Appendix 2: Formulae, empirical example, and proof regarding the Bice-Boxerman and modified Bice-Boxerman continuity of care indices

Let \(n_i \) be the number of visits to \(i \)th provider and \(n_j \) be the number of visits within the \(j \)th specialty. The overall number of visits, number of providers, number of specialties are given by \(n \), \(p \), and \(s \) respectively.

The Bice-Boxerman continuity of care index is given by:

\[
\frac{(\sum_{i=1}^{p} n_i^2) - n}{n^2 - n}
\]

The modified Bice-Boxerman continuity of care index used in this study is defined as:

\[
\frac{(\sum_{i=1}^{p} n_i^2) - n}{(\sum_{j=1}^{s} n_j^2) - n}
\]

The modified Bice-Boxerman continuity of care index assumes that providers belong to one and only one specialty.
Empirical Example

Figure 1: Behavior of the original and modified Bice-Boxerman indices with increasing visits to multiple specialties

The above figure displays the value of the Bice-Boxerman and modified Bice-Boxerman continuity indices under several scenarios involving visits to family physicians (FP) and cardiologists. The first set of bars representing a patient visiting the same family physician 10 times while the second set of bars represents a patient visiting one family physician 9 times and a different family physician once. The third set of bars represents a patient visiting one family physician 9 times, a different family physician once, and the same cardiologist twice, and the last set of bars represents the patient visiting one family physician 9 times, a different family physician once, and two different cardiologists twice each. The original Bice-Boxerman index drops in value across every scenario, including when then patient sees
only a single cardiologist, while the modified Bice-Boxerman index only drops in value when visits within a specialty are dispersed among multiple providers.

Proof

Let n_i be the number of visits to ith provider, n_j be the number of visits within the jth specialty, and n_{jk} be the number of visits to kth provider within the jth specialty. The overall number of visits, number of providers, number of specialties, and number of providers within each specialty j are given by n, p, s, and r_j respectively.

Proof that the modified Bice-Boxerman (MBB) index is a weighted averaged of specialty-specific unmodified Bice-Boxerman indices (BB) where each specialty has the weight $(n^2_j - n_j)/(\Sigma_{j=1}^{s}(n^2_j) - n_j)$:

Assuming that each provider exists within only one specialty and that each $n_j \geq 2$ then:

\[
BB = \frac{(\Sigma_{i=1}^{p} n^2_i) - n}{n^2 - n}
\]

\[
BB_j = \frac{(\Sigma_{k=1}^{r} n^2_{jk}) - n_j}{n^2_j - n_j}
\]

\[
MBB = \frac{(\Sigma_{i=1}^{p} n^2_i) - n}{(\Sigma_{j=1}^{s} n^2_j) - n}
\]

\[
= \frac{(\Sigma_{j=1}^{s}(\Sigma_{k=1}^{r} n^2_{jk})) - \Sigma_{j=1}^{s} n_j}{(\Sigma_{j=1}^{s} n^2_j) - n}
\]
\[
\sum_{j=1}^{s} \left(\frac{(\sum_{k=1}^{r} n_{jk}^2) - n_j \left(\frac{n_j^2 - n_j}{n_j^2 - n_j} \right)}{(\sum_{j=1}^{s} n_j^2) - n} \right)
\]

\[
= \frac{\sum_{j=1}^{s} \left(BB_j \left(n_j^2 - n_j \right) \right)}{(\sum_{j=1}^{s} n_j^2) - n}
\]

\[
= \frac{BB_1 (n_1^2 - n_1)}{(\sum_{j=1}^{s} n_j^2) - n} + \frac{BB_2 (n_2^2 - n_2)}{(\sum_{j=1}^{s} n_j^2) - n} + \cdots + \frac{BB_s (n_s^2 - n_s)}{(\sum_{j=1}^{s} n_j^2) - n}
\]