 1, . . ., J.

msCentipede model at unbound motifs
Wemodeled the read count profile at the nth site Xn conditional on Zn = 0 using the same Pois-
son model, but with different distributions for the parameters:

ln0jZn ¼ 0 � gammaðao; ao=�lo
0Þ ð9Þ

pnjkjZn ¼ 0 � d0:5 ð10Þ

where δ0.5 denotes the distribution with point mass on 0.5. Note that this means that pnjk ¼ 0:5,

which is equivalent to assuming that the Poisson rates μ = (μ1, . . ., μL) are all equal, resulting in
uniformly distributed reads over the entire site. That is, it corresponds to the commonly-used
assumption that there is no spatial structure in the read count profile when the transcription
factor is not bound to its motif. Later, we propose a more flexible model for unbound sites.

CENTIPEDE is a special case of msCentipede
The above msCentipede model (Eqs (9) and (10)) for unbound sites is exactly the same as the
CENTIPEDE model for unbound sites. (The assumption of a gamma distribution for the Pois-
son rate parameter ln0 in Eq (9) implies a negative binomial distribution for the total read-
counts, which is exactly the model assumed by CENTIPEDE.) Furthermore, the msCentipede
model for bound sites, Eq (8), becomes equivalent to the original CENTIPEDE model for
bound sites in the special case τj !1, which corresponds to no heterogeneity in the shape of
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the cleavage pattern across bound sites. That is, msCentipede is an extension of CENTIPEDE
to allow for heterogeneity in the shape of the cleavage pattern across bound sites.

msCentipede for multiple replicates
When multiple replicates are available, msCentipede treats the replicates as independent (see
Eq (2)). We assume the site and replicate specific parameters pn;s ¼
ðln;s0 ; pn;s11 ; p

n;s
21 ; p

n;s
22 ; . . . ; p

n;s
JðL=2ÞÞ for n = 1, . . ., N and s = 1, . . ., S (where we have reintroduced

superscript s to index replicates) are independent and distributed as follows. Conditional on Zn

= 1,

ln;s
0 jZn ¼ 1 � gammaðas; as=�ls

0Þ; ð11Þ

where replicate-specific hyper parameters, αs and �ls
0, capture replicate-specific mean (�ls

0) and

variance (
�l s2
0

as ). At the remaining scales,

pn;sjk jZn ¼ 1 � betað�pjktj; ð1� �pjkÞtjÞ; ð12Þ

where hyper parameter �pjk represents the mean cleavage pattern across replicates and sites, and

hyper parameter τj controls variability in the parameters at different scales.
This approach simplifies the problem by treating variation across replicates within a single

site in effectively the same way as variation across sites within a single replicate. In principle
this treatment could be improved—for example, by introducing a “random effect” at each site
to represent site-specific variation that is shared across replicates. However, this would inevita-
bly complicate the inference procedure, and we do not pursue it here.

The background model (Zn = 0) can be constructed in a similar way:

ln;s0 jZn ¼ 0 � gammaðao;s; ao;s=�lo;s
0 Þ; ð13Þ

pn;sjk jZn ¼ 0 � d0:5; ð14Þ

where δ0.5 denotes the distribution with point mass on 0.5.
To account for the difference in the total number of sequence reads generated for each repli-

cate, we allow for replicate-specific hyper parameters at the zeroth scale (see Eqs (11) and
(13)). See S1 Methods for the computation of the likelihood.

Flexible model for background DNase I cleavage rate
A number of studies have highlighted a strong sequence preference for DNase I cleavage [2,
14–16]. This sequence preference would cause the distribution of reads at unbound motif
instances to be i) systematically non-uniform near the shared core motif; and ii) varying
among motif instances away from the shared core motif (due to differences in the surrounding
sequence). To account for these factors we consider a more flexible model for unbound sites.
Specifically, we modify Eqs (10) and (14) as follows:

pnjkj�po; to;Zn ¼ 0 � betað�po
jkt

o
j ; ð1� �po

jkÞtoj Þ; ð15Þ

where the background parameters �po
jk and τ

o control the mean profile and the variance about

this mean respectively. We estimated these background parameters using DNase-seq reads
from naked DNA around the same set of motif instances, and refer to the method using this
more flexible background model as msCentipede-flexbg. (In principle it is also possible to esti-
mate these parameters using the DNase-seq data from chromatin, as part of the clustering of
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motif instances into bound and unbound motifs, but when we tried this we found msCentipede
performed worse in practice than the uniform model (Eqs (10) and (14)), presumably because
of the cost associated with attempting to estimate the many additional parameters of this more
flexible model; see Discussion).

Parameter estimation and inference

We estimated model parameters {z, αs, �ls
0, α

o,s, �lo;s
0 , τj, �pjk} by maximizing the likelihood across

all putative binding sites using a variational optimization algorithm, accelerated using the
SQUAREMmethod [17]. The variational optimization scheme is detailed in S1 Methods, and
is equivalent to the expectation-maximization algorithm [18]. When DNase-seq data assayed
in naked DNA were available, the background parameters �po

jk and t
o
j were first estimated using

naked DNA assays; keeping these fixed, we, then, learned the remaining model parameters.
Inference on binding sites can be performed by computing the posterior odds for each site:

Pðnth site is boundjXnÞ
Pðnth site is unboundjXnÞ ¼

PðZn ¼ 1jXnÞ
1� PðZn ¼ 1jXnÞ : ð16Þ

Detailed computation of P(Zn = 1jXn) is given in S1 Methods.

Description of data and validation metrics
We executed msCentipede and CENTIPEDE using DNase-seq and ATAC-seq measurements
assayed in the GM12878 lymphoblastoid cell line as data. Two replicate measurements using
the UWDNase-seq protocol [2] and four replicate ATAC-seq measurements [19] were avail-
able for this cell line. The DNase-seq data were single-end reads that can be converted to
counts of DNase I nicks for each base pair in a straightforward manner. The ATAC-seq data
were paired-end reads; however, we ignored the information in the length of DNA fragments
and used the counts of transpositions for each base pair as data.

We compared the algorithms on a set of 40 transcription factors with ChIP-seq data assayed
by ENCODE in the same cell line [20], and for which PWMmodels were computed using data
from high-throughput SELEX experiments [21, 22]. For each transcription factor, we identified
a genomewide set of high-quality putative binding sites (PBS) using human genome reference
GrCh37; for each PBS, the likelihood ratio for the PWMmodel vs a background model
exceeded 1000. Using a 64 base-pair window around each PBS, we filtered out those sites that
had fewer than 80% of bases in their window to be uniquely mappable. For each of the remain-
ing sites, we computed the posterior probability that the transcription factor is bound, using
CENTIPEDE and msCentipede. We used DNase-seq read count data from naked DNA derived
from the IMR90 cell line [15] to fit the background model parameters in msCentipede-flexbg.

In addition, we compared the performance of msCentipede against that of PIQ [7] using
DNase-seq data. Starting with a set of candidate binding sites, PIQ learns the background
DNase I cleavage rate using a Gaussian process model. Then, PIQ estimates TF binding based
on DNase I cleavage profiles and total DNase I cleavage rates that are specific to each TF, using
the expectation propagation algorithm. We used the “score”metric output by PIQ as a measure
of confidence of whether a motif instance is bound. When multiple replicate measurements are
available, we executed PIQ by providing data from the replicates as separate input files.

We evaluated the accuracy of each of the three algorithms using Area under the Receiver
Operating Curve (AuROC). To compute the AuROC, we selected a gold standard set of ‘bound
motif instances’ and ‘unbound motif instances’; bound motif instances were PBS that lied
within a ChIP-seq peak identified by a peak caller and ‘unbound motif instances’ were PBS that

msCentipede: Inferring Transcription Factor Binding

PLOS ONE | DOI:10.1371/journal.pone.0138030 September 25, 2015 7 / 15



lied outside ChIP-seq peaks and had fewer ChIP reads than reads from a control IP experiment
mapping to a 400 base pair window around the PBS, after controlling for total read depth. For
each transcription factor, we executed two peak callers, MACS [23] and GEM [24], each with a
1% FDR cutoff, to generate two gold standard sets of bound and unbound motif instances. In
this paper, we illustrate the accuracy of the algorithms evaluated against gold standards gener-
ated using GEM when using DNase-seq measurements as data. The accuracy of all three algo-
rithms decreased by a modest amount when using the gold standards generated by MACS (see
S1 Fig).

Results
In this section, we evaluate the accuracy of msCentipede, using multiple DNase-seq and
ATAC-seq data sets, on a set of transcription factors for which high quality ChIP-seq data and
highly informative position-weight matrix (PWM) models are available. We also evaluate the
gain in performance achieved when we use a more flexible model for background DNase I
cleavage rate, with parameters for this model learned using DNase-seq data from naked DNA.

msCentipede achieves improved accuracy
msCentipede achieved AuROC comparable to or better than CENTIPEDE across a broad
range of transcription factors when each algorithm was applied to chromatin accessibility mea-
surements from a single DNase-seq assay as shown in Fig 2A (top). Compared with PIQ, we
observed that msCentipede achieved substantially higher AuROC for some factors and lower
AuROC for others, as shown in Fig 2A (bottom) (see S1 Table for more details). When multiple
replicates are available, CENTIPEDE requires pooling the replicate datasets and PIQ uses the
replicate datasets to jointly learn the background Gaussian process model; however, msCenti-
pede treats replicates by modeling them as independent samples. By modeling the replicates
appropriately and accounting for heterogeneity across genomic sites and replicates, msCenti-
pede achieved substantial increase in AuROC compared to CENTIPEDE and PIQ for a broad
range of transcription factors, as illustrated in Fig 2B. Similar improvements in accuracy for
msCentipede compared to CENTIPEDE were observed when using ATAC-seq measurements
as data (see S2 Fig).

For each transcription factor, the hyperparameter τ gives a measure of heterogeneity in read
distribution across genomic sites and replicates, with lower values indicating greater heteroge-
neity. In S3 Fig, we observed that the values of the hyperparameters τj were rather small, sug-
gesting that we were able to increase power by better modeling variation in the data.
Furthermore, we observed a higher degree of overdispersion in read distribution at medium
resolutions compared to the finest and coarsest resolutions across all transcription factors.

Modeling DNase I cleavage patterns improves factor binding inference
In recent work, He et al. [16] and Sung et al. [25] demonstrated that strong DNA sequence
preference for DNase I cleavage could pose a challenge to using the detailed shape of DNase
cleavage profiles for inferring transcription factor binding. Specifically, He et al. [16] identified
motif instances that lie within peaks in ChIP-seq measurements for a transcription factor in a
given cell line. Using these instances, they showed that, in a region of* 20 bp surrounding the
motif, the mean DNase I cleavage profile estimated from naked DNA (unbound sites) matched
the mean cleavage profile estimated using DNase-seq data from the same cell line (bound
sites). Starting from similar observations, Sung et al. [25] clarified that although sequence-pref-
erence effects were evident for all transcription factors, some transcription factors—those with
slower-binding kinetics—show an appreciable reduction in the cut profile around the bound
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motifs (a “footprint”), whereas others—those with faster-binding kinetics—show little or no
footprint.

These observations raise two questions: first, whether the uniform background model
(assumed by CENTIPEDE, and msCentipede) for the unbound sites might be better replaced
by a non-uniform background model capable of capturing the sequence preference effects
around the motifs; second, whether it might be better to entirely ignore the DNase I cleavage

Fig 2. Accuracy of msCentipede, CENTIPEDE and PIQ across a range of transcription factors. Each point corresponds to a different factor and
accuracy is measured by area under the ROC curve. Blue points correpond to factors where msCentipede achieves higher accuracy than CENTIPEDE (top
panels) or PIQ (bottom panels), and orange points correspond to a worse performance by msCentipede. A: The algorithms are compared using data from a
single replicate. B: The algorithms are compared using data frommultiple library replicates.

doi:10.1371/journal.pone.0138030.g002
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profile when attempting to distinguish between bound and unbound sites—and, rather, to
focus only on the total intensity of DNase I hypersensitivity in the region. To test this, we com-
pared the accuracy of three different models for transcription factor binding:

1. ‘no cleavage profile’model that ignores the cleavage profile, and simply models the total
DNase read counts using Poisson-gamma distributions at bound and unbound sites
(described earlier).

2. msCentipede

3. msCentipede-flexbg, which allows for a non-uniform background model, with parameters
estimated using DNase-seq measurements from naked DNA around the same set of PBS.

Comparing first the msCentipede model with the no-cleavage model, we found the accuracy
of msCentipede to be substantially greater for a broad range of transcription factors (Fig 3A).
This result may appear to conflict with previous results [16, 25] showing that cleavage patterns
within factor-bound motif instances are driven primarily by sequence preferences for DNase I
cleavage, which suggests that use of the cleavage profile to identify binding sites could increase
false positive findings. However, we note that i) sequence preference effects, while presumably
occuring genome wide, are shared across binding sites only in the small region around the
shared sequence motif (typically 10–20 bp), while most methods to detect factor binding,
including ours, make use of cleavage patterns in much larger windows (typically 50–100 bp)
around the motif instance, and ii) for some factors—those with slower binding kinetics—the
footprint effect (i.e. the systematic overall decrease in DNase signal surrounding the motif)
may be helpful in distinguishing bound and unbound sites, and the benefits of this could out-
weigh the unmodelled sequence preference effects.

Fig 3. Modeling factor-specific DNase I cleavage profile and sequence bias in DNase cleavage increases prediction accuracy. A: Modeling the
DNase I cleavage profile at bound sites increases the prediction accuracy of msCentipede across a broad range of transcription factors. Each point on the
plot corresponds to a different transcription factor. B: We show the ROC curves for transcription factor EBF1 for three different models of increasing
complexity. We observe a substantial increase in accuracy when incorporating a multi-scale model for the factor-specific cleavage profile; however, the
increase in accuracy when modeling the background cleavage rate using naked DNA data is rather modest. This holds true for a broad range of factors as
shown in S4 Fig.

doi:10.1371/journal.pone.0138030.g003
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We turn now to evaluate the effect of sequence bias in DNase I cleavage patterns on the
inference of TF binding by comparing msCentipede with msCentipede-flexbg. Note that
msCentipede-flexbg, by modeling the background cleavage profile using naked DNA assays,
has the potential to eliminate false positives due to sequence-driven cleavage patterns
highlighted earlier [16, 25]. And indeed, we found that, for most factors, the estimated mean
background cleavage profile, captured by the parameters �po

jk, was non-uniform within the

motif, reflecting precisely the sequence preferences for DNase I cleavage (S5 Fig). However, we
also found that this improved background model resulted in only modest improvements in
accuracy of identifying bound sites (S4 Fig). It is possible that accuracy could be further
improved by explicitly modeling sequence-specific context effects in more detail than we have
here, for example by relating cleavage rates at each location to the surrounding k-mers. How-
ever, our preliminary attempts to achieve this were unsuccessful (results not shown).

Using transcription factor EBF1 as an example, Fig 3B illustrates that all three models have
very similar true positive rates up to a false positive rate of 3–4%. However, incorporating the
DNase cleavage profile substantially increased the true positive rate for false positive rates
larger than 4%. This suggests that while modeling the total DNase read counts alone was suffi-
cient to accurately identify bound PBS with highest total DNase-seq signal, incorporation of
the DNase cleavage profile was necessary to identify bound PBS with moderate total DNase-
seq signal. These PBS may be indicative of low occupancy sites where the binding of the tran-
scription factor is in a less stable equilibrium and the factor is likely bound to the DNA at these
PBS in a smaller fraction of the cells assayed.

Discussion
We developed msCentipede, a hierarchical multi-scale model to accurately identify binding of
a transcription factor using sequencing reads from DNase-seq or ATAC-seq assays and the
sequence content of putative binding sites for that factor in the genome. While previous
approaches like CENTIPEDE have successfully used the characteristic profile of DNA hyper-
sensitivity to DNase I around bound motif instances to identify factor binding sites, the multi-
nomial model used in CENTIPEDE ignores spatial structure in the data and makes a strong
assumption on the heterogeneity in read distribution across bound sites in the genome. More-
over, when multiple replicate measurements are available, CENTIPEDE ignores heterogeneity
across replicates. The hierarchical multi-scale model explicitly allows for heterogeneity in the
read distribution across bound sites and across replicate measurements (with different
amounts at different scales), resulting in a substantial increase in accuracy across a broad range
of transcription factors. Finally, we explored the effects of sequence bias in DNase I on infer-
ence by using a simple, flexible background model that can exploit the availability of DNase-
seq data assayed in naked DNA. This flexible background model has the potential to account
for heterogeneity in background DNase I cleavage rate specific to the sequence context of motif
instances of the transcription factor.

A simple extension to CENTIPEDE that can account for heterogeneity across sites is to
allow for site-specific parameters in the multinomial distribution and to model these site-spe-
cific parameters using a Dirichlet distribution. However, this multinomial-Dirichlet model is
not sufficiently flexible to capture potential spatial structure in heterogeneity in DNase I cleav-
age, since it has only one additional parameter that captures variance. The proposed multi-
scale model allows different amounts of variance across different scales, effectively capturing
spatial structure in the heterogeneity. It is fairly straightforward to extend the proposed frame-
work to model spatial structure in the mean cleavage pattern (�p) as usually modeled in multi-
scale approaches [10, 11, 13]. However, we found that this extension was computationally
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expensive and gave very minor improvements in accuracy, presumably because there were so
many motif instances that we could accurately estimate the mean pattern without spatial
smoothing.

When considering a flexible model at unbound motif instances which allows for spatial
structure and heterogeneity in background DNase I cleavage patterns, it is natural to estimate
the parameters of this model using data from the relevant cell type. However, we observed that
when all the parameters in the flexible model are estimated using data from chromatin, the
model tended to estimate smaller values for the precision parameter, τ, at bound sites resulting
in a large number of ‘true’ unbound sites being incorrectly identified as bound. Currently, we
suggest using the flexible model (msCentipede-flexbg) only when DNase-seq (or ATAC-seq)
data assayed in naked DNA is available. However, a framework that allows estimation of het-
erogeneity in background DNase I cleavage from data assayed in the relevant cell type may be
be more accurate.

msCentipede-flexbg estimates spatial structure and heterogeneity in the background model
using DNase-seq data from naked DNA at all motif instances; thus, the heterogeneity in back-
ground read distribution is primarily driven by variation in sequence context around motif
instances. However, within a cell type, variation in background chromatin context at unbound
sites (e.g., whether the motif instance is in the linker region or in DNA wrapped around a
nucleosome, and which other transcription factors are bound at or close to the motif instance)
is likely to be a larger source of heterogeneity in background read distribution than variation in
sequence context. This intuition suggests that we should estimate the precision parameter at
unbound sites τo using DNase-seq data from chromatin, rather than using DNase-seq data
from naked DNA. However, using this approach, we observed the background precision
parameter τo in msCentipede-flexbg was consistently underestimated when this parameter was
estimated using data from chromatin, resulting in a high false positive rate. Extensions to these
models that accurately capture the background heterogeneity in the data across genomic sites
would be a useful avenue for future research.

Supporting Information
S1 Fig. Accuracy of msCentipede, CENTIPEDE and PIQ using a gold standard identified
using MACS. Each point corresponds to a different factor and accuracy is measured by area
under the ROC curve. Blue points correpond to factors where msCentipede achieves higher
accuracy than CENTIPEDE (top panels) or PIQ (bottom panels), and orange points corre-
spond to a worse performance by msCentipede.
(EPS)

S2 Fig. Accuracy of msCentipede and CENTIPEDE using ATAC-seq data and a gold stan-
dard identified using GEM. Blue points correpond to factors where msCentipede achieves
higher accuracy than CENTIPEDE and orange points correspond to a worse performance by
msCentipede.
(EPS)

S3 Fig. Heterogeneity across different scales. A: A plot of the precision parameter τ as a func-
tion of the scale in the multi-scale model. Each gray line corresponds to a different transcrip-
tion factor and the solid blue line shows the median trend across all factors. B: A plot of the
relative change in AuROC as a function of the lower bound on the precision parameter τ for all
scales. Each line corresponds to a transcription factor, and red lines correspond to factors
where most lower bounds lead to a decrease in accuracy. Although the AuROC is fairly robust
to the maximum allowed dispersion (minimum allowed precision), most factors show a
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modest decrease in accuracy for higher values of the lower bound.
(EPS)

S4 Fig. Evaluating the effect of DNase I sequence bias. A: Comparing the accuracy of msCen-
tipede and msCentipede-flexbg. Blue points correspond to factors where msCentipede-flexbg
shows improved performance and orange points correspond to a worse performance by
msCentipede-flexbg. The increase in accuracy for msCentipede-flexbg is relatively modest
across a large number of transcription factors. B: Comparing the accuracy of msCentipede-
flexbg with fixed zero-variance in the background model, and msCentipede-flexbg. Most of the
improvement of msCentipede-flexbg over msCentipede arises from modeling variance in the
background DNase I cleavage patterns.
(EPS)

S5 Fig. Normalized DNase I cleavage profiles in chromatin and naked DNA, for a subset of
transcription factors. The cleavage profiles for chromatin and naked DNA were computed
from the maximum likelihood estimates of the parameters �pjk and �po

jk , respectively. For the

sake of clarity, only the plus strand cleavage profile is shown. The dotted orange lines indicate
the boundaries of the core motif.
(EPS)

S6 Fig. Accuracy of msCentipede and CENTIPEDE at different sequencing depths.msCen-
tipede achieves better (or similar) accuracies as CENTIPEDE for majority of the TFs in each of
the replicates, indicating that the results hold across almost a 5-fold difference in coverage.
Indeed, as the sequencing depth approaches 100 million reads, we observe the accuracy of
CENTIPEDE and msCentipede to be highly concordant, while msCentipede achieves higher
accuracies at sequencing depths closer to 10 million reads.
(EPS)

S7 Fig. Accuracy of msCentipede, CENTIPEDE and PIQ on pooled replicates. Accuracy of
msCentipede is similar to that of CENTIPEDE, and substantially better than that of PIQ, when
applied to pooled replicate data. Note that msCentipede applied to pooled data achieves worse
accuracy than when the replicates are treated as independent samples (despite the total
sequencing depth being the same), since the variance across replicates is not properly
accounted for when pooling replicate data sets.
(EPS)

S8 Fig. True positive rate of msCentipede, CENTIPEDE and PIQ at 5% false positive rate.
msCentipede achieves better (or similar) true positive rates compared to CENTIPEDE, and
substantially higher true positive rates than PIQ. Multiple DNase replicates were used in this
analysis, and msCentipede and PIQ were run in their multi-replicate modes.
(EPS)

S1 Methods. Detailed description of the model. A detailed description of the model for
msCentipede, along with the estimation and inference framework.
(PDF)

S1 Table. Accuracy when using one DNase-seq replicate. A list of the transcription factors,
their PWMmodels and the AUC score achieved by the different algorithms listed in the main
text, using only one DNase-seq data set. Factors for which PIQ achieves a higher accuracy than
msCentipede are highlighted in red.
(PDF)
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S2 Table. Accuracy when using multiple DNase-seq replicates. A list of the transcription fac-
tors, their PWMmodels and the AUC score achieved by the different algorithms listed in the
main text, using both replicate DNase-seq data sets. Factors for which PIQ achieves a higher
accuracy than msCentipede are highlighted in red.
(PDF)
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