S3: Fitting power-laws in empirical data with estimators that work for all exponents

Rudolf Hanel\(^1\), Bernat Corominas-Murtra\(^1\), Bo Liu\(^1\), Stefan Thurner\(^{1,2,3,4}\),

\(^1\) Section for Science of Complex Systems, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria
\(^2\) Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
\(^3\) IIASA, Schlossplatz 1, 2361 Laxenburg, Austria
\(^4\) Complexity Science Hub Vienna, Josefstädterstrasse 39, A-1090 Vienna, Austria

*Current Address: Section for Science of Complex Systems, CeMSIIS, Medical University of Vienna, Spitalgasse 23, Bauteil 86, A-1090, Vienna, Austria
* stefan.thurner@meduniwien.ac.at

APPENDIX C: The false rejection rate of power-laws

The KS goodness of fit (GOF) test is not actually testing whether the estimated data has been generated by a power-law or not. It estimates the false rejection rate of power-laws with respect to the estimated exponent. Since the exponent of a power-law is measured with a finite accuracy the KS GOF-test tells you whether the estimated exponent is acceptable rather than measuring whether the hypothesis that what we observe is a power-law or not. To control the false rejection rate of the power-law hypothesis, which is what a p-value is good for, one needs to know the p-values of the entire ML\(^*\) estimator.

Let \(KS \) be the same variable,

\[
KS = \max_{i \in \text{range}} \{|F_{\text{data}}(i) - F_\alpha(i)| \},
\]

that is used in the statistics of the KS GOF-test, where \(F_{\text{data}}(i)\) is the cumulative distribution-function generated from the data (the cumulative of the normalized histogram), and \(F_\alpha(i)\) is the cumulative distribution function with regard to the estimated exponent \(\alpha\). By sampling a large number of data-sets from exact power-laws and looking at the distribution of corresponding KS values, measuring the deviation between the power-law with estimated exponent and the data, one obtains the p-values of the ML\(^*\) estimator.

We provide an algorithm \texttt{r_plfit_calibrate}, and \texttt{r_plfit_calib_eval}, which can be used to determine the critical value \(KS_{\text{crit}}\) such that rejecting an \(ML^*\) estimate with \(KS \geq KS_{\text{crit}}\) and accepting estimates \(KS < KS_{\text{crit}}\) allows us to control the actual false rejection rate of the \(ML^*\) estimator. I.e. if we calibrate \(KS_{\text{crit}}\) for a expected exponent \(\alpha\), a given sample size, and a given confidence level, e.g. the confidence level 0.05, then the resulting value \(KS_{\text{crit}}\) ensures that if we sample from an exact power-law with exponent \(\alpha\), we will reject only 5% of all the sampled data. In contrast to what one may expect from the KS-GOF test \(KS_{\text{crit}}\) becomes rather large and many data sets that would be rejected by the KS-GOF test need in fact to be accepted!

The calibration algorithm, \texttt{out1 = r_plfit_calibrate(alpha,W,Nsamples,Nrep)}, requires the variables \(alpha\), the expected exponent, \(W\), the number of states found in the sample, \(Nsamples\),
Fig 1. Calibration curves for an expected exponent $\alpha = 1$ and $W = 100$ states. Depending on the sample-size the critical KS values are shown for confidence levels 0.01, 0.05, 0.1 and 0.2. Curves have been computed using $\text{out1} = r_\text{plfit_calibrate}(\alpha, W, \text{Nsamples}, 1000)$, with $\text{Nsamples} = 50 : 50 : 1000$, and a function to evaluate the calibration data, $\text{out2} = r_\text{plfit_calib_eval}(\text{out1}, p, N, 1)$. The critical threshold values KS_{crit}, of the KS parameter for a sample size $N = 500$ are given by 0.7245 ($p = 0.01$), 0.7163 ($p = 0.05$), and 0.7090 ($p = 0.1$), and 0.6994 ($p = 0.2$).

the a vector of sample sizes, e.g. $\text{Nsamples}=(500:500:25000)$, and Nrep, the number of times we sample a sample of size Nsamples from an exact power-law distribution with exponent α. Typically Nrep of order 1000 suffices to get good estimates for the critical p-values of the ML^* estimator. After running $r_\text{plfit_calibrate}$, which may take some time, one can use $\text{out2} = r_\text{plfit_calib_eval}(\text{out1}, p, N, 1)$ to obtain KS_{crit} which is returned as $\text{out2}.\text{KS}_{\text{crit}}$ by $r_\text{plfit_calib_eval}$ for the confidence level confidence and the sample-size samplesize within the range specified in Nsamples. The flag plotflg can be used for plotting calibration curves ($\text{plotflg} = 1$ or $\text{plotflg} = 2$) or suppressing the plot ($\text{plotflg} = 0$).

Figure 1 shows examples of calibration curves for $\alpha = 1$ and sample sizes in the range of $N = 50$ to $N = 1000$. It becomes obvious that the negative rejection rate is critically controlled by large KS values (> 0.65). The maximal possible value is KS= 1. This paints a very different picture than we might expect from the KS-GOF test, which rejects hypothesis at much smaller values of the KS statistics. This means that calibrating the false rejection rate of the power-law hypothesis is one thing. Whether the estimate of α is good enough for the KS-GOF test to accept that the data has been sampled from a power-law with exactly the estimated exponent is a totally different question. We therefore can use the calibrated KS values to accept whether or not we
believe data to be sampled from a power-law and we may rely on the KS goodness of fit test whether or not to believe in the exponent we have estimated.