Optimization of yeast cell suspension concentration used in the agglutination procedure and volume of mixture applied to a glass slide before observation under microscope. Lectin CV-IIL was utilized in this optimization process. The lectin was serially diluted in working buffer and sample of each concentration was mixed in 1:1 ratio with yeast cell suspensions of 5% (upper panel) or 10% (middle panel) or 20% (lower panel). Mixture was incubated for 10 minutes at room temperature and mixed again. Three samples of each mixture in volumes 20 µl, 10 µl and 5 µl were applied to three glass slides and observed under the Levenhuk microscope. Pictures were taken by the camera DEM135 (Levenhuk). Agglutinates made of 5% yeast cell suspension and higher CV-IIL concentrations are susceptible to damage when mixed again after incubation and transferred on the glass slide. All negative control experiments did not show any visible agglutination.

Fig. S3. Optimization of yeast cell suspension concentration used in the agglutination procedure and volume of mixture applied to a glass slide before observation under microscope. Lectin CV-IIL was utilized in this optimization process. The lectin was serially diluted in working buffer and sample of each concentration was mixed in 1:1 ratio with yeast cell suspensions of 5% (upper panel) or 10% (middle panel) or 20% (lower panel). Mixture was incubated for 10 minutes at room temperature and mixed again. Three samples of each mixture in volumes 20 µl, 10 µl and 5 µl were applied to three glass slides and observed under the Levenhuk microscope. Pictures were taken by the camera DEM135 (Levenhuk). Agglutinates made of 5% yeast cell suspension and higher CV-IIL concentrations are susceptible to damage when mixed again after incubation and transferred on the glass slide. All negative control experiments did not show any visible agglutination.