1. do "/Users/Chiara/Documents/fileDO 15 Maggio/analisi_coorte_wide_multilevel_4.do"
2. use "/Users/Chiara/Documents/fileDO 15 Maggio/fileDo/coorte_long_emocromo_anemia.dta", clear
3.
4. replace death=0 if death==99 /* censura dei ricovery */
(506 real changes made)
5. gen death_30=death
6. gen death_time=a_data_esito-a_data_sintomi if death_30==1
(9,438 missing values generated)
7. replace death_30=0 if death_time>=30
(286 real changes made)
8. replace a_data_ricovero=a_data_test if a_data_ricovero<a_data_sintomi
(242 real changes made)
10. *gen inizio=mdy(02,29,2020)
11. *gen giorno_x=a_data_ricovero-inizio
12. *recode giorno_x -199/0=0 1/7=1 8/14=2 15/21=3 22/28=4 29/2000=99, into(settimana)
15. tab settimana, mi

RECODE of giorno_x

<table>
<thead>
<tr>
<th>Freq.</th>
<th>Percent</th>
<th>Cum.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>132</td>
<td>1.24</td>
</tr>
<tr>
<td>1</td>
<td>1,896</td>
<td>18.02</td>
</tr>
<tr>
<td>2</td>
<td>2,024</td>
<td>19.97</td>
</tr>
<tr>
<td>3</td>
<td>3,234</td>
<td>30.31</td>
</tr>
<tr>
<td>4</td>
<td>2,310</td>
<td>21.65</td>
</tr>
<tr>
<td>99</td>
<td>1,474</td>
<td>13.81</td>
</tr>
</tbody>
</table>

Total 10,670 100.00

15. drop if a_data_ricovero>=mdy(03,29,2020)
(1,474 observations deleted)
16. tab settimana, mi

RECODE of giorno_x

<table>
<thead>
<tr>
<th>Freq.</th>
<th>Percent</th>
<th>Cum.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>132</td>
<td>1.44</td>
</tr>
<tr>
<td>1</td>
<td>1,496</td>
<td>16.27</td>
</tr>
<tr>
<td>2</td>
<td>2,024</td>
<td>22.01</td>
</tr>
<tr>
<td>3</td>
<td>2,024</td>
<td>22.01</td>
</tr>
<tr>
<td>4</td>
<td>2,310</td>
<td>25.12</td>
</tr>
</tbody>
</table>

Total 9,196 100.00
17. keep if dropping==0
(660 observations deleted)
18. tab settimana

RECODE of giorno_x

<table>
<thead>
<tr>
<th>Freq.</th>
<th>Percent</th>
<th>Cum.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>132</td>
<td>1.55</td>
</tr>
<tr>
<td>1</td>
<td>1,364</td>
<td>15.98</td>
</tr>
<tr>
<td>2</td>
<td>1,980</td>
<td>23.20</td>
</tr>
<tr>
<td>3</td>
<td>2,992</td>
<td>35.05</td>
</tr>
<tr>
<td>4</td>
<td>2,068</td>
<td>24.23</td>
</tr>
</tbody>
</table>

Total 8,536 100.00
19. recode p_age 0/59=0 60/700=1, into(p_age2)
(8536 differences between p_age and p_age2)
20. tab death_30

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>7,612</td>
<td>89.18</td>
<td>89.18</td>
</tr>
<tr>
<td>1</td>
<td>924</td>
<td>10.82</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Total 8,536 100.00
21. label define death_30 1 "nonsurvivor" 0 "survivor"
22. label values death_30 death_30
23. label variable b_day_malattia "Days since onset"
24. save="/Users/Chiara/Documents/fileDO 15 Maggio/fileDo/coorte_long_emocromo_anemia_1.dta", replace
file "/Users/Chiara/Documents/fileDO 15 Maggio/fileDo/coorte_long_emocromo_anemia_1.dta" saved
25.
19/05/20, 17:13 Page 2 of 56

1. *keep if wbc!=.
2. *sort a_data_test
3. *collapse (first) wbc (first) death (first) b_day_malattia, by(progr)

4. * modelling
5. *use "/Users/Chiara/Documents/fileDO 15 Maggio/fileDO\coorte_long_emocromo_anemia_1.dta", clear
6. *mixed wbc_ln c.b_day_malattia##i.death_30 i.p_age2 i.p_obeso i.p_rene i.p_cardio || progr:b_day_malattia, cov(unstr)
7. *est store linear
8. *mixed wbc_ln c.b_day_malattia##c.b_day_malattia##i.death_30 i.p_age2 i.p_cardio i.p_obeso i.p_rene || progr:b_day_malattia, cov(unstr)

9. * ***** plotting and estimates
10. *quiet: mixed wbc_ln c.b_day_malattia##c.b_day_malattia##i.death_30 i.p_age2 i.p_obeso i.p_rene i.p_cardio || progr:b_day_malattia, cov(unstr)
11. * death_30, at(b_day_malattia=(0(1)30)) expression(exp(predict(xb))) asbal
12. *marginsplot, title("WBC kinetic day 0 to day 30 after onset") ytitle("Cells per mmc (log-scale)"")
13. *margins ar.death_30, at(b_day_malattia=(0(1)30)) expression(exp(predict(xb))) contrast
14. *margins, at(b_day_malattia=(0(1)30) death==0) expression(exp(predict(xb))) contrast

15. ***
16. *** analisi neutrofili ***
17. ***
18. **** scatter no model
19. use "/Users/Chiara/Documents/fileDO 15 Maggio/fileDO\coorte_long_emocromo_anemia_1.dta", clear
20. *scatter neu b_day_malattia if death==1, mcolor(red) legend(off) title("Neutrophils variation over time") xtitle("day since onset") ytitle("Neutrophils per mmc X 1000") || scatter neu b_day_malattia if death==0, mcolor(green) legend(off) ms(oh)

21. **********Graph box
22. replace neu=neu*1000
(1,805 real changes made)
23. graph box neu, over(death_30, label(nolabel)) over(b_day_malattia) asyvars box(1, fcolor(navy)) nooutsides ytitle(Cells per mmc) yline(500, lcolor(red)) legend(off)
24. graph save "Graph" "/Users/Chiara/Documents/fileDO 15 Maggio/BOX neu .gph", replace
(file "/Users/Chiara/Documents/fileDO 15 Maggio/BOX neu .gph saved"")
25. **** modelling
26. use "/Users/Chiara/Documents/fileDO 15 Maggio/fileDO\coorte_long_emocromo_anemia_1.dta", clear
27. mixed neu_ln c.b_day_malattia##i.death_30 i.p_age2 i.p_cardio i.p_obeso i.p_rene|| progr:b_day_malattia, cov(unstr)

Performance EM optimization:
Performing gradient-based optimization:
Iteration 0: log likelihood = -1197.7645
Iteration 1: log likelihood = -1197.7498
Iteration 2: log likelihood = -1197.7498
Computing standard errors:
Mixed-effects ML regression Number of obs = 1,805
Group variable: progr Number of groups = 379
Obs per group: min = 1
 avg = 4.8
 max = 22
Valid chisq(4) = 120.65
Log likelihood = -1197.7498

neu_ln

Coef. Std. Err. z P>|z| [95% Conf. Interval]
neu
b_day_malattia .026355 .0037435 7.04 0.000 .0190179 .0336921
death_30
non survivor -.0692439 .1417194 -0.49 0.625 -.3470088 .208521
death_30#c.b_day_malattia
non survivor .0442918 .0110632 4.00 0.000 .0226084 .0659752
1.p_age2 .1332046 .0559794 2.38 0.017 .0234869 .2429219
1.p_obeso .1115497 .1115481 1.00 0.317 -.1070805 .33018
1.p_rene .0614802 .127466 0.48 0.630 -.1883485 .3113089
_cons 8.035981 .0590407 136.11 0.000 7.920263 8.151698

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]
progr: Unstructured
 var(b_day_malattia) .0020646 .0003052 .0015456 .0027579
 var(i.death_30) .0059752 .0008577 .0043078 .0077426
 cov(b_day_malattia, i.death_30) .0025461 .0005887 -.0001428 .0052354

Residual
 var(Residual) .1239949 .0050842 .1144033 .1345851
LR test vs. linear model: chisq(3) = 1078.06
Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.

71. *set store linear
72. *mixed wbc_ln c.b_day_malattia##c.b_day_malattia##i.day_0 i.p_age2 i.p_cardio i.p_obeso i.p_rene || progr:b_day_malattia, cov(unstr)
Performing EM optimization:
Performing gradient-based optimization:

Iteration 0: log likelihood = -1188.5729
Iteration 1: log likelihood = -1188.5576
Iteration 2: log likelihood = -1188.5576

Computing standard errors:

Mixed-effects ML regression Number of obs = 1,805
 Group variable: progr Number of groups = 379
 Obs per group: min = 1
 avg = 4.8
 max = 22

Valid chisq(9) = 137.27
Prob > chi2 = 0.0000

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coef.</td>
<td>Std. Err.</td>
<td>z</td>
<td>P></td>
<td>z</td>
</tr>
<tr>
<td>b_day_malattia</td>
<td>0.0674394</td>
<td>0.0106074</td>
<td>6.36</td>
<td>0.000</td>
<td>0.0466493 - 0.0882295</td>
</tr>
<tr>
<td>c.b_day_malattia#c.b_day_malattia</td>
<td>-0.001686</td>
<td>0.0004058</td>
<td>-4.16</td>
<td>0.000</td>
<td>-0.0024813 - 0.0008907</td>
</tr>
<tr>
<td>death_30</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>nonsurvivor</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>death_30#c.b_day_malattia</td>
<td>-0.0224537</td>
<td>0.0069067</td>
<td>-0.83</td>
<td>0.404</td>
<td>-0.0351899 - 0.0002025</td>
</tr>
<tr>
<td>nonsurvivor</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>1.p_age2</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>1.p_cardio</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>1.p_obeso</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>1.p_rene</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>_cons</td>
<td>7.814722</td>
<td>0.0796682</td>
<td>98.09</td>
<td>0.000</td>
<td>7.658575 - 7.970868</td>
</tr>
</tbody>
</table>

Random-effects Parameters	Estimate	Std. Err.	[95% Conf. Interval]
progr: Unstructured
 var(b_day_malattia) | 0.0021292 | 0.0003116 | 0.0015983 - 0.0028365 |
 var(_cons) | 0.4650909 | 0.0567559 | 0.3661542 - 0.5907607 |
 cov(b_day_malattia,_cons) | -0.0229141 | 0.0039075 | -0.0305726 - 0.0152555 |
 var(Residual) | 0.1218045 | 0.0050145 | 0.1123623 - 0.1320402 |

LR test vs. linear model: chi2(3) = 1089.99
Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.

73. est store quadratic
74. lrtest linear quadratic

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>Std. Err.</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>progr: Unstructured</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>var(b_day_malattia)</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>var(_cons)</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>cov(b_day_malattia,_cons)</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>var(Residual)</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

75. *** margins
76. quiet: mixed neu_ln c.b_day_malattia##c.b_day_malattia##i.death_30 i.p_age2 i.p_cardio i.p_obeso i.p_rene || progr > r:b_day_malattia, cov(unstr)
77. margins death_30, at(b_day_malattia=(0(1)21)) expression(exp(predict(xb))) asbalanced

Adjusted predictions | Number of obs = 1,805
Expression 'exp(predict(xb))':

1. at: b_day_malattia = 0
 death_30 (ambalanced)
 p_age2 (ambalanced)
 p_cardio (ambalanced)
 p_obeso (ambalanced)
 p_rene (ambalanced)

2. at: b_day_malattia = 1
 death_30 (ambalanced)
 p_age2 (ambalanced)
 p_cardio (ambalanced)
 p_obeso (ambalanced)
 p_rene (ambalanced)

3. at: b_day_malattia = 2
 death_30 (ambalanced)
 p_age2 (ambalanced)
 p_cardio (ambalanced)
 p_obeso (ambalanced)
 p_rene (ambalanced)

4. at: b_day_malattia = 3
 death_30 (ambalanced)
 p_age2 (ambalanced)
 p_cardio (ambalanced)
 p_obeso (ambalanced)
 p_rene (ambalanced)

5. at: b_day_malattia = 4
 death_30 (ambalanced)
 p_age2 (ambalanced)
 p_cardio (ambalanced)
 p_obeso (ambalanced)
6. st : b_day_mala-a = 5
 death_30
 p_age2
 p_cardio
 p_obeso
 p_rene

7. st : b_day_mala-a = 6
 death_30
 p_age2
 p_cardio
 p_obeso
 p_rene

8. st : b_day_mala-a = 7
 death_30
 p_age2
 p_cardio
 p_obeso
 p_rene

9. st : b_day_mala-a = 8
 death_30
 p_age2
 p_cardio
 p_obeso
 p_rene

10. st : b_day_mala-a = 9
 death_30
 p_age2
 p_cardio
 p_obeso
 p_rene

11. st : b_day_mala-a = 10
 death_30
 p_age2
 p_cardio
 p_obeso
 p_rene

12. st : b_day_mala-a = 11
 death_30
 p_age2
 p_cardio
 p_obeso
 p_rene

13. st : b_day_mala-a = 12
 death_30
 p_age2
 p_cardio
 p_obeso
 p_rene

14. st : b_day_mala-a = 13
 death_30
 p_age2
 p_cardio
 p_obeso
 p_rene

15. st : b_day_mala-a = 14
 death_30
 p_age2
 p_cardio
 p_obeso
 p_rene

16. st : b_day_mala-a = 15
 death_30
 p_age2
 p_cardio
 p_obeso
 p_rene

17. st : b_day_mala-a = 16
 death_30
 p_age2
 p_cardio
 p_obeso
 p_rene

18. st : b_day_mala-a = 17
 death_30
 p_age2
 p_cardio
 p_obeso
 p_rene

19. st : b_day_mala-a = 18
 death_30
 p_age2
 p_cardio
 p_obeso
 p_rene

20. st : b_day_mala-a = 19
 death_30
 p_age2
 p_cardio
 p_obeso
 p_rene

21. st : b_day_mala-a = 20
 death_30
 p_age2
 p_cardio
 p_obeso
 p_rene
Model Results

Model Details

| Margin | Std. Err. | P>|z| | 95% Conf. Interval |
|--------|-----------|-----|---------------------|

Variable Coefficients

| Variable | Coefficient | Standard Error | z-score | P>|z| | 95% Conf. Interval |
|----------|-------------|----------------|---------|-----|---------------------|

Model Summary

- **R-squared:** 0.85
- **Adjusted R-squared:** 0.84
- **Log-likelihood:** -2684.213
- **AIC:** 5372.426
- **BIC:** 5372.426

Model Comparison

- **Model 1:**
 - R-squared: 0.83
 - Adjusted R-squared: 0.81
 - Log-likelihood: -2684.213
 - AIC: 5372.426
 - BIC: 5372.426

- **Model 2:**
 - R-squared: 0.84
 - Adjusted R-squared: 0.82
 - Log-likelihood: -2684.213
 - AIC: 5372.426
 - BIC: 5372.426

Model Selection

- Model 1: Equivalent to Model 2 with one degree of freedom difference.
- Model 2 selected for its slightly better fit and simpler interpretation.

Variable Selection

- **Age**: 0.54
- **Sex**: 0.56
- **BMI**: 0.56
- **Smoking**: 0.57
- **Drinking**: 0.58

Model Interpretation

- The model indicates a strong association between the dependent variable and the independent variables.
- The coefficients suggest that an increase in age, BMI, smoking, and drinking is associated with a decrease in the dependent variable.
- Further analysis is required to understand the underlying mechanisms.

Model Validation

- **Cross-validation:** 0.86
- **Residual analysis:** No significant patterns

Model Assessment

- The model appears to be well-calibrated and stable.

Model Implementation

- The model can be used for predictive purposes and further research.

Model Limitations

- **Overfitting:** Risk of overfitting due to a large number of variables.
- **Interpretability:** Interpretability may be challenging due to the complexity of the model.
6. _at : b_day_mala = 5
 death_30 (asbalanced)
 p_age2 (asbalanced)
 p_cardio (asbalanced)
 p_obeso (asbalanced)
 p_rene (asbalanced)

7. _at : b_day_mala = 6
 death_30 (asbalanced)
 p_age2 (asbalanced)
 p_cardio (asbalanced)
 p_obeso (asbalanced)
 p_rene (asbalanced)

8. _at : b_day_mala = 7
 death_30 (asbalanced)
 p_age2 (asbalanced)
 p_cardio (asbalanced)
 p_obeso (asbalanced)
 p_rene (asbalanced)

9. _at : b_day_mala = 8
 death_30 (asbalanced)
 p_age2 (asbalanced)
 p_cardio (asbalanced)
 p_obeso (asbalanced)
 p_rene (asbalanced)

10._at : b_day_mala = 9
 death_30 (asbalanced)
 p_age2 (asbalanced)
 p_cardio (asbalanced)
 p_obeso (asbalanced)
 p_rene (asbalanced)

11._at : b_day_mala = 10
 death_30 (asbalanced)
 p_age2 (asbalanced)
 p_cardio (asbalanced)
 p_obeso (asbalanced)
 p_rene (asbalanced)

12._at : b_day_mala = 11
 death_30 (asbalanced)
 p_age2 (asbalanced)
 p_cardio (asbalanced)
 p_obeso (asbalanced)
 p_rene (asbalanced)

13._at : b_day_mala = 12
 death_30 (asbalanced)
 p_age2 (asbalanced)
 p_cardio (asbalanced)
 p_obeso (asbalanced)
 p_rene (asbalanced)

14._at : b_day_mala = 13
 death_30 (asbalanced)
 p_age2 (asbalanced)
 p_cardio (asbalanced)
 p_obeso (asbalanced)
 p_rene (asbalanced)

15._at : b_day_mala = 14
 death_30 (asbalanced)
 p_age2 (asbalanced)
 p_cardio (asbalanced)
 p_obeso (asbalanced)
 p_rene (asbalanced)

16._at : b_day_mala = 15
 death_30 (asbalanced)
 p_age2 (asbalanced)
 p_cardio (asbalanced)
 p_obeso (asbalanced)
 p_rene (asbalanced)

17._at : b_day_mala = 16
 death_30 (asbalanced)
 p_age2 (asbalanced)
 p_cardio (asbalanced)
 p_obeso (asbalanced)
 p_rene (asbalanced)

18._at : b_day_mala = 17
 death_30 (asbalanced)
 p_age2 (asbalanced)
 p_cardio (asbalanced)
 p_obeso (asbalanced)
 p_rene (asbalanced)

19._at : b_day_mala = 18
 death_30 (asbalanced)
 p_age2 (asbalanced)
 p_cardio (asbalanced)
 p_obeso (asbalanced)
 p_rene (asbalanced)

20._at : b_day_mala = 19
 death_30 (asbalanced)
 p_age2 (asbalanced)
 p_cardio (asbalanced)
 p_obeso (asbalanced)
 p_rene (asbalanced)

21._at : b_day_mala = 20
 death_30 (asbalanced)
User: Chiara Montaldo

19/05/20, 17:13 Page 7 of 56

```plaintext
> r)
> . mixed lym_ln_malattia##i.death_30 i.p_age2 i.p_cardio i.p_obeso i.p_rene || progr:b_day_malattia, cov(unst
> . use "/Users/Chiara/Documents/fileDO 15 Maggio/fileDO/coorte_long_emocromo_anemia_1.dta", clear
> . **** modelling
> . (file /Users/Chiara/Documents/fileDO 15 Maggio/BOX_LYM.gph saved)
> . graph save "Graph" "/Users/Chiara/Documents/fileDO 15 Maggio/BOX_LYM.gph", replace
> . (Cells per mmc) yline(200, lcolor(red)) legend(off)
> . graph box lym, over(death_30, label(nolabel)) over(b_day_malattia) asyvars box(1, fcolor(navy))  nooutsides ytitle
> . replace lym=lym*1000
> . *********Graph box**************************************
> . *keep if lym!=.
> . (file /Users/Chiara/Documents/fileDO 15 Maggio/Graph_NEU.gph saved)
> . graph save "Graph" "/Users/Chiara/Documents/fileDO 15 Maggio/Graph_NEU.gph", replace
> . eu .gph", ycomm   xsize(8) ysize(4)
> . gr combine "/Users/Chiara/Documents/fileDO 15 Maggio/Marg_NEU.gph" "/Users/Chiara/Documents/fileDO 15 Maggio/BOX n
> . ***combine*****
> . (nonsurvivor vs survivor) 22
> . death_30@_at
> . Joint
> . Delta-method
> . Contrast Std. Err.     [95% Conf. Interval]
> . Delta-method
> . df   chi2     P>chi2
> . df        chi2     P>chi2
> . 80    - graph save "Graph" "/Users/Chiara/Documents/fileDO 15 Maggio/Marg_NEU.gph", replace
> . file/Users/Chiara/Documents/fileDO 15 Maggio/Marg_NEU.gph saved
> . 81    - ***combine****
> . 82    - gr combine "/Users/Chiara/Documents/fileDO 15 Maggio/Marg_NEU.gph" "/Users/Chiara/Documents/fileDO 15 Maggio/BOX n
> . > eu_gph", ycomm   xsize(8) ysize(4)
> . 83    - graph save "Graph" "/Users/Chiara/Documents/fileDO 15 Maggio/Marg_NEU.gph", replace
> . file/Users/Chiara/Documents/fileDO 15 Maggio/Marg_NEU.gph saved
> . 84    -
> . 85    -
> . 86    -
> . 87    - analysis: Lymphocytes
> . 88    -
> . 89    - **** scatter no model
> . 90    - use "/Users/Chiara/Documents/fileDO 15 Maggio/fileDO0/coorte_long_emocromo_anemia_1.dta", clear
> . 91    - scatter lym_b_day_malattia (if death_30==1, mcolor(red) legend(off) title("lymphocytes variation over time")): xtitle
> . > le('day since onset') ytitle('Cells per mmc X 1000') xlabel(0(5)30): scatter lym_b_day_malattia if death_30==0, nc
> . 92    - drop if lym==.
> . 93    - *********** graph box **************************************
> . 94    - replace lym=lym*1000
> . 95    - (1,005 real changes made)
> . 96    - - graph box lym,over(death_30, label(nolabel)) over(b_day_malattia) asyvars box(1, fcolor(navy)) nooutsides ytitle
> . > le('day since onset') ytitle('Cells per mmc X 1000') xlabel(0(5)30): scatter lym_b_day_malattia if death_30==0, mc
> . 97    - use "/Users/Chiara/Documents/fileDO 15 Maggio/fileDO0/coorte_long_emocromo_anemia_1.dta", clear
> . 98    - file/Users/Chiara/Documents/fileDO 15 Maggio/Marg_NEU.gph", replace
> . 99    - **** modelling
> . 100    - use "/Users/Chiara/Documents/fileDO 15 Maggio/fileDO0/coorte_long_emocromo_anemia_1.dta", clear
> . 101    - mixed lym_in_b_day_malattia##1:death_30 i.p_age2 i.p_cardio i.p_obeso i.p_rene || progr:b_day_malattia, convunat
> . > r)
```
Performing EM optimization:
Performing gradient-based optimization:
Iteration 0: Log likelihood = -1068.468
Iteration 1: Log likelihood = -1068.451
Iteration 2: Log likelihood = -1068.451
Computing standard errors:
Mixed-effects ML regression
Number of obs = 1,805
Number of groups = 379
Obs per group:
min = 1
avg = 4.8
max = 22
Valid ch2(7) = 103.79
Log likelihood = -1068.451

| | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|----------|--------|-----------|-------|------|----------------------|
| lym_ln | -0.156949 | 0.0030565 | 5.13 | 0.000 | (-0.2016854) |
| death_30 | -1.994586 | 0.1093057 | -1.82 | 0.068 | (-4.156939) |

Random-effects Parameters
Estimate Std. Err. [95% Conf. Interval]
progr: Unstructured
var(b_day_malattia) 0.0010352 0.0001846 0.0007298 0.0014684
var(_cons) 0.2167147 0.0315218 0.1629591 0.2882027
cov(b_day_malattia,_cons) -0.0071685 0.0020917 -0.0112683 -0.0030688

LR test vs. linear model: ch2(3) = 1070.45 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.

101. est store linear
102. mixed lym_ln c.b_day_malattia##c.b_day_malattia##i.death_30 i.p_age2 i.p_cardio i.p_obeso i.p_rene || progr:b_day_malattia, cov(unstr)
Performing EM optimization:
Performing gradient-based optimization:
Iteration 0: Log likelihood = -1002.984
Iteration 1: Log likelihood = -1002.959
Iteration 2: Log likelihood = -1002.959
Computing standard errors:
Mixed-effects ML regression
Number of obs = 1,805
Number of groups = 379
Obs per group:
min = 1
avg = 4.8
max = 22
Valid ch2(9) = 246.54
Log likelihood = -1002.959

| | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|----------|--------|-----------|-------|------|----------------------|
| b_day_malattia | -0.0774067 | 0.0091223 | -8.49 | 0.000 | (-0.095286) (-0.0595274) |
| death_30 | -0.2060737 | 0.1407678 | -1.46 | 0.143 | (-0.483868) (-0.028281) |

Random-effects Parameters
Estimate Std. Err. [95% Conf. Interval]
progr: Unstructured
var(b_day_malattia) 0.0001729 0.0001971 0.0001729 0.0001773
var(_cons) 0.7347461 0.0479779 0.6407734 0.8397198
cov(b_day_malattia,_cons) -0.0281842 0.0233644 -0.073444 -0.0030048

LR test vs. linear model: ch2(3) = 1070.45 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.
19/05/20, 17:13 Page 9 of 56

User: Chiara Montaldo

```
19/05/20, 17:13 Page 9 of 56

User: Chiara Montaldo

```

1.9158417 .0284008 .1433323 .2562335
cov(b_day_malattia,_cons)
-0.06848 .0020182 -.0108237 -.0029123

var(_cons)
.104534 .0042586 .0965119 .1132229
var(Residual)
.104534 .0042586 .0965119 .1132229

LR test vs. linear model: chi2(3) = 1160.20 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.

103. est store quadratic
104. lrtest linear quadratic
Likelihood-ratio test LR chi2(2) = 130.98 (Assumption: linear nested in quadratic) Prob > chi2 = 0.0000

105. ***margins***
106. quiet: mixed lym_ln c.b_day_malattia##c.b_day_malattia##i.death_30 i.p_age2 i.p_cardio i.p_obeso i.p_rene || prog > r:b_day_malattia, cov(unstr)

107. margins death_30, at(b_day_malattia=(0(1)21)) expression(exp(predict(xb))) asbalanced
Adjusted predictions Number of obs = 1,805
Expression : exp(predict(xb))
1._at : b_day_mala~a = 0
 death_30 (asbalanced)
p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

2._at : b_day_mala~a = 1
 death_30 (asbalanced)
p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

3._at : b_day_mala~a = 2
 death_30 (asbalanced)
p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

4._at : b_day_mala~a = 3
 death_30 (asbalanced)
p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

5._at : b_day_mala~a = 4
 death_30 (asbalanced)
p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

6._at : b_day_mala~a = 5
 death_30 (asbalanced)
p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

7._at : b_day_mala~a = 6
 death_30 (asbalanced)
p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

8._at : b_day_mala~a = 7
 death_30 (asbalanced)
p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

9._at : b_day_mala~a = 8
 death_30 (asbalanced)
p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

10._at : b_day_mala~a = 9
 death_30 (asbalanced)
p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

11._at : b_day_mala~a = 10
 death_30 (asbalanced)
p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

12._at : b_day_mala~a = 11
 death_30 (asbalanced)
p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
| | Delta-method | Margin | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|----|-------------|--------|-----------|--------|--------|---------------------|
| 12 | at = b_day_mala = 13 | death_30 | 1237.064 | 121.8415 | 10.89 | 0.000 | [1088.259, 1565.869] |
| 14 | at = b_day_mala = 14 | death_30 | 1232.982 | 107.4015 | 11.48 | 0.000 | [1022.479, 1443.485] |
| 15 | at = b_day_mala = 18 | death_30 | 1154.480 | 96.18505 | 12.00 | 0.000 | [965.9605, 1342.999] |
| 16 | at = b_day_mala = 15 | death_30 | 1089.383 | 87.54858 | 12.44 | 0.000 | [917.7906, 1260.975] |
| 17 | at = b_day_mala = 20 | death_30 | 1035.951 | 80.97907 | 12.79 | 0.000 | [877.2349, 1194.667] |
| 18 | at = b_day_mala = 21 | death_30 | 992.8017 | 76.06870 | 13.05 | 0.000 | [796.7098, 1188.894] |
| 19 | at = b_day_mala = 19 | death_30 | 933.2604 | 70.01245 | 13.33 | 0.000 | [744.0385, 1122.482] |
| 20 | at = b_day_mala = 22 | death_30 | 959.3525 | 73.24051 | 13.05 | 0.000 | [816.7595, 1100.939] |

Note: The table above shows the results of a survival analysis with the Delta-method. The columns include the Delta-method, Margin, Std. Err., z-score, P>|z|, and the 95% confidence interval.
Observations (16 non-survivors, 17 survivors)

<table>
<thead>
<tr>
<th>Group</th>
<th>Cells per mmc</th>
<th>Variance</th>
<th>Mean</th>
<th>p-value</th>
<th>Lower CI</th>
<th>Upper CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-survivor 1</td>
<td>519.9626</td>
<td>57.49391</td>
<td>9.04</td>
<td>0.000</td>
<td>407.2766</td>
<td>632.6486</td>
</tr>
<tr>
<td>Survivor 1</td>
<td>1036.766</td>
<td>80.23053</td>
<td>12.92</td>
<td>0.000</td>
<td>879.5175</td>
<td>1194.015</td>
</tr>
<tr>
<td>Non-survivor 2</td>
<td>532.0345</td>
<td>61.70902</td>
<td>8.62</td>
<td>0.000</td>
<td>411.0871</td>
<td>652.982</td>
</tr>
<tr>
<td>Survivor 2</td>
<td>1090.383</td>
<td>85.33365</td>
<td>12.78</td>
<td>0.000</td>
<td>923.1324</td>
<td>1257.634</td>
</tr>
<tr>
<td>Non-survivor 3</td>
<td>548.9201</td>
<td>67.24221</td>
<td>8.16</td>
<td>0.000</td>
<td>417.1278</td>
<td>680.7124</td>
</tr>
<tr>
<td>Survivor 3</td>
<td>1155.692</td>
<td>91.7802</td>
<td>12.59</td>
<td>0.000</td>
<td>975.8058</td>
<td>1335.578</td>
</tr>
<tr>
<td>Non-survivor 4</td>
<td>571.0579</td>
<td>74.44802</td>
<td>7.67</td>
<td>0.000</td>
<td>425.1424</td>
<td>716.9733</td>
</tr>
<tr>
<td>Survivor 4</td>
<td>1234.438</td>
<td>99.9172</td>
<td>12.35</td>
<td>0.000</td>
<td>1038.604</td>
<td>1430.272</td>
</tr>
<tr>
<td>Non-survivor 5</td>
<td>599.0357</td>
<td>83.76392</td>
<td>7.15</td>
<td>0.000</td>
<td>434.8615</td>
<td>763.21</td>
</tr>
<tr>
<td>Survivor 5</td>
<td>1328.805</td>
<td>110.203</td>
<td>12.06</td>
<td>0.000</td>
<td>1112.811</td>
<td>1544.799</td>
</tr>
<tr>
<td>Non-survivor 6</td>
<td>633.6172</td>
<td>95.72881</td>
<td>6.62</td>
<td>0.000</td>
<td>445.9929</td>
<td>821.3532</td>
</tr>
<tr>
<td>Survivor 6</td>
<td>1441.511</td>
<td>123.2375</td>
<td>11.70</td>
<td>0.000</td>
<td>1199.97</td>
<td>1683.052</td>
</tr>
</tbody>
</table>

Stata Code

108. marginsplot, ytitle('Cells per mmc') xlab(0(1)21) ylab(0(1000)3000) yline(200, lcolor(red)) title('') legend(off)

109. margins ar.death_30, at(b_day_malattia=(0(1)21)) expression(exp(predict(xb))) asbal

Variables that uniquely identify margins: b_day_malattia death_30

- **Expression**: exp(predict(xb))
- **Number of obs**: 1,805

Contrasts of adjusted predictions

1. **at**: b_day_malattia = 0
 - death_30 (asbalanced)
 - p_age2 (asbalanced)
 - p_cardio (asbalanced)
 - p_obeso (asbalanced)
 - p_rene (asbalanced)

2. **at**: b_day_malattia = 1
 - death_30 (asbalanced)
 - p_age2 (asbalanced)
 - p_cardio (asbalanced)
 - p_obeso (asbalanced)
 - p_rene (asbalanced)

3. **at**: b_day_malattia = 2
 - death_30 (asbalanced)
 - p_age2 (asbalanced)
 - p_cardio (asbalanced)
 - p_obeso (asbalanced)
 - p_rene (asbalanced)

4. **at**: b_day_malattia = 3
 - death_30 (asbalanced)
 - p_age2 (asbalanced)
 - p_cardio (asbalanced)
 - p_obeso (asbalanced)
 - p_rene (asbalanced)

5. **at**: b_day_malattia = 4
 - death_30 (asbalanced)
 - p_age2 (asbalanced)
 - p_cardio (asbalanced)
 - p_obeso (asbalanced)
 - p_rene (asbalanced)

6. **at**: b_day_malattia = 5
 - death_30 (asbalanced)
 - p_age2 (asbalanced)
 - p_cardio (asbalanced)
 - p_obeso (asbalanced)
 - p_rene (asbalanced)

7. **at**: b_day_malattia = 6
 - death_30 (asbalanced)
 - p_age2 (asbalanced)
 - p_cardio (asbalanced)
 - p_obeso (asbalanced)
 - p_rene (asbalanced)

8. **at**: b_day_malattia = 7
 - death_30 (asbalanced)
 - p_age2 (asbalanced)
 - p_cardio (asbalanced)
 - p_obeso (asbalanced)
 - p_rene (asbalanced)

9. **at**: b_day_malattia = 8
 - death_30 (asbalanced)
 - p_age2 (asbalanced)
 - p_cardio (asbalanced)
 - p_obeso (asbalanced)
 - p_rene (asbalanced)

10. **at**: b_day_malattia = 9
 - death_30 (asbalanced)
 - p_age2 (asbalanced)
 - p_cardio (asbalanced)
 - p_obeso (asbalanced)
 - p_rene (asbalanced)

11. **at**: b_day_malattia = 10
 - death_30 (asbalanced)
 - p_age2 (asbalanced)
 - p_cardio (asbalanced)
 - p_obeso (asbalanced)
 - p_rene (asbalanced)

12. **at**: b_day_malattia = 11
 - death_30 (asbalanced)
 - p_age2 (asbalanced)
 - p_cardio (asbalanced)
 - p_obeso (asbalanced)
 - p_rene (asbalanced)
13._at : \(\text{b}_{\text{day}}_{\text{mala}} \) = 12
- \(\text{death}_{30} \) (asbalanced)
- \(\text{p}_{\text{age2}} \) (asbalanced)
- \(\text{p}_{\text{cardio}} \) (asbalanced)
- \(\text{p}_{\text{obeso}} \) (asbalanced)
- \(\text{p}_{\text{rene}} \) (asbalanced)

14._at : \(\text{b}_{\text{day}}_{\text{mala}} \) = 13
- \(\text{death}_{30} \) (asbalanced)
- \(\text{p}_{\text{age2}} \) (asbalanced)
- \(\text{p}_{\text{cardio}} \) (asbalanced)
- \(\text{p}_{\text{obeso}} \) (asbalanced)
- \(\text{p}_{\text{rene}} \) (asbalanced)

15._at : \(\text{b}_{\text{day}}_{\text{mala}} \) = 14
- \(\text{death}_{30} \) (asbalanced)
- \(\text{p}_{\text{age2}} \) (asbalanced)
- \(\text{p}_{\text{cardio}} \) (asbalanced)
- \(\text{p}_{\text{obeso}} \) (asbalanced)
- \(\text{p}_{\text{rene}} \) (asbalanced)

16._at : \(\text{b}_{\text{day}}_{\text{mala}} \) = 15
- \(\text{death}_{30} \) (asbalanced)
- \(\text{p}_{\text{age2}} \) (asbalanced)
- \(\text{p}_{\text{cardio}} \) (asbalanced)
- \(\text{p}_{\text{obeso}} \) (asbalanced)
- \(\text{p}_{\text{rene}} \) (asbalanced)

17._at : \(\text{b}_{\text{day}}_{\text{mala}} \) = 16
- \(\text{death}_{30} \) (asbalanced)
- \(\text{p}_{\text{age2}} \) (asbalanced)
- \(\text{p}_{\text{cardio}} \) (asbalanced)
- \(\text{p}_{\text{obeso}} \) (asbalanced)
- \(\text{p}_{\text{rene}} \) (asbalanced)

18._at : \(\text{b}_{\text{day}}_{\text{mala}} \) = 17
- \(\text{death}_{30} \) (asbalanced)
- \(\text{p}_{\text{age2}} \) (asbalanced)
- \(\text{p}_{\text{cardio}} \) (asbalanced)
- \(\text{p}_{\text{obeso}} \) (asbalanced)
- \(\text{p}_{\text{rene}} \) (asbalanced)

19._at : \(\text{b}_{\text{day}}_{\text{mala}} \) = 18
- \(\text{death}_{30} \) (asbalanced)
- \(\text{p}_{\text{age2}} \) (asbalanced)
- \(\text{p}_{\text{cardio}} \) (asbalanced)
- \(\text{p}_{\text{obeso}} \) (asbalanced)
- \(\text{p}_{\text{rene}} \) (asbalanced)

20._at : \(\text{b}_{\text{day}}_{\text{mala}} \) = 19
- \(\text{death}_{30} \) (asbalanced)
- \(\text{p}_{\text{age2}} \) (asbalanced)
- \(\text{p}_{\text{cardio}} \) (asbalanced)
- \(\text{p}_{\text{obeso}} \) (asbalanced)
- \(\text{p}_{\text{rene}} \) (asbalanced)

21._at : \(\text{b}_{\text{day}}_{\text{mala}} \) = 20
- \(\text{death}_{30} \) (asbalanced)
- \(\text{p}_{\text{age2}} \) (asbalanced)
- \(\text{p}_{\text{cardio}} \) (asbalanced)
- \(\text{p}_{\text{obeso}} \) (asbalanced)
- \(\text{p}_{\text{rene}} \) (asbalanced)

22._at : \(\text{b}_{\text{day}}_{\text{mala}} \) = 21
- \(\text{death}_{30} \) (asbalanced)
- \(\text{p}_{\text{age2}} \) (asbalanced)
- \(\text{p}_{\text{cardio}} \) (asbalanced)
- \(\text{p}_{\text{obeso}} \) (asbalanced)
- \(\text{p}_{\text{rene}} \) (asbalanced)

Table: \(\text{death}_{30} \) at (nonsurvivor vs survivor) 12

<table>
<thead>
<tr>
<th></th>
<th>df</th>
<th>chi2</th>
<th>P > chi2</th>
</tr>
</thead>
<tbody>
<tr>
<td>nonsurvivor vs survivor</td>
<td>1</td>
<td>4.55</td>
<td>0.0329</td>
</tr>
<tr>
<td>nonsurvivor vs survivor</td>
<td>2</td>
<td>7.02</td>
<td>0.0081</td>
</tr>
<tr>
<td>nonsurvivor vs survivor</td>
<td>3</td>
<td>10.36</td>
<td>0.0013</td>
</tr>
<tr>
<td>nonsurvivor vs survivor</td>
<td>4</td>
<td>14.61</td>
<td>0.0001</td>
</tr>
<tr>
<td>nonsurvivor vs survivor</td>
<td>5</td>
<td>19.37</td>
<td>0.0000</td>
</tr>
<tr>
<td>nonsurvivor vs survivor</td>
<td>6</td>
<td>24.13</td>
<td>0.0000</td>
</tr>
<tr>
<td>nonsurvivor vs survivor</td>
<td>7</td>
<td>28.33</td>
<td>0.0000</td>
</tr>
<tr>
<td>nonsurvivor vs survivor</td>
<td>8</td>
<td>31.67</td>
<td>0.0000</td>
</tr>
<tr>
<td>nonsurvivor vs survivor</td>
<td>9</td>
<td>34.12</td>
<td>0.0000</td>
</tr>
<tr>
<td>nonsurvivor vs survivor</td>
<td>10</td>
<td>35.88</td>
<td>0.0000</td>
</tr>
<tr>
<td>nonsurvivor vs survivor</td>
<td>11</td>
<td>37.13</td>
<td>0.0000</td>
</tr>
<tr>
<td>nonsurvivor vs survivor</td>
<td>12</td>
<td>38.94</td>
<td>0.0000</td>
</tr>
<tr>
<td>nonsurvivor vs survivor</td>
<td>13</td>
<td>38.70</td>
<td>0.0000</td>
</tr>
<tr>
<td>nonsurvivor vs survivor</td>
<td>14</td>
<td>39.11</td>
<td>0.0000</td>
</tr>
<tr>
<td>nonsurvivor vs survivor</td>
<td>15</td>
<td>39.25</td>
<td>0.0000</td>
</tr>
<tr>
<td>nonsurvivor vs survivor</td>
<td>16</td>
<td>39.01</td>
<td>0.0000</td>
</tr>
<tr>
<td>nonsurvivor vs survivor</td>
<td>17</td>
<td>38.36</td>
<td>0.0000</td>
</tr>
<tr>
<td>nonsurvivor vs survivor</td>
<td>18</td>
<td>37.19</td>
<td>0.0000</td>
</tr>
<tr>
<td>nonsurvivor vs survivor</td>
<td>19</td>
<td>35.49</td>
<td>0.0000</td>
</tr>
<tr>
<td>nonsurvivor vs survivor</td>
<td>20</td>
<td>33.29</td>
<td>0.0000</td>
</tr>
<tr>
<td>nonsurvivor vs survivor</td>
<td>21</td>
<td>30.76</td>
<td>0.0000</td>
</tr>
<tr>
<td>nonsurvivor vs survivor</td>
<td>22</td>
<td>27.87</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Delta-method

<table>
<thead>
<tr>
<th>Contrast</th>
<th>Std. Err.</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>nonsurvivor vs survivor</td>
<td>-330.1628</td>
<td>55.7546 -633.4764 -26.84931</td>
</tr>
<tr>
<td>nonsurvivor vs survivor</td>
<td>-332.2508</td>
<td>125.6147 -578.0591 -86.4425</td>
</tr>
<tr>
<td>nonsurvivor vs survivor</td>
<td>-333.8635</td>
<td>103.6061 -536.9277 -130.7993</td>
</tr>
</tbody>
</table>
(nonsurvivor vs survivor) 4 -335.5297 87.78817 -507.5916 -163.4681
(nonsurvivor vs survivor) 5 -337.6626 74.71533 -488.0239 -187.3033
(nonsurvivor vs survivor) 6 -360.5966 69.32495 -476.49 -244.7019
(nonsurvivor vs survivor) 7 -344.6123 64.74366 -471.5076 -217.7275
(nonsurvivor vs survivor) 8 -349.9643 62.10966 -471.8555 -228.0729
(nonsurvivor vs survivor) 9 -356.8925 61.99486 -476.4354 -237.1695
(nonsurvivor vs survivor) 10 -365.8296 61.99486 -485.2846 -256.9446
(nonsurvivor vs survivor) 11 -376.6461 61.78927 -497.5585 -255.7371
(nonsurvivor vs survivor) 12 -389.6024 63.71631 -513.4757 -265.7922
(nonsurvivor vs survivor) 13 -405.5215 65.19049 -533.3026 -277.7605
(nonsurvivor vs survivor) 14 -424.4682 67.82286 -557.1109 -291.4542
(nonsurvivor vs survivor) 15 -444.9562 71.34326 -586.7864 -307.1259
(nonsurvivor vs survivor) 16 -473.4903 75.79296 -622.0148 -324.9388
(nonsurvivor vs survivor) 17 -504.7319 81.49662 -644.6467 -364.0152
(nonsurvivor vs survivor) 18 -541.6611 88.78021 -675.4021 -407.9202
(nonsurvivor vs survivor) 19 -586.6328 98.16043 -716.9825 -448.2822
(nonsurvivor vs survivor) 20 -635.6025 110.1238 -751.4212 -521.7946
(nonsurvivor vs survivor) 21 -685.1881 120.1656 -801.0643 -555.3017
(nonsurvivor vs survivor) 22 -745.7344 140.0545 -880.1036 -611.3632

110 graph save "Graph" /Users/Chiara/Documents/fileDO 15 Maggio/Mapg_LVM.gph, replace
 (file /Users/Chiara/Documents/fileDO 15 Maggio/Mapg_LVM.gph saved)

111 12 **combine****
112 . use /Users/Chiara/Documents/fileDO 15 Maggio/Mapg_LVM.gph, clear
113 . *** modelling
114 . (file /Users/Chiara/Documents/fileDO 15 Maggio/BOX_MONO.gph saved)
115 . 115 116 ***combine****
117 . gr combine /Users/Chiara/Documents/fileDO 15 Maggio/Mapg_LVM.gph " /Users/Chiara/Documents/fileDO 15 Maggio/Mapg_LVM
> _IR.gph", ycomm xsize(8) ysize(4)
118 . ***combine*****
119 . 120
121 . 122 . *** marginal Noncytes 0.0338711 .003426 9.89 0.000 .0271563 .040586
123 . 124 . **** scatter no model
125 . 126 . 127 . 128 . 129 . 130 . 131 . 132 . 133 . 134 . 135 .
136 . Mixed-effects NC regression Number of obs = 1,805
137 . Group variable: progr Number of groups = 379
138 . One per group: min = 1
139 . avg = 4.8
140 . max = 22
141 . Valid chi2(3) = 131.44
142 . Log likelihood = -1224.808
143 . Prob > chi2 = 0.0000
144
145 . 146 . 147 . 148 . 149
150 . (nonsurvivor vs survivor) 4 -335.5297 87.78817 -507.5916 -163.4681
151 . (nonsurvivor vs survivor) 5 -337.6626 74.71533 -488.0239 -187.3033
152 . (nonsurvivor vs survivor) 6 -360.5966 69.32495 -476.49 -244.7019
153 . (nonsurvivor vs survivor) 7 -344.6123 64.74366 -471.5076 -217.7275
154 . (nonsurvivor vs survivor) 8 -349.9643 62.10966 -471.8555 -228.0729
155 . (nonsurvivor vs survivor) 9 -356.8925 61.99486 -476.4354 -237.1695
156 . (nonsurvivor vs survivor) 10 -365.8296 61.99486 -485.2846 -256.9446
157 . (nonsurvivor vs survivor) 11 -376.6461 61.78927 -497.5585 -255.7371
158 . (nonsurvivor vs survivor) 12 -389.6024 63.71631 -513.4757 -265.7922
159 . (nonsurvivor vs survivor) 13 -405.5215 65.19049 -533.3026 -277.7605
160 . (nonsurvivor vs survivor) 14 -424.4682 67.82286 -557.1109 -291.4542
161 . (nonsurvivor vs survivor) 15 -444.9562 71.34326 -586.7864 -307.1259
162 . (nonsurvivor vs survivor) 16 -473.4903 75.79296 -622.0148 -324.9388
163 . (nonsurvivor vs survivor) 17 -504.7319 81.49662 -644.6467 -364.0152
164 . (nonsurvivor vs survivor) 18 -541.6611 88.78021 -675.4021 -407.9202
165 . (nonsurvivor vs survivor) 19 -586.6328 98.16043 -716.9825 -448.2822
166 . (nonsurvivor vs survivor) 20 -635.6025 110.1238 -751.4212 -521.7946
167 . (nonsurvivor vs survivor) 21 -685.1881 120.1656 -801.0643 -555.3017
168 . (nonsurvivor vs survivor) 22 -745.7344 140.0545 -880.1036 -611.3632

Performing EM optimization:
Performing gradient-based optimization:
Iteration 0: log likelihood = -1234.8149
Iteration 1: log likelihood = -1224.808
Iteration 2: log likelihood = -1224.808

Computing standard errors:
Mixed-effects NC regression Number of obs = 1,805
Group variable: progr Number of groups = 379
One per group: min = 1
avg = 4.8
max = 22
Valid chi2(3) = 131.44
Log likelihood = -1224.808
Prob > chi2 = 0.0000

User: Chiara Montaldo

19/05/20, 17:13
<table>
<thead>
<tr>
<th>var(Residual)</th>
<th>.1478748</th>
<th>.005912</th>
<th>.1367298</th>
<th>.1599283</th>
</tr>
</thead>
<tbody>
<tr>
<td>LR test vs. linear model: chi2(3) = 695.19</td>
<td>Prob > chi2 = 0.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note: LR test is conservative and provided only for reference.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

136. est store linear

137. mixed mono_ln c.b_day_malattia##c.b_day_malattia##i.death_30 i.p_age2 i.p_cardio i.p_obeso i.p_rene|| progr:b_day > _malattia, cov(unstr)

Performing EM optimization:
Performing gradient-based optimization:
Iteration 0: log likelihood = -1214.9499
Iteration 1: log likelihood = -1214.9415
Iteration 2: log likelihood = -1214.9415
Computing standard errors:

Mixed-effects ML regression
Number of obs = 1,805
Group variable: progr
Number of groups = 379
Obs per group:
min = 1
avg = 4.8
max = 22
Valid chi2(9) = 181.99

Log likelihood = -1214.9415

mono_ln
Coef. Std. Err. z P>|z| [95% Conf. Interval]
b_day_malattia -.0175094 .0108672 -1.61 0.107 -.0388086 .0037899
c.b_day_malattia#c.b_day_malattia .0021106 .0004208 5.02 0.000 .0012857 .0029354
dead_30 nonsurvivor -1.891192 .1752773 -10.8 0.000 -.2362564 .1544181
dead_30#c.b_day_malattia nonsurvivor -0.1891192 .1752773 -1.08 0.281 -.5326564 .1544181
dead_30#c.b_day_malattia#c.b_day_malattia nonsurvivor -0.016233 .0275329 -0.59 0.555 -.0701965 .0377305
dead_30#c.b_day_malattia##c.b_day_malattia##i.death_30##i.p_age2#c.b_day_malattia##i.p_cardio##i.p_obeso##i.p_rene##progr nonsurvivor -.016233 .0275329 -0.59 0.555 -.0701965 .0377305
dead_30#c.b_day_malattia##i.p_age2##i.p_cardio##i.p_obeso##i.p_rene##progr nonsurvivor -.016233 .0275329 -0.59 0.555 -.0701965 .0377305

_1.p_age2
-1.094966 .159299 -6.78 0.000 -.395541 -.894391
_1.p_cardio
-1.00846 .161001 -6.28 0.000 -.3128982 -.6955632
_1.p_obeso
-1.00846 .161001 -6.28 0.000 -.3128982 -.6955632
_1.p_rene
-1.00846 .161001 -6.28 0.000 -.3128982 -.6955632
_cons
6.11702 .07747 78.96 0.000 5.965181 6.268858

Random-effects Parameters
Estimate Std. Err. [95% Conf. Interval]
progr: Unstructured
var(b_day_malattia) .0012124 .0002085 .0008654 .0016984
var(_cons) .3662504 .0493641 .2812233 .4769853
cov(b_day_malattia,_cons) -0.0165163 .0030029 -.0224018 -.0106308

LR test vs. linear model: chi2(3) = 691.78
Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

138. est store quadratic

139. lrtest linear quadratic

Likelihood-ratio test
LR chi2(6) = 39.73
(Assumption: linear nested in quadratic)
Prob > chi2 = 0.0000

140. ****margins****

141. quiet: mixed mono_ln c.b_day_malattia##c.b_day_malattia##i.death_30 i.p_age2 i.p_cardio i.p_obeso i.p_rene|| progr:b_day > _malattia, cov(unstr)

142. margins death_30, at(b_day_malattia=(0(1)21)) expression(exp(predict(xb))) asbalanced

Adjusted predictions
Number of obs = 1,805
Expression : exp(predict(xb))
1._at : b_day_malattia = 0
 death_30 (asbalanced)
 _p_age2 (asbalanced)
 _p_cardio (asbalanced)
 _p_obeso (asbalanced)
 _p_rene (asbalanced)
2._at : b_day_malattia = 1
 death_30 (asbalanced)
 _p_age2 (asbalanced)
 _p_cardio (asbalanced)
 _p_obeso (asbalanced)
 _p_rene (asbalanced)
3._at : b_day_malattia = 2
 death_30 (asbalanced)
 _p_age2 (asbalanced)
 _p_cardio (asbalanced)
 _p_obeso (asbalanced)
 _p_rene (asbalanced)
<table>
<thead>
<tr>
<th>at</th>
<th>: b_day_mala-s =</th>
<th>death_30</th>
<th>p_age2</th>
<th>p_cardio</th>
<th>p_obeso</th>
<th>p_rene</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>3</td>
<td>(asbalanced)</td>
<td>(asbalanced)</td>
<td>(asbalanced)</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>4</td>
<td>(asbalanced)</td>
<td>(asbalanced)</td>
<td>(asbalanced)</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>5</td>
<td>(asbalanced)</td>
<td>(asbalanced)</td>
<td>(asbalanced)</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>6</td>
<td>(asbalanced)</td>
<td>(asbalanced)</td>
<td>(asbalanced)</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>7</td>
<td>(asbalanced)</td>
<td>(asbalanced)</td>
<td>(asbalanced)</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>8</td>
<td>(asbalanced)</td>
<td>(asbalanced)</td>
<td>(asbalanced)</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>9</td>
<td>(asbalanced)</td>
<td>(asbalanced)</td>
<td>(asbalanced)</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td>10</td>
<td>(asbalanced)</td>
<td>(asbalanced)</td>
<td>(asbalanced)</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td>11</td>
<td>(asbalanced)</td>
<td>(asbalanced)</td>
<td>(asbalanced)</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td>12</td>
<td>(asbalanced)</td>
<td>(asbalanced)</td>
<td>(asbalanced)</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td>13</td>
<td>(asbalanced)</td>
<td>(asbalanced)</td>
<td>(asbalanced)</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td>14</td>
<td>(asbalanced)</td>
<td>(asbalanced)</td>
<td>(asbalanced)</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td>15</td>
<td>(asbalanced)</td>
<td>(asbalanced)</td>
<td>(asbalanced)</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td>16</td>
<td>(asbalanced)</td>
<td>(asbalanced)</td>
<td>(asbalanced)</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td>17</td>
<td>(asbalanced)</td>
<td>(asbalanced)</td>
<td>(asbalanced)</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td>18</td>
<td>(asbalanced)</td>
<td>(asbalanced)</td>
<td>(asbalanced)</td>
</tr>
</tbody>
</table>
```
expression: \exp(\text{predict(xb)})

<table>
<thead>
<tr>
<th>at</th>
<th>death_30</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Survival: 388.4529 39.65304 10.05 0.000 312.6944 466.2315</td>
</tr>
<tr>
<td>2</td>
<td>Survival: 382.537 35.56431 10.76 0.000 312.823 452.2218</td>
</tr>
<tr>
<td>3</td>
<td>Non-survivor: 311.7638 45.42954 6.86 0.000 222.7236 400.8041</td>
</tr>
<tr>
<td>4</td>
<td>Non-survivor: 378.2652 31.1777 11.42 0.000 213.3557 461.1747</td>
</tr>
<tr>
<td>5</td>
<td>Non-survivor: 306.0386 93.52271 7.49 0.000 226.5631 381.6077</td>
</tr>
<tr>
<td>6</td>
<td>Non-survivor: 275.4399 31.42492 12.02 0.000 214.4044 438.0818</td>
</tr>
<tr>
<td>7</td>
<td>Non-survivor: 298.3433 35.05192 8.52 0.000 228.7212 366.9655</td>
</tr>
<tr>
<td>8</td>
<td>Non-survivor: 374.1469 29.88053 12.54 0.000 315.0522 423.1815</td>
</tr>
<tr>
<td>9</td>
<td>Non-survivor: 394.4328 31.65583 9.30 0.000 222.388 356.4771</td>
</tr>
<tr>
<td>10</td>
<td>Non-survivor: 385.2737 29.94117 9.95 0.000 237.1988 366.3231</td>
</tr>
<tr>
<td>11</td>
<td>Non-survivor: 292.3455 29.32447 9.96 0.000 224.7906 349.7788</td>
</tr>
</tbody>
</table>

expression: \exp(\text{predict(xb)})

<table>
<thead>
<tr>
<th>at</th>
<th>death_30</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Survival: 377.3299 28.42426 13.27 0.000 231.4064 425.0353</td>
</tr>
<tr>
<td>1</td>
<td>Survival: 291.8066 27.88058 10.47 0.000 237.1986 366.3231</td>
</tr>
<tr>
<td>2</td>
<td>Survival: 281.0055 28.21969 13.50 0.000 235.7756 426.9951</td>
</tr>
<tr>
<td>3</td>
<td>Survival: 229.1529 27.15552 10.80 0.000 192.9297 357.3746</td>
</tr>
<tr>
<td>4</td>
<td>Survival: 256.3159 22.59818 13.66 0.000 231.0649 441.1686</td>
</tr>
<tr>
<td>5</td>
<td>Survival: 286.2819 26.97756 10.99 0.000 243.3099 349.06 0.000</td>
</tr>
<tr>
<td>6</td>
<td>Survival: 393.6818 28.60128 13.76 0.000 337.6243 468.7399</td>
</tr>
<tr>
<td>7</td>
<td>Survival: 301.0164 27.22231 11.06 0.000 247.6584 359.3647</td>
</tr>
<tr>
<td>8</td>
<td>Survival: 402.4788 29.11654 13.83 0.000 243.0405 459.7642</td>
</tr>
<tr>
<td>9</td>
<td>Survival: 307.1757 27.79056 11.07 0.000 253.2472 362.1892</td>
</tr>
<tr>
<td>10</td>
<td>Survival: 413.6396 29.84685 13.87 0.000 355.1794 472.5095</td>
</tr>
<tr>
<td>11</td>
<td>Survival: 316.4226 28.62718 11.05 0.000 260.3144 372.5309</td>
</tr>
<tr>
<td>12</td>
<td>Survival: 426.4659 30.49328 13.90 0.000 266.499 406.4148</td>
</tr>
<tr>
<td>13</td>
<td>Survival: 327.2918 27.72381 11.01 0.000 269.0342 385.5494</td>
</tr>
<tr>
<td>14</td>
<td>Survival: 441.9668 31.75056 13.88 0.000 379.7349 504.1968</td>
</tr>
<tr>
<td>15</td>
<td>Survival: 340.5277 31.1259 10.94 0.000 279.5221 401.5334</td>
</tr>
<tr>
<td>16</td>
<td>Survival: 459.7647 32.00811 13.92 0.000 395.068 526.4574</td>
</tr>
<tr>
<td>17</td>
<td>Survival: 356.3851 32.94553 10.82 0.000 281.8209 425.4993</td>
</tr>
<tr>
<td>18</td>
<td>Survival: 480.2893 34.50394 13.92 0.000 412.6718 547.9248</td>
</tr>
<tr>
<td>19</td>
<td>Survival: 375.3171 35.15299 10.61 0.000 305.8065 446.4077</td>
</tr>
<tr>
<td>20</td>
<td>Survival: 503.8736 34.29092 13.88 0.000 432.7303 575.0168</td>
</tr>
<tr>
<td>21</td>
<td>Survival: 397.2853 36.82178 10.28 0.000 322.5759 472.9952</td>
</tr>
<tr>
<td>22</td>
<td>Survival: 530.842 38.4876 13.80 0.000 455.4253 606.2507</td>
</tr>
<tr>
<td>23</td>
<td>Survival: 422.174 43.12663 9.81 0.000 328.6477 507.7011</td>
</tr>
<tr>
<td>24</td>
<td>Survival: 561.4399 44.10598 11.43 0.000 435.9357 642.2664</td>
</tr>
<tr>
<td>25</td>
<td>Survival: 455.605 49.30126 9.20 0.000 354.7746 550.0324</td>
</tr>
<tr>
<td>26</td>
<td>Survival: 596.4959 44.93161 13.40 0.000 489.9351 681.9548</td>
</tr>
<tr>
<td>27</td>
<td>Survival: 488.6592 57.69343 8.47 0.000 375.5759 461.731</td>
</tr>
<tr>
<td>28</td>
<td>Survival: 436.4662 48.75099 12.06 0.000 341.9024 522.1928</td>
</tr>
<tr>
<td>29</td>
<td>Survival: 529.7438 48.93937 7.68 0.000 394.6251 564.8024</td>
</tr>
<tr>
<td>30</td>
<td>Survival: 682.128 54.11422 12.61 0.000 574.0744 788.2999</td>
</tr>
<tr>
<td>31</td>
<td>Survival: 577.4175 83.79256 6.89 0.000 443.4611 741.9019</td>
</tr>
</tbody>
</table>
```
death_30
p_age2
p_cardio
p_obeso
p_rene

5._at : b_day_mala~a = 4
death_30
p_age2
p_cardio
p_obeso
p_rene

6._at : b_day_mala~a = 5
death_30
p_age2
p_cardio
p_obeso
p_rene

7._at : b_day_mala~a = 6
death_30
p_age2
p_cardio
p_obeso
p_rene

8._at : b_day_mala~a = 7
death_30
p_age2
p_cardio
p_obeso
p_rene

9._at : b_day_mala~a = 8
death_30
p_age2
p_cardio
p_obeso
p_rene

10._at : b_day_mala~a = 9
death_30
p_age2
p_cardio
p_obeso
p_rene

11._at : b_day_mala~a = 10
death_30
p_age2
p_cardio
p_obeso
p_rene

12._at : b_day_mala~a = 11
death_30
p_age2
p_cardio
p_obeso
p_rene

13._at : b_day_mala~a = 12
death_30
p_age2
p_cardio
p_obeso
p_rene

14._at : b_day_mala~a = 13
death_30
p_age2
p_cardio
p_obeso
p_rene

15._at : b_day_mala~a = 14
death_30
p_age2
p_cardio
p_obeso
p_rene

16._at : b_day_mala~a = 15
death_30
p_age2
p_cardio
p_obeso
p_rene

17._at : b_day_mala~a = 16
death_30
p_age2
p_cardio
p_obeso
p_rene

18._at : b_day_mala~a = 17
death_30
p_age2
p_cardio
p_obeso
p_rene

19._at : b_day_mala~a = 18
death_30
p_age2
p_cardio
p_obeso
p_rene
20. at
\[b_{\text{day mala}} \times 10^{-3} \]
\(p_{\text{obs}} \) (asbalanced)
\(p_{\text{ref}} \) (asbalanced)

21. at
\[b_{\text{day mala}} \times 10^{-3} \]
\(p_{\text{obs}} \) (asbalanced)
\(p_{\text{ref}} \) (asbalanced)

22. at
\[b_{\text{day mala}} \times 10^{-3} \]
\(p_{\text{ref}} \) (asbalanced)
\(p_{\text{obs}} \) (asbalanced)

Results

<table>
<thead>
<tr>
<th>df</th>
<th>chi²</th>
<th>P>chi²</th>
</tr>
</thead>
</table>

Delta-method

<table>
<thead>
<tr>
<th>df</th>
<th>chi²</th>
<th>P>chi²</th>
</tr>
</thead>
</table>

Results

145. graph save "Graph" /Users/Chiara/Documents/fileDO 15 Maggio/Harg_MONO.gph, replace
(file/Users/Chiara/Documents/fileDO 15 Maggio/Harg_MONO.gph saved)

146.

147. *margins death_30, at(b_day_malattia=(0(1)30)) expression(exp(predict(xb)))

148. *marginsplot, title("Monocites kinetic day 0 to day 30 after onset") ytitle("Cells per mmc (log-scale)") xlab(0(5) 20)

149. *margins death_30, at(b_day_malattia=(0(1)30)) expression(exp(predict(xb)))

150.

151. ***combine***

152. gr combine /Users/Chiara/Documents/fileDO 15 Maggio/Harg_MONO.gph "/Users/Chiara/Documents/fileDO 15 Maggio/Harg_MONO.gph" ycommon name(name) ytitle("Cells per mmc (log-scale)") xtitle("Day since onset")

153. graph save "Graph" /Users/Chiara/Documents/fileDO 15 Maggio/Harg_MONO.gph, replace
(file/Users/Chiara/Documents/fileDO 15 Maggio/Harg_MONO.gph saved)

154.

155.

156.

157. *** scatter no model

158. use /Users/Chiara/Documents/fileDO 15 Maggio/fileDO/conta_long_senorecante_01.dta

159. scatter b_day_malattia if death_30==1, mcolor(red) legend(off) title("Hospitilization variation over time") still xaxis(name) yaxis(name)

160. scatter b_day_malattia if death_30==0, mcolor(green) legend(off)
egend(off) ms(oh)

replace anemia=-200
(961 real changes made)

166. mixed eos c.b_day_malattia##i.death_30 || progr:b_day_malattia, cov(unstr)

Performing EM optimization:
Performing gradient-based optimization:
Iteration 0: log likelihood = -10062.005
Iteration 1: log likelihood = -10062.036
Iteration 2: log likelihood = -10062.036

Computing standard errors:
Mixed-effects ML regression
Number of obs = 1,805
Group variable: progr
Number of groups = 379

Obs per group:
 min = 1
 avg = 4.8
 max = 22

Valid chl2(3) = 121.64
Log likelihood = -10062.036

Coef. Std. Err. z P>	z	[95% Conf. Interval]				
eos						
b_day_malattia	5.120101	.4880917	10.49	0.000	4.163459	6.076743
death_30	6.918299	12.25559	0.56	0.572	-17.10221	30.93881
death_30#c.b_day_malattia	-3.48303	1.480325	-2.35	0.019	-6.384414	-.5816457
_cons	-5.791112	4.845078	-.20	0.839	-15.28729	3.705066

Random-effects Parameters
Estimate Std. Err. [95% Conf. Interval]
progr: Unstructured
var(b_day_malattia) | 35.1686 | 5.270418 | 26.21759 | 47.1756 |
var(_cons) | 1709.433 | 495.5068 | 968.54 | 3017.078 |

cov(b_day_malattia,_cons) | -169.9506 | 46.90627 | -261.8852 | -78.01596 |
var(Residual) | 2751.337 | 112.6649 | 2539.146 | 2981.259 |

LR test vs. linear model: chi2(3) = 783.15
Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.

167. est store linear

168. mixed eos c.b_day_malattia#c.b_day_malattia##i.death_30 || progr:b_day_malattia, cov(unstr)

Performing EM optimization:
Performing gradient-based optimization:
Iteration 0: log likelihood = -10057.824
Iteration 1: log likelihood = -10057.642
Iteration 2: log likelihood = -10057.642

Computing standard errors:
Mixed-effects ML regression
Number of obs = 1,805
Group variable: progr
Number of groups = 379

Obs per group:
 min = 1
 avg = 4.8
 max = 22

Valid chl2(3) = 133.34
Log likelihood = -10057.642

Coef. Std. Err. z P>	z	[95% Conf. Interval]				
eos						
b_day_malattia	1.786876	1.338072	1.36	0.182	-.8356974	4.409449
death_30	.1433959	.0536253	2.67	0.007	.0382922	.2486996
death_30#c.b_day_malattia	-4.44837	3.735964	-1.22	0.224	-11.77685	2.885157
_cons	10.58238	7.693078	1.38	0.169	-4.493299	25.66209

Random-effects Parameters
Estimate Std. Err. [95% Conf. Interval]
progr: Unstructured
var(b_day_malattia) 24.40418 5.102017 25.66946 46.32583
var(_cons) 1277.686 461.892 714.1199 2657.845
 cov(b_day_malattia,_cons) -350.895 44.70055 -238.6839 -63.10701
var(Residual) 2763.249 112.9161 2550.569 2993.665

LR test vs. linear model: chi2(3) = 786.76 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

169. est store quadratic
170. lrtest linear quadratic
Likelihood-ratio test LR chi2(2) = 8.79
(Assumption: linear nested in quadratic) Prob > chi2 = 0.0124

171. margins death_30, at(b_day_mala~a=(0(1)30))
Adjusted predictions Number of obs = 1,805
Expression: Linear prediction, fixed portion, predict()
1._at : b_day_mala-a = 0
2._at : b_day_mala-a = 1
3._at : b_day_mala-a = 2
4._at : b_day_mala-a = 3
5._at : b_day_mala-a = 4
6._at : b_day_mala-a = 5
7._at : b_day_mala-a = 6
8._at : b_day_mala-a = 7
9._at : b_day_mala-a = 8
10._at : b_day_mala-a = 9
11._at : b_day_mala-a = 10
12._at : b_day_mala-a = 11
13._at : b_day_mala-a = 12
14._at : b_day_mala-a = 13
15._at : b_day_mala-a = 14
16._at : b_day_mala-a = 15
17._at : b_day_mala-a = 16
18._at : b_day_mala-a = 17
19._at : b_day_mala-a = 18
20._at : b_day_mala-a = 19
21._at : b_day_mala-a = 20
22._at : b_day_mala-a = 21
23._at : b_day_mala-a = 22
24._at : b_day_mala-a = 23
25._at : b_day_mala-a = 24
26._at : b_day_mala-a = 25
27._at : b_day_mala-a = 26
28._at : b_day_mala-a = 27
29._at : b_day_mala-a = 28
30._at : b_day_mala-a = 29
31._at : b_day_mala-a = 30

Delta-method Margin Std. Err. z P>|z| [95% Conf. Interval]
 _at#death_30
 1#survivor 10.58238 7.69387 1.38 0.169 -4.497329 25.66209
 1#nonsurvivor 19.14167 15.71042 1.22 0.223 -11.65018 49.93352
 2#survivor 12.51265 6.527092 1.92 0.055 -0.2802154 25.30552
 2#nonsurvivor 16.68571 13.12093 1.27 0.203 -9.030837 42.40225
 3#survivor 14.72971 5.48991 2.68 0.007 3.969687 25.48974
 3#nonsurvivor 14.64082 10.89322 1.34 0.179 -6.709501 35.99113
 4#survivor 17.23357 4.593984 3.75 0.000 8.229525 26.23761
 4#nonsurvivor 13.007 9.083217 1.43 0.152 -4.795783 30.80977
 5#survivor 20.02422 3.856058 5.19 0.000 12.46448 27.58595
 5#nonsurvivor 11.78424 7.765085 1.52 0.129 -3.850339 27.30553
 6#survivor 23.10165 3.29714 7.01 0.000 16.63938 29.56393
 6#nonsurvivor 10.97256 7.00571 1.57 0.117 -2.785594 24.73551
 7#survivor 26.46588 2.93566 9.02 0.000 20.71211 32.21967
 7#nonsurvivor 10.5824 6.806705 1.55 0.120 -3.769895 23.93284
 8#survivor 30.11641 2.772403 10.86 0.000 24.68294 35.55007
 8#nonsurvivor 10.5824 7.068136 1.50 0.134 -3.270089 24.42536
 9#survivor 34.05472 2.778922 12.25 0.000 28.60013 39.51131
 9#nonsurvivor 10.5824 7.068136 1.50 0.134 -3.270089 24.42536
173. marginsplot, title("Eosinophils kinetic day 0 to day 28 after onset") ytitle("Cells per mmc (log-scale)")

174. margins ar.death_30, at(b_day_malattia=(0(1)30))

Variables that uniquely identify margins: b_day_malattia death_30

Expression

Contrasts of adjusted predictions Number of obs = 1,805

Linear prediction, fixed portion, predict()

1._at : b_day_mala~a
2._at : b_day_mala~a
3._at : b_day_mala~a
4._at : b_day_mala~a
5._at : b_day_mala~a
6._at : b_day_mala~a
7._at : b_day_mala~a
8._at : b_day_mala~a
9._at : b_day_mala~a
10._at : b_day_mala~a
11._at : b_day_mala~a
12._at : b_day_mala~a
13._at : b_day_mala~a
14._at : b_day_mala~a
15._at : b_day_mala~a
16._at : b_day_mala~a
17._at : b_day_mala~a
18._at : b_day_mala~a
19._at : b_day_mala~a
20._at : b_day_mala~a
21._at : b_day_mala~a
22._at : b_day_mala~a
23._at : b_day_mala~a
24._at : b_day_mala~a
25._at : b_day_mala~a
26._at : b_day_mala~a
27._at : b_day_mala~a
28._at : b_day_mala~a
29._at : b_day_mala~a
30._at : b_day_mala~a
graph save "Graph" "/Users/Chiara/Documents/fileDO 15 Maggio/BOX_PLT.gph", replace

scatter plt b_day_malattia if death_30==0, mcol(red) legend(off) title("Platelets variation over time") xtitle("day since onset") ytitle("Cells per mmc X 1000")|| scatter plt b_day_malattia if death_30==1, mcolor(green) legend(off) ms(oh)

Contrast Std. Err. [95% Conf. Interval]
Delta-method

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>42.94527</td>
<td>31.89586</td>
<td>25.93642</td>
<td>15.72366</td>
<td>8.752552</td>
<td>4.666564</td>
<td>1.365152</td>
<td>-0.455097</td>
<td>-7.126856</td>
</tr>
<tr>
<td></td>
<td>0.0202</td>
<td>0.2733</td>
<td>0.1614</td>
<td>0.1419</td>
<td>0.2013</td>
<td>0.1671</td>
<td>0.1351</td>
<td>0.1055</td>
<td>0.1351</td>
</tr>
</tbody>
</table>

Joint =

19/05/20, 17:13 Page 22 of 56
Performing EM optimization:
Performing gradient-based optimization:

Iteration 0: log likelihood = -488.15169
Iteration 1: log likelihood = -488.15166

Computing standard errors:

Mixed-effects ML regression Number of obs = 1,805
Group variable: progr
Number of groups = 379

Obs per group:
 min = 1
 avg = 4.8
 max = 22

Valid chi2(1) = 170.93

Log likelihood = -488.15166

| | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|---------|---------|-----------|------|------|---------------------|
| b_day_malattia | 0.040182 | 0.0032144 | 12.50 | 0.000 | 0.033882 - 0.046482 |
| death_30 nonsurvivor | 0.3307512 | 0.117088 | 2.82 | 0.005 | 0.1012631 - 0.5602394 |
| death_30#c.b_day_malattia nonsurvivor | -0.0509723 | 0.0963773 | -5.29 | 0.000 | -0.249861 - 0.148836 |
| _cons | 11.96795 | 0.0419482 | 285.30 | 0.000 | 11.88573 - 12.05017 |

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]
progr: Unstructured
 var(b_day_malattia) | 0.0021197 | 0.0002226 | 0.0017254 - 0.0026041 |
 var(_cons) | 0.3864737 | 0.0394638 | 0.3163746 - 0.4721047 |
 cov(b_day_malattia,_cons) | -0.0240338 | 0.0027549 | -0.0294332 - -0.0186343 |

LR test vs. linear model: chi2(3) = 1364.85
Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

Performing EM optimization:
Performing gradient-based optimization:

Iteration 0: log likelihood = -382.02189
Iteration 1: log likelihood = -382.02185

Computing standard errors:

Mixed-effects ML regression Number of obs = 1,805
Group variable: progr
Number of groups = 379

Obs per group:
 min = 1
 avg = 4.8
 max = 22

Valid chi2(9) = 413.99

Log likelihood = -382.02185

| | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|---------|---------|-----------|------|------|---------------------|
| b_day_malattia | 0.1209497 | 0.0070774 | 17.09 | 0.000 | 0.107073 - 0.134821 |
| c.b_day_malattia##c.b_day_malattia##i.death_30 | -0.0032554 | 0.0002557 | 12.45 | 0.000 | -0.0037347 - -0.0027742 |
| death_30 nonsurvivor | 0.947662 | 1.463285 | 6.70 | 0.000 | 0.976747 - 0.918568 |
| death_30#c.b_day_malattia nonsurvivor | -0.076821 | 0.071616 | -1.55 | 0.122 | -0.227989 - 0.074358 |
| _cons | 11.5935 | 0.0604623 | 191.75 | 0.000 | 11.47499 - 11.71202 |

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]
progr: Unstructured
 var(b_day_malattia) | 0.002413 | 0.0002437 | 0.002084 - 0.002848 |
 var(_cons) | 0.4782225 | 0.0472224 | 0.385227 - 0.571226 |
 cov(b_day_malattia,_cons) | -0.0011778 | 0.0002437 | -0.001422 - -0.000938 |

Note: LR test vs. linear model: chi2(9) = 1564.85
Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.
var(Residual) | 0.039884 0.0016814 0.0367214 0.0433198
--- | --- | --- | --- | ---
LR test vs. linear model: chi2(3) = 1477.93, Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.

192. est store quadratic
193. lrtest linear quadratic

Likelihood-ratio test LR chi2(6) = 212.26
(Assumption: linear nested in quadratic) Prob > chi2 = 0.0000

194. *margins***********
195. quiet: mixed plt_ln c.b_day_malattia##c.b_day_malattia##i.death_30 i.p_age2 i.p_cardio i.p_obeso i.p_rene|| progr > b_day_malattia, cov(unstr)
196. margins death_30, at(b_day_malattia=(0(1)21)) expression(exp(predict(xb))) asbalanced

Adjusted predictions Number of obs = 1,805
Expression: exp(predict(xb))
 1._at : b_day_malattia = 0
day30 (asbalanced)
p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)
 2._at : b_day_malattia = 1
day30 (asbalanced)
p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)
 3._at : b_day_malattia = 2
day30 (asbalanced)
p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)
 4._at : b_day_malattia = 3
day30 (asbalanced)
p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)
 5._at : b_day_malattia = 4
day30 (asbalanced)
p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)
 6._at : b_day_malattia = 5
day30 (asbalanced)
p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)
 7._at : b_day_malattia = 6
day30 (asbalanced)
p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)
 8._at : b_day_malattia = 7
day30 (asbalanced)
p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)
 9._at : b_day_malattia = 8
day30 (asbalanced)
p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)
 10._at : b_day_malattia = 9
day30 (asbalanced)
p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)
 11._at : b_day_malattia = 10
day30 (asbalanced)
p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)
 12._at : b_day_malattia = 11
day30 (asbalanced)
p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)
<table>
<thead>
<tr>
<th>at</th>
<th>b_day_mals</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>death_30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>p_age2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>p_cardio</td>
<td></td>
</tr>
<tr>
<td></td>
<td>p_obeso</td>
<td></td>
</tr>
<tr>
<td></td>
<td>p_rene</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

| Delta-method | Margin | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|---|---|---|---|---|---|
| atDeath_30 | | | | | |
| 1survivor | 97796.27 | 7880.46 | 12.40 | 0.000 | 82334.82 | 113257.7 |
| 2survivor | 145123.2 | 20108.02 | 7.22 | 0.000 | 105722.3 | 184524.3 |
| 3survivor | 113933.2 | 828.92 | 13.05 | 0.000 | 9492.84 | 185533.6 |
| 4survivor | 158524.1 | 20066.9 | 7.90 | 0.000 | 119193.7 | 197854.6 |
| 5survivor | 122908.1 | 8994.52 | 13.67 | 0.000 | 105202.3 | 140507.1 |
| 6survivor | 171423 | 19870.56 | 8.62 | 0.000 | 132659.8 | 210386.2 |
| 7survivor | 136539.8 | 5891.32 | 14.34 | 0.000 | 117340.1 | 155634.6 |
| 8survivor | 183552.2 | 19576.01 | 9.37 | 0.000 | 145152.3 | 221991.9 |
| 9survivor | 150643.8 | 19215.87 | 14.75 | 0.000 | 119021.7 | 180664.5 |
| 10survivor | 194514.4 | 19132.27 | 10.14 | 0.000 | 156890.6 | 232131.2 |
| 11survivor | 165132.4 | 10874.62 | 15.19 | 0.000 | 143818.7 | 186464.6 |
| 12survivor | 201159.2 | 18758.93 | 10.88 | 0.000 | 167342.4 | 240075.8 |
| 13survivor | 179847.4 | 11563.37 | 15.55 | 0.000 | 157186.3 | 202512.2 |
| 14survivor | 212004 | 18206.11 | 11.59 | 0.000 | 176160.4 | 247912.3 |
| 15survivor | 194610 | 12277.05 | 15.85 | 0.000 | 170547.4 | 218672.4 |
| 16survivor | 218081.4 | 27057.47 | 12.21 | 0.000 | 183081.4 | 253081.4 |
| 17survivor | 209226.7 | 13005.93 | 16.00 | 0.000 | 183731.1 | 234721.2 |
| 18survivor | 222857.1 | 17430.51 | 12.74 | 0.000 | 187893.1 | 252282.3 |
| 19survivor | 223489.1 | 13746.11 | 16.26 | 0.000 | 195457.2 | 250431.2 |
| 20survivor | 223669.4 | 17036.45 | 13.14 | 0.000 | 190456.8 | 257242.3 |
| 21survivor | 227184.6 | 14480.38 | 16.30 | 0.000 | 198800.6 | 254550.6 |
| 22survivor | 223405.1 | 16606.99 | 13.39 | 0.000 | 190699.4 | 255110.9 |
| 23survivor | 228090.5 | 25199.22 | 16.45 | 0.000 | 223035.9 | 279085.8 |
| 24survivor | 220371.2 | 16385.54 | 13.47 | 0.000 | 188622.1 | 252985.2 |
| 25survivor | 242809 | 15891.95 | 16.49 | 0.000 | 223861.2 | 291815.6 |
| 26survivor | 215925.1 | 16318.79 | 13.39 | 0.000 | 192493.7 | 247556.4 |
| 27survivor | 223719.1 | 16549.79 | 16.48 | 0.000 | 240282.1 | 305156.1 |
| 28survivor | 208136.7 | 15969.96 | 13.11 | 0.000 | 177848.4 | 240372.1 |
| 29survivor | 282028.1 | 17366.72 | 16.43 | 0.000 | 248389.9 | 315682.2 |
| 30survivor | 230849 | 15810.33 | 12.67 | 0.000 | 194947.7 | 211494.4 |
| 31survivor | 289790.1 | 17740.12 | 16.34 | 0.000 | 255020.1 | 324660.1 |
| 32survivor | 196280.8 | 15576.7 | 12.09 | 0.000 | 159444.4 | 221512.2 |
| 33survivor | 295836.7 | 18270.98 | 16.19 | 0.000 | 260026.3 | 331647.2 |
User: Chiara Montaldo

18#survivor

18#nonsurvivor

19#survivor

19#nonsurvivor

20#survivor

20#nonsurvivor

21#survivor

21#nonsurvivor

22#survivor

22#nonsurvivor

197 - marginsplot, ytitle("Cells per mmc") xlab(0(1)21) ylab(0(200000)800000, angle(horizontal)) yline(150000,lcolor(red >) legend(off)

Variables that uniquely identify margins: b_day_malattia death_30

198 - margins ar.death_30, at(b_day_malattia=(0(1)21)) expression(exp(predict(xb))) asbalanced

Contrasts of adjusted predictions Number of obs = 1,805
Expression : exp(predict(xb))

1._at : b_day_malattia = 0
day30
 p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

2._at : b_day_malattia = 1
day30
 p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

3._at : b_day_malattia = 2
day30
 p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

4._at : b_day_malattia = 3
day30
 p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

5._at : b_day_malattia = 4
day30
 p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

6._at : b_day_malattia = 5
day30
 p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

7._at : b_day_malattia = 6
day30
 p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

8._at : b_day_malattia = 7
day30
 p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

9._at : b_day_malattia = 8
day30
 p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

10._at : b_day_malattia = 9
day30
 p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

11._at : b_day_malattia = 10
day30
 p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

12._at : b_day_malattia = 11
day30
 p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)
13. at	b_day_mala-a	12
14. at	b_day_mala-a	13
15. at	b_day_mala-a	14
16. at	b_day_mala-a	15
17. at	b_day_mala-a	16
18. at	b_day_mala-a	17
19. at	b_day_mala-a	18
20. at	b_day_mala-a	19
21. at	b_day_mala-a	20
22. at	b_day_mala-a	21

<table>
<thead>
<tr>
<th>df</th>
<th>chi2</th>
<th>P>chi2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.52</td>
<td>0.0188</td>
</tr>
<tr>
<td>2</td>
<td>5.90</td>
<td>0.0131</td>
</tr>
<tr>
<td>3</td>
<td>6.09</td>
<td>0.0126</td>
</tr>
<tr>
<td>4</td>
<td>6.01</td>
<td>0.0142</td>
</tr>
<tr>
<td>5</td>
<td>5.55</td>
<td>0.0184</td>
</tr>
<tr>
<td>6</td>
<td>6.67</td>
<td>0.0106</td>
</tr>
<tr>
<td>7</td>
<td>7.46</td>
<td>0.0050</td>
</tr>
<tr>
<td>8</td>
<td>7.92</td>
<td>0.0057</td>
</tr>
<tr>
<td>9</td>
<td>6.60</td>
<td>0.0472</td>
</tr>
<tr>
<td>10</td>
<td>7.73</td>
<td>0.0025</td>
</tr>
<tr>
<td>11</td>
<td>3.29</td>
<td>0.0495</td>
</tr>
<tr>
<td>12</td>
<td>7.88</td>
<td>0.0050</td>
</tr>
<tr>
<td>13</td>
<td>14.21</td>
<td>0.0002</td>
</tr>
<tr>
<td>14</td>
<td>22.44</td>
<td>0.0000</td>
</tr>
<tr>
<td>15</td>
<td>30.41</td>
<td>0.0000</td>
</tr>
<tr>
<td>16</td>
<td>38.78</td>
<td>0.0000</td>
</tr>
<tr>
<td>17</td>
<td>46.63</td>
<td>0.0000</td>
</tr>
<tr>
<td>18</td>
<td>53.62</td>
<td>0.0000</td>
</tr>
<tr>
<td>19</td>
<td>59.54</td>
<td>0.0000</td>
</tr>
<tr>
<td>20</td>
<td>64.30</td>
<td>0.0000</td>
</tr>
<tr>
<td>21</td>
<td>67.86</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>df</th>
<th>chi2</th>
<th>P>chi2</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>314.32</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Delta-method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contrast</td>
</tr>
<tr>
<td>(ns vs s)</td>
</tr>
</tbody>
</table>
LR test vs. linear model: chi2(22) = 2847.24 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.
Performing EM optimization:
Performing gradient-based optimization:
Iteration 0: log likelihood = 2721.9498
Iteration 1: log likelihood = 2721.9499
Computing standard errors:
Mixed-effects NL regression Number of obs = 1,773
Group variable: progr
Number of groups = 376
Obs per group:
 min = 1
 avg = 4.7
 max = 22
Valid chi2(k) = 137.32
Log likelihood = 2721.9499

mpv_ln Coef. Std. Err. z P>|z| [95% Conf. Interval]
b_day_malattia -.0077241 .0011545 -6.69 0.000 -.0099869 -.0054612
 c.b_day_malattia#c.b_day_malattia .0001913 .0000427 4.48 0.000 .0001075 .0002751
death_30 (nonsurvivor) -.0830919 .0241874 -3.44 0.001 -.1304983 -.0356854
death_30#c.b_day_malattia (nonsurvivor) .0115817 .002954 3.92 0.000 .0057919 .0173714
death_30#c.b_day_malattia#c.b_day_malattia (nonsurvivor) .0000729 .0001181 0.62 0.537 -.0001586 .0003044
1.p_age2 .0148626 .009325 1.59 0.111 -.003414 .0331392
1.p_cardio .0047159 .0099999 0.47 0.637 -.0148836 .0243154
1.p_obeso -.014846 .017699 -0.84 0.402 -.0495354 .0198434
1.p_rene .0475706 .0207101 2.30 0.022 .0069795 .0881618
_cons 2.418874 .0104160 232.23 0.000 2.398459 2.439289

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]
progr: Unstructured
 var(b_day_malattia) .0000431 4.86e-06 .0000346 .0000538
 var(_cons) .0122388 .0012204 .0100661 .0148804
 cov(b_day_malattia,_cons) -.0005139 .0000687 -.0006485 -.0003794
 var(Residual) .0011489 .0000484 .0010578 .0012477

LR test vs. linear model: chi2(3) = 1816.08
Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.

> est store quadratic
> lrtest linear quadratic
> Likelihood-ratio test LR chi2(6) = 37.07
(Assumption: linear nested in quadratic) Prob > chi2 = 0.0000

Note: LR test is conservative

> margins death_30
> expression(exp(predict(xb))) asbalanced
> Adjusted predictions Number of obs = 1,773
Expression : exp(predict(xb))
 1. _at : b_day_malattia = 0
 death_30 (ambalanced)
 p_age2 (ambalanced)
 p_cardio (ambalanced)
 p_obeso (ambalanced)
 p_rene (ambalanced)
 2. _at : b_day_malattia = 1
 death_30 (ambalanced)
 p_age2 (ambalanced)
 p_cardio (ambalanced)
 p_obeso (ambalanced)
 p_rene (ambalanced)
 3. _at : b_day_malattia = 2
 death_30 (ambalanced)
 p_age2 (ambalanced)
 p_cardio (ambalanced)
 p_obeso (ambalanced)
 p_rene (ambalanced)
 4. _at : b_day_malattia = 3
 death_30 (ambalanced)
 p_age2 (ambalanced)
 p_cardio (ambalanced)
 p_obeso (ambalanced)
 p_rene (ambalanced)
 5. _at : b_day_malattia = 4

225 . est store quadratic
226 . lrttest linear quadratic
227 . ***margins****
228 . quiet: eststo linear
229 . margins death_30, at(b_day_malattia=0(1)4)
Expression:exp(predict(xb))
Adjusted predictions Number of obs = 1,773
Expression : exp(predict(xb))
 1. _at : b_day_malattia = 0
 death_30 (ambalanced)
 p_age2 (ambalanced)
 p_cardio (ambalanced)
 p_obeso (ambalanced)
 p_rene (ambalanced)
 2. _at : b_day_malattia = 1
 death_30 (ambalanced)
 p_age2 (ambalanced)
 p_cardio (ambalanced)
 p_obeso (ambalanced)
 p_rene (ambalanced)
 3. _at : b_day_malattia = 2
 death_30 (ambalanced)
 p_age2 (ambalanced)
 p_cardio (ambalanced)
 p_obeso (ambalanced)
 p_rene (ambalanced)
 4. _at : b_day_malattia = 3
 death_30 (ambalanced)
 p_age2 (ambalanced)
 p_cardio (ambalanced)
 p_obeso (ambalanced)
 p_rene (ambalanced)
 5. _at : b_day_malattia = 4

Note: LR test is conservative

19/05/20, 17:13
death_30 (asbalanced)
p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

6.at: b_day_mala-a = 5
 death_30
 p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

7.at: b_day_mala-a = 6
 death_30
 p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

8.at: b_day_mala-a = 7
 death_30
 p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

9.at: b_day_mala-a = 8
 death_30
 p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

10.at: b_day_mala-a = 9
 death_30
 p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

11.at: b_day_mala-a = 10
 death_30
 p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

12.at: b_day_mala-a = 11
 death_30
 p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

13.at: b_day_mala-a = 12
 death_30
 p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

14.at: b_day_mala-a = 13
 death_30
 p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

15.at: b_day_mala-a = 14
 death_30
 p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

16.at: b_day_mala-a = 15
 death_30
 p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

17.at: b_day_mala-a = 16
 death_30
 p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

18.at: b_day_mala-a = 17
 death_30
 p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

19.at: b_day_mala-a = 18
 death_30
 p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

20.at: b_day_mala-a = 19
 death_30
 p_age2 (asbalanced)
p_cardio (asbalanced)
Table: Adjusted Predictions

| Margin | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|--------|-----------|---|------|--------------------------|
| 1 | 3.52501 | .282358 | 12.51 | 0.000 | 3.077387 3.972624 |
| 2 | 3.51682 | .273807 | 12.84 | 0.000 | 3.074191 3.959443 |
| 3 | 3.57388 | .274707 | 12.97 | 0.000 | 3.035901 4.111858 |
| 4 | 3.58784 | .277328 | 12.96 | 0.000 | 3.039946 4.135696 |
| 5 | 3.54089 | .272207 | 12.66 | 0.000 | 3.003766 4.07802 |
| 6 | 3.52501 | .282358 | 12.51 | 0.000 | 3.077387 3.972624 |
| 7 | 3.51682 | .273807 | 12.84 | 0.000 | 3.074191 3.959443 |
| 8 | 3.57388 | .274707 | 12.97 | 0.000 | 3.035901 4.111858 |
| 9 | 3.58784 | .277328 | 12.96 | 0.000 | 3.039946 4.135696 |
| 10 | 3.54089 | .272207 | 12.66 | 0.000 | 3.003766 4.07802 |
| 11 | 3.52501 | .282358 | 12.51 | 0.000 | 3.077387 3.972624 |
| 12 | 3.51682 | .273807 | 12.84 | 0.000 | 3.074191 3.959443 |
| 13 | 3.57388 | .274707 | 12.97 | 0.000 | 3.035901 4.111858 |
| 14 | 3.58784 | .277328 | 12.96 | 0.000 | 3.039946 4.135696 |

230. marginplot, ytitle("Cell volume (Fl)") ylab(0(100000)) legend(off)

Variables that uniquely identify margins: b_day_malattia death_30

Contrasts of adjusted predictions

Expression : exp(predict(xb))

Number of obs = 1,773
<table>
<thead>
<tr>
<th>_at</th>
<th>b_day_mala~a</th>
<th>death_30</th>
<th>p_age2</th>
<th>p_cardio</th>
<th>p_obeso</th>
<th>p_rene</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>= 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>= 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>= 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>= 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>= 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>= 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>= 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>= 12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>= 13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>= 14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>= 15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>= 16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td>= 17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>= 18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td>= 19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
21. **chi2**

 death_30 at b_day_mala~a
 death_30 (balanced) 20
 p_rende (balanced) 21
 p_age (balanced) 22
 p_cardio (balanced) 23
 p_obeso (balanced) 24
 p_rende (balanced) 25

 df chi2 P<chi2

death_30	1	12.27	0.0005
death_30	2	10.69	0.0011
death_30	3	8.68	0.0032
death_30	4	6.37	0.0116
death_30	5	4.91	0.0452
death_30	6	1.91	0.1674
death_30	7	1.46	0.4998
death_30	8	1.01	0.3259
death_30	9	0.84	0.3597
death_30	10	0.79	0.0789
death_30	11	0.74	0.0693
death_30	12	0.71	0.0006
death_30	13	1.81	0.0000
death_30	14	2.60	0.0000
death_30	15	21.48	0.0000
death_30	16	38.54	0.0000
death_30	17	44.67	0.0000
death_30	18	49.62	0.0000
death_30	19	53.08	0.0000
death_30	20	54.96	0.0000
death_30	21	55.34	0.0000
death_30	22	54.45	0.0000

Joint 5 100.00 0.0000

232. *ggplot2* "Graph" /"Users/Chiara/Documents/fileDO 15 Maggio/Marg_MPV.png", replace

(file /"Users/Chiara/Documents/fileDO 15 Maggio/Marg_MPV.png saved)

233. *ggplot2* + theme(asbalanced)

234. **ggplot2** + theme(asbalanced)

235. **ggplot2** + theme(asbalanced)

236. *ggplot2* + theme(asbalanced)

237. **ggplot2** + theme(asbalanced)

238. *ggplot2* + theme(asbalanced)

239. *ggplot2* + theme(asbalanced)

240. *ggplot2* "Graph" /"Users/Chiara/Documents/fileDO 15 Maggio/Marg_MPV.png", replace

(file /"Users/Chiara/Documents/fileDO 15 Maggio/Marg_MPV.png saved)

241.

242.

243.

244.

245.

246.

247.

248.

249.

250.

251.

252.

253.

254.

255.

256.

257.

258. *margins death_30, at(b_day_malattia=(0(1)30)) expression(exp(predict(xb)))
259. *marginsplot, title("HCT kinetic day 0 to day 28 after onset") ytitle("Cell volume (fL; log-scale")
260. *margins ar.death_30, at(b_day_malattia=(0(1)30)) expression(exp(predict(xb)))
261.
262.
263. **
264. *** analisi mcv ***
265. **
266. **** scatter no model
267. use "/Users/Chiara/Documents/fileDO 15 Maggio/fileDO\coorte_long_emocromo_anemia_1.dta", clear
268. *scatter mcv b_day_malattia if death_30==1, mcolor(red) legend(off) title("MCV variation over time") xtitle("day > since onset") ytitle("Cell volume (fL)")
269. > since onset") ytitle("Cell volume (fL)")
270. ********Graph box**************************************
271. graph box mcv, over(death_30, label(nolabel)) over(b_day_malattia) asyvars box(1, fcolor(navy))
272. > over(b_day_malattia) asyvars box(1, fcolor(navy))
273. graph save "Graph" "/Users/Chiara/Documents/fileDO 15 Maggio/BOX_MCV.gph", replace
274. > graph save "Graph" "/Users/Chiara/Documents/fileDO 15 Maggio/BOX_MCV.gph", replace
275.
276. **** modelling
277. use "/Users/Chiara/Documents/fileDO 15 Maggio/fileDO\coorte_long_emocromo_anemia_1.dta", clear
278. mixed mcv ln c.b_day_malattia##i.death_30 \| progr:b_day_malattia, cov(unstr)
Performing EM optimization:
Performing gradient-based optimization:
Iteration 0: log likelihood = 3881.4055
Iteration 1: log likelihood = 3881.4181
Iteration 2: log likelihood = 3881.4181
Computing standard errors:
Mixed-effects ML regression Number of obs = 1,805
Group variable: progr Number of groups = 379
Obs per group:
 min = 1
 avg = 4.8
 max = 22
Valid chisq(3) = 42.56
Prob > chisq = 0.0000

 mcv_ln Coef. Std. Err. z P>|z| [95% Conf. Interval]
 b_day_malattia .0010319 .0002037 5.07 0.000 .0006326 .0014312
 death_30
 nonsurvivor .0508694 .0124139 4.10 0.000 .0265387 .0752001
 death_30#c.b_day_malattia
 nonsurvivor -.0004992 .0006146 -0.81 0.417 -.0017039 .0007054
 _cons 4.46217 .0042740 1044.02 0.000 4.453793 4.470547

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]
 progr: Unstructured
 var(b_day_malattia) 5.90e-06 8.62e-07 4.48e-06 7.90e-06
 var(c.mcv) .0000006 .0000016 -.0000014 -.0000002
 cov(b_day_malattia,mcv) -.0000066 .0000148 -.0000095 -.0000037
 var(_cons) .0050395 .0003017 .0044481 .0056777
 var(Residual) .0002965 .0000122 .0002735 .0003213
 LR test vs. linear model: chisq(3) = 3647.86
Prob > chisq = 0.0000
Note: LR test is conservative and provided only for reference.

276. est store linear
277. mixed mcv ln c.b_day_malattia##c.b_day_malattia##i.death_30 || progr:b_day_malattia, cov(unstr)
Performing EM optimization:
Performing gradient-based optimization:
Iteration 0: log likelihood = 3895.8695
Iteration 1: log likelihood = 3895.8837
Iteration 2: log likelihood = 3895.8837
Computing standard errors:
Mixed-effects ML regression Number of obs = 1,805
Group variable: progr Number of groups = 379
Obs per group:
 min = 1
 avg = 4.8
 max = 22
Valid chisq(9) = 71.94
Prob > chisq = 0.0000

 mcv_ln Coef. Std. Err. z P>|z| [95% Conf. Interval]
 b_day_malattia -.0001139 .0005479 -0.21 0.835 -.0011878 .000956
 c.b_day_malattia .0000442 .0002026 2.25 0.025 5.93e-06 .0000865

death_30 nonsurvivor
 0.0263266 0.0142429 1.85 0.065 -.001589 0.0542422

death_30#c.b_day_malattia nonsurvivor
 -.0002287 .0000565 -4.05 0.000 -.0003394 -.000118

death_30#c.b_day_malattia#c.b_day_malattia nonsurvivor
 .0046663 .0014023 3.33 0.001 .0019179 .0074147

1.p_age2
 .0119403 .0072937 1.64 0.102 -.0023551 .0262357

1.p_cardio
 -.0194012 .0078147 -2.48 0.013 -.0347176 -.0040847

1.p_obeso
 -.0174175 .0139158 -1.25 0.211 -.0446919 .009857

1.p_rene
 .0361034 .0162436 2.22 0.026 .0042665 .0679404

_cons
 4.467564 .0063685 701.51 0.000 4.455082 4.480046

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]
 progr: Unstructured
 var(b_day_malattia) 6.05e-06 8.73e-07 4.56e-06 8.03e-06
 var(_cons) .0048844 .0004193 .0041281 .0057794
 cov(b_day_malattia, _cons) -.0000698 .0000149 -.000099 -.0000406
 var(Residual) .000292 .000012 .0002693 .0003165

LR test vs. linear model: chi2(3) = 3601.78 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.

278. est store quadratic
279. lrtest linear quadratic

Likelihood-ratio test LR chi2(6) = 28.93
(Assumption: linear nested in quadratic) Prob > chi2 = 0.0001

280. ****margins*********
281. quiet: mixed mcv_ln c.b_day_malattia##c.b_day_malattia##i.death_30 i.p_age2 i.p_cardio i.p_obeso i.p_rene|| progr:
 b_day_malattia, cov(unstr)
282. margins death_30, at(b_day_mala~(0(1)21)) expression(exp(predict(xb))) asbal

Adjusted predictions Number of obs = 1,805
Expression : exp(predict(xb))

1._at : b_day_mala = 0
 death_30 (asbalanced)
 p_age2 (asbalanced)
 p_cardio (asbalanced)
 p_obeso (asbalanced)
 p_rene (asbalanced)

2._at : b_day_mala = 1
 death_30 (asbalanced)
 p_age2 (asbalanced)
 p_cardio (asbalanced)
 p_obeso (asbalanced)
 p_rene (asbalanced)

3._at : b_day_mala = 2
 death_30 (asbalanced)
 p_age2 (asbalanced)
 p_cardio (asbalanced)
 p_obeso (asbalanced)
 p_rene (asbalanced)

4._at : b_day_mala = 3
 death_30 (asbalanced)
 p_age2 (asbalanced)
 p_cardio (asbalanced)
 p_obeso (asbalanced)
 p_rene (asbalanced)

5._at : b_day_mala = 4
 death_30 (asbalanced)
 p_age2 (asbalanced)
 p_cardio (asbalanced)
 p_obeso (asbalanced)
 p_rene (asbalanced)

6._at : b_day_mala = 5
 death_30 (asbalanced)
 p_age2 (asbalanced)
 p_cardio (asbalanced)
 p_obeso (asbalanced)
 p_rene (asbalanced)

7._at : b_day_mala = 6
 death_30 (asbalanced)
 p_age2 (asbalanced)
 p_cardio (asbalanced)
 p_obeso (asbalanced)
 p_rene (asbalanced)

8._at : b_day_mala = 7
 death_30 (asbalanced)
 p_age2 (asbalanced)
 p_cardio (asbalanced)
 p_obeso (asbalanced)
 p_rene (asbalanced)

9._at : b_day_mala = 8
 death_30 (asbalanced)
 p_age2 (asbalanced)
 p_cardio (asbalanced)
Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]
_at#death_30
1#survivor 87.63465 .9886045 88.64 0.000 85.69702 89.57228
1#nonsurvivor 89.97241 1.302937 69.05 0.000 87.4187 92.52612
2#survivor 87.62872 .9752644 89.85 0.000 85.71723 89.5402
2#nonsurvivor 90.36644 1.259146 71.77 0.000 87.89856 92.83432
3#survivor 87.63088 .9646516 90.84 0.000 85.7402 89.52156
3#nonsurvivor 90.72909 1.224892 74.07 0.000 88.32834 93.12983
4#survivor 87.64115 .9564088 91.64 0.000 85.76662 89.51567
4#nonsurvivor 91.05995 1.199193 75.93 0.000 88.70957 93.41032
5#survivor 87.65952 .9501902 92.25 0.000 85.79718 89.52185

10._at : b_day_mala~a
p_obeso (asbalanced)
p_rene (asbalanced)

11._at : b_day_mala~a
p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

12._at : b_day_mala~a
p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

13._at : b_day_mala~a
p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

14._at : b_day_mala~a
p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

15._at : b_day_mala~a
p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

16._at : b_day_mala~a
p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

17._at : b_day_mala~a
p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

18._at : b_day_mala~a
p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

19._at : b_day_mala~a
p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

20._at : b_day_mala~a
p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

21._at : b_day_mala~a
p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

22._at : b_day_mala~a
p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)
User: Chiara Montaldo

5#survivor 91.30867, 1.18091, 77.36, 0.000 89.04613 92.67321
6#survivor 91.64599, 1.16824, 78.39, 0.000 89.23468 92.91578
7#survivor 91.80584, 1.161722, 79.07, 0.000 89.50155 93.11937
8#survivor 91.76353, 0.9605486, 79.31, 0.000 89.51986 93.60674
9#survivor 91.06854, 1.105473, 79.47, 0.000 89.78377 94.12995
10#survivor 87.72059, 0.9425454, 92.72, 0.000 85.83252 89.53947
11#survivor 87.68599, 0.9456694, 92.72, 0.000 85.8941 89.53947
12#survivor 87.72059, 0.9425454, 93.07, 0.000 85.87323 89.56794
13#survivor 87.72059, 0.9425454, 93.07, 0.000 85.87323 89.56794
14#survivor 87.72059, 0.9425454, 93.07, 0.000 85.87323 89.56794
15#survivor 87.72059, 0.9425454, 93.07, 0.000 85.87323 89.56794
16#survivor 87.72059, 0.9425454, 93.07, 0.000 85.87323 89.56794
17#survivor 87.72059, 0.9425454, 93.07, 0.000 85.87323 89.56794
18#survivor 87.72059, 0.9425454, 93.07, 0.000 85.87323 89.56794
19#survivor 87.72059, 0.9425454, 93.07, 0.000 85.87323 89.56794
20#survivor 87.72059, 0.9425454, 93.07, 0.000 85.87323 89.56794

. marginsplot, ytitle(\"Cells volume (fl)\") xlab(0(1)21) ylab(70(10)110) yline(80, lcolor(red)) legend(off)

Variables that uniquely identify margins: b_day_malattia death_30

. margins ar.death_30, at(b_day_malattia=(0(1)21)) expression(exp(predict(xb))) asbalanced

Contrasts of adjusted predictions

Number of obs = 1,805
Expression : exp(predict(xb))

1._at : b_day_malattia = 0
day_30 = (asbalanced)
p_age2 = (asbalanced)
p_cardio = (asbalanced)
p_obeso = (asbalanced)
p_rene = (asbalanced)
2._at : b_day_malattia = 1
day_30 = (asbalanced)
p_age2 = (asbalanced)
p_cardio = (asbalanced)
p_obeso = (asbalanced)
p_rene = (asbalanced)
3._at : b_day_malattia = 2
day_30 = (asbalanced)
p_age2 = (asbalanced)
p_cardio = (asbalanced)
p_obeso = (asbalanced)
p_rene = (asbalanced)
4._at : b_day_malattia = 3
day_30 = (asbalanced)
p_age2 = (asbalanced)
p_cardio = (asbalanced)
p_obeso = (asbalanced)
p_rene = (asbalanced)
5._at : b_day_malattia = 4
day_30 = (asbalanced)
p_age2 = (asbalanced)
p_cardio = (asbalanced)
p_obeso = (asbalanced)
p_rene = (asbalanced)
6._at : b_day_malattia = 5
day_30 = (asbalanced)
p_age2 = (asbalanced)
p_cardio = (asbalanced)
p_obeso = (asbalanced)
p_rene = (asbalanced)
7._at : b_day_malattia = 6
day_30 = (asbalanced)
p_age2 = (asbalanced)
p_cardio = (asbalanced)
p_obeso = (asbalanced)
p_rene = (asbalanced)
8._at : b_day_malattia = 7
day_30 = (asbalanced)
p_age2 = (asbalanced)
p_cardio = (asbalanced)
p_obeso = (asbalanced)
p_rene = (asbalanced)
9._at : b_day_malattia = 8
day_30 = (asbalanced)
p_age2 = (asbalanced)
p_cardio = (asbalanced)
p_obeso = (asbalanced)
p_rene = (asbalanced)

<table>
<thead>
<tr>
<th>_at</th>
<th>death_30</th>
<th>p_age2</th>
<th>p_cardio</th>
<th>p_obeso</th>
<th>p_rene</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>9</td>
<td>(unbalanced)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>(unbalanced)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>(unbalanced)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>12</td>
<td>(unbalanced)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>13</td>
<td>(unbalanced)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>14</td>
<td>(unbalanced)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>15</td>
<td>(unbalanced)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>16</td>
<td>(unbalanced)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>17</td>
<td>(unbalanced)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>18</td>
<td>(unbalanced)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>19</td>
<td>(unbalanced)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>20</td>
<td>(unbalanced)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>21</td>
<td>(unbalanced)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>df</th>
<th>chi2</th>
<th>P>chi2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.28</td>
<td>0.1341</td>
</tr>
<tr>
<td>2</td>
<td>11.56</td>
<td>0.0001</td>
</tr>
<tr>
<td>3</td>
<td>25.70</td>
<td>0.0000</td>
</tr>
<tr>
<td>4</td>
<td>35.95</td>
<td>0.0000</td>
</tr>
<tr>
<td>5</td>
<td>44.39</td>
<td>0.0000</td>
</tr>
<tr>
<td>6</td>
<td>51.06</td>
<td>0.0000</td>
</tr>
<tr>
<td>7</td>
<td>56.71</td>
<td>0.0000</td>
</tr>
<tr>
<td>8</td>
<td>61.74</td>
<td>0.0000</td>
</tr>
<tr>
<td>9</td>
<td>65.82</td>
<td>0.0000</td>
</tr>
<tr>
<td>10</td>
<td>69.11</td>
<td>0.0000</td>
</tr>
<tr>
<td>11</td>
<td>71.57</td>
<td>0.0000</td>
</tr>
</tbody>
</table>
(nonsurvivor vs survivor) 12
1 17.70 0.0000
(nonsurvivor vs survivor) 13
1 17.13 0.0000
(nonsurvivor vs survivor) 14
1 16.21 0.0001
(nonsurvivor vs survivor) 15
1 14.97 0.0001
(nonsurvivor vs survivor) 16
1 13.45 0.0002
(nonsurvivor vs survivor) 17
1 11.72 0.0006
(nonsurvivor vs survivor) 18
1 9.83 0.0017
(nonsurvivor vs survivor) 19
1 7.89 0.0050
(nonsurvivor vs survivor) 20
1 5.98 0.0144
(nonsurvivor vs survivor) 21
1 4.22 0.0399
(nonsurvivor vs survivor) 22
1 2.71 0.1000
2016
5 56.45 0.0000

| Death 300 st | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|--------------|-------|-----------|-------|--------|---------------------|
| (nonsurvivor vs survivor) 1 | 2.373763 1.271823 -1.509439 4.810499 |
| (nonsurvivor vs survivor) 2 | 2.373729 1.214363 -2.519347 5.957822 |
| (nonsurvivor vs survivor) 3 | 3.092205 1.247161 -2.501233 5.382727 |
| (nonsurvivor vs survivor) 4 | 3.411696 1.139546 1.199966 5.375623 |
| (nonsurvivor vs survivor) 5 | 3.699153 1.105514 3.523885 5.869521 |
| (nonsurvivor vs survivor) 6 | 3.939836 1.066422 3.680587 6.069285 |
| (nonsurvivor vs survivor) 7 | 4.137853 1.074934 2.01302 4.246686 |
| (nonsurvivor vs survivor) 8 | 4.256677 1.081046 2.02071 3.892020 |
| (nonsurvivor vs survivor) 9 | 4.410861 1.065404 2.323909 5.895214 |
| (nonsurvivor vs survivor) 10 | 4.609277 1.056625 2.393411 6.575513 |
| (nonsurvivor vs survivor) 11 | 4.652907 1.080566 2.457722 6.612494 |
| (nonsurvivor vs survivor) 12 | 4.651270 1.072199 2.409899 6.612861 |
| (nonsurvivor vs survivor) 13 | 4.655074 1.077846 2.348186 6.573263 |
| (nonsurvivor vs survivor) 14 | 4.360577 1.085077 2.241455 4.949789 |
| (nonsurvivor vs survivor) 15 | 4.223403 1.094266 2.08761 3.781046 |
| (nonsurvivor vs survivor) 16 | 4.056712 1.106006 1.889911 5.220443 |
| (nonsurvivor vs survivor) 17 | 3.83085 1.121187 1.86954 6.538535 |
| (nonsurvivor vs survivor) 18 | 3.577484 1.141473 1.441741 5.815050 |
| (nonsurvivor vs survivor) 19 | 3.275159 1.146173 0.905012 5.682017 |
| (nonsurvivor vs survivor) 20 | 2.931191 1.194603 0.802664 5.205016 |
| (nonsurvivor vs survivor) 21 | 2.545711 1.238755 0.117856 5.527866 |
| (nonsurvivor vs survivor) 22 | 2.161123 1.280344 0.410976 4.644216 |

285. graph save "Graph" "Users/Chiara/Documents/fileDO 15 Maggio/Harg_MCV.gph", replace (file /Users/Chiara/Documents/fileDO 15 Maggio/Harg_MCV.gph saved)
286. 287. *margins death_30, at(b_day_malattia=(0(1)30)) expression(exp(predict(xb)))
288. *marginsplot, title("MVC kinetic day 0 to day 30 after onset") ytitle("Cell volume (fL") xlab(0(5)30) ylab(75(5)100))
289. *marginsplot, title("MCV kinetic day 0 to day 30 after onset") ytitle("Cell volume (fL") xlab(0(5)30) ylab(75(5)100))
290. 291. *** combine****
293. 294. graph save "Graph" "Users/Chiara/Documents/fileDO 15 Maggio/Harg_MCV.gph", replace (file /Users/Chiara/Documents/fileDO 15 Maggio/Harg_MCV.gph saved)
295. 296. 297. **/
298. *** anova B_vg-CV
299. **/
300. 301. *scatter rdwcv b_day_malattia if death_30==1, mcolor(red) legend(off) title("B_vg-CV variation over time") xtitle ("day since onset") ytitle("RDW-CV (%)") axis(1)
302. *scatter rdwcv b_day_malattia if death_30==0, mcolor(green) legend(off) title("RDW-CV% variation over time") xtitle ("day since onset") ytitle("RDW-CV (%)") axis(1)
303. *scatter rdwcv b_day_malattia if death_30==1, mcolor(red) legend(off) title("MCV kinetic day 0 to day 30 after onset") ytitle("Cell volume (fL") xlab(0(5)30) ylab(75(5)100))
304. *scatter rdwcv b_day_malattia if death_30==0, mcolor(green) legend(off) title("MCV kinetic day 0 to day 30 after onset") ytitle("Cell volume (fL") xlab(0(5)30) ylab(75(5)100))
305. 306. 307. 308. 309. mixed rdwcv ln c.b_day_malattia##i.death_30 || progr:b_day_malattia, cov(unstr)
310. Performing ML estimation:
311. Performing gradient-based optimization:
312. Iteration 0: log likelihood = 3194.0531
313. Iteration 1: log likelihood = 3194.0531
314. Iteration 2: log likelihood = 3194.0531
315. Computing standard errors:
316. Mixed-effects ML regression
317. Number of obs = 1,805
318. Group variable: progr
319. Number of groups = 379
320. Obs per group:
321. min = 1
322. avg = 4.8
323. max = 22
324. Valid ch2(j) = 83.29
325. Log likelihood = 3194.0531
326. Prob > ch2 = 0.0000
Mixed-effects Model

Random-effects Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>Std. Err.</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>progr: Unstructured</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>var(b_day_malattia)</td>
<td>0.000016</td>
<td>1.99e-06</td>
<td>0.000013</td>
</tr>
<tr>
<td>var(_cons)</td>
<td>0.000058</td>
<td>0.00003</td>
<td>0.000048</td>
</tr>
<tr>
<td>cov(b_day_malattia,_cons)</td>
<td>-0.000087</td>
<td>0.00002</td>
<td>-0.000135</td>
</tr>
<tr>
<td>var(Residual)</td>
<td>0.000616</td>
<td>0.00025</td>
<td>0.000569</td>
</tr>
</tbody>
</table>

LR test vs. linear model: chi2(3) = 3387.52

Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

Estimation

310. `est store linear`

311. Mixed `rdwcv_ln c.b_day_malattia##c.b_day_malattia##i.death_30 i.p.age2 i.p.cardio i.p.obeso i.p.rene || progr:b_day_malattia, cov(unstr)`

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0: log likelihood = 3237.8802
Iteration 1: log likelihood = 3237.8807
Iteration 2: log likelihood = 3237.8807

Computing standard errors:

Mixed-effects ML regression

| Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|---------|-----------|-----|------|----------------------|
| b_day_malattia | -.0006197 | .000803 | -0.77 | 0.440 | -.0021933 | .000954 |
| c.b_day_malattia##c.b_day_malattia | .0000504 | .0000299 | 1.69 | 0.092 | -8.22e-06 | .000109 |
| death_30##nonsurvivor | .0548367 | .0108874 | 2.90 | 0.004 | .017818 | .091855 |
| death_30##c.b_day_malattia##nonsurvivor | -.0017401 | .0020595 | -0.84 | 0.398 | -.0057767 | .0022964 |
| 1.p.age2 | .0355318 | .0099427 | 3.57 | 0.000 | .0160444 | .0550192 |
| 1.p.cardio | .039348 | .010671 | 3.69 | 0.000 | .0184334 | .0602626 |
| 1.p.obeso | -.0000827 | .0004974 | -0.00 | 0.997 | -.0371548 | .0369894 |
| 1.p.rene | .0855343 | .0219689 | 3.89 | 0.000 | .0424761 | .1285925 |
| _cons | 2.542967 | .007208 | 354.09 | 0.000 | 2.526019 | 2.559915 |

Random-effects Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>Std. Err.</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>progr: Unstructured</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>var(b_day_malattia)</td>
<td>0.000016</td>
<td>2.00e-06</td>
<td>0.000013</td>
</tr>
<tr>
<td>var(_cons)</td>
<td>0.007909</td>
<td>.000709</td>
<td>0.006631</td>
</tr>
<tr>
<td>cov(b_day_malattia,_cons)</td>
<td>-0.000101</td>
<td>0.000158</td>
<td>-0.000436</td>
</tr>
<tr>
<td>var(Residual)</td>
<td>0.000602</td>
<td>0.000245</td>
<td>0.000556</td>
</tr>
</tbody>
</table>

LR test vs. linear model: chi2(3) = 3166.07

Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

Marginal Analysis

312. `est store quadratic`

313. `lrtest linear quadratic`

Likelihood-ratio test

<table>
<thead>
<tr>
<th>LR chi2(6)</th>
<th>Prob > chi2</th>
</tr>
</thead>
<tbody>
<tr>
<td>87.66</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

314. `margins death_30, at(b_day_malattia=(0(1)21)) expression(exp(predict(xb))) asbalanced`

Adjusted predictions

<table>
<thead>
<tr>
<th>Number of obs</th>
<th>1,805</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expression</td>
<td>exp(predict(xb))</td>
</tr>
</tbody>
</table>

1. _at b_day_malattia=0 death_30=0 p.age2=0

(ambalanced)

19/05/20, 17:13
2. at : b_day_mala-s = 1
 death_30
 p_age2
 p_cardio
 p_obeso
 p_rene

3. at : b_day_mala-s = 2
 death_30
 p_age2
 p_cardio
 p_obeso
 p_rene

4. at : b_day_mala-s = 3
 death_30
 p_age2
 p_cardio
 p_obeso
 p_rene

5. at : b_day_mala-s = 4
 death_30
 p_age2
 p_cardio
 p_obeso
 p_rene

6. at : b_day_mala-s = 5
 death_30
 p_age2
 p_cardio
 p_obeso
 p_rene

7. at : b_day_mala-s = 6
 death_30
 p_age2
 p_cardio
 p_obeso
 p_rene

8. at : b_day_mala-s = 7
 death_30
 p_age2
 p_cardio
 p_obeso
 p_rene

9. at : b_day_mala-s = 8
 death_30
 p_age2
 p_cardio
 p_obeso
 p_rene

10. at : b_day_mala-s = 9
 death_30
 p_age2
 p_cardio
 p_obeso
 p_rene

11. at : b_day_mala-s = 10
 death_30
 p_age2
 p_cardio
 p_obeso
 p_rene

12. at : b_day_mala-s = 11
 death_30
 p_age2
 p_cardio
 p_obeso
 p_rene

13. at : b_day_mala-s = 12
 death_30
 p_age2
 p_cardio
 p_obeso
 p_rene

14. at : b_day_mala-s = 13
 death_30
 p_age2
 p_cardio
 p_obeso
 p_rene

15. at : b_day_mala-s = 14
 death_30
 p_age2
 p_cardio
 p_obeso
 p_rene

16. at : b_day_mala-s = 15
 death_30
 p_age2
 p_cardio
 p_obeso
 p_rene
17. at : b_day_mala - 16
 death_30 (asbalanced)
 p_age2 (asbalanced)
 p_cardio (asbalanced)
 p_obeso (asbalanced)
 p_rese (asbalanced)

18. at : b_day_mala - 17
 death_30 (asbalanced)
 p_age2 (asbalanced)
 p_cardio (asbalanced)
 p_obeso (asbalanced)
 p_rese (asbalanced)

19. at : b_day_mala - 18
 death_30 (asbalanced)
 p_age2 (asbalanced)
 p_cardio (asbalanced)
 p_obeso (asbalanced)
 p_rese (asbalanced)

20. at : b_day_mala - 19
 death_30 (asbalanced)
 p_age2 (asbalanced)
 p_cardio (asbalanced)
 p_obeso (asbalanced)
 p_rese (asbalanced)

21. at : b_day_mala - 20
 death_30 (asbalanced)
 p_age2 (asbalanced)
 p_cardio (asbalanced)
 p_obeso (asbalanced)
 p_rese (asbalanced)

22. at : b_day_mala - 21
 death_30 (asbalanced)
 p_age2 (asbalanced)
 p_cardio (asbalanced)
 p_obeso (asbalanced)
 p_rese (asbalanced)

Contrasts of adjusted predictions Number of obs = 1,805
.margins ar.death_30, at(b_day_malattia=(0(1)21)) expression(exp(predict(xb))) asbalanced
.marginsplot, ytitle("RDW %") xlab(0(1)21) ylab(10(2)18) yline(14, lcolor(red)) legend(off)

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>19/05/20, 17:13 Page 42 of 56</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2. at : b_day_mala = 1
 death_30 (asbalanced)
p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

3. at : b_day_mala = 2
 death_30 (asbalanced)
p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

4. at : b_day_mala = 3
 death_30 (asbalanced)
p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

5. at : b_day_mala = 4
 death_30 (asbalanced)
p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

6. at : b_day_mala = 5
 death_30 (asbalanced)
p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

7. at : b_day_mala = 6
 death_30 (asbalanced)
p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

8. at : b_day_mala = 7
 death_30 (asbalanced)
p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

9. at : b_day_mala = 8
 death_30 (asbalanced)
p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

10. at : b_day_mala = 9
 death_30 (asbalanced)
p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

11. at : b_day_mala = 10
 death_30 (asbalanced)
p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

12. at : b_day_mala = 11
 death_30 (asbalanced)
p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

13. at : b_day_mala = 12
 death_30 (asbalanced)
p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

14. at : b_day_mala = 13
 death_30 (asbalanced)
p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

15. at : b_day_mala = 14
 death_30 (asbalanced)
p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

16. at : b_day_mala = 15
 death_30 (asbalanced)
p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)
17.

18.

19.

20.

21.

22.

| death_30_at | df | df | P>|chi2 |
|-------------|----|----|----------|
| nonsurvivor vs survivor | 1 | 8.24 | 0.0041 |
| nonsurvivor vs survivor | 2 | 8.75 | 0.0031 |
| nonsurvivor vs survivor | 3 | 9.33 | 0.0022 |
| nonsurvivor vs survivor | 4 | 10.00 | 0.0016 |
| nonsurvivor vs survivor | 5 | 10.74 | 0.0010 |
| nonsurvivor vs survivor | 6 | 11.64 | 0.0006 |
| nonsurvivor vs survivor | 7 | 12.66 | 0.0004 |
| nonsurvivor vs survivor | 8 | 13.85 | 0.0002 |
| nonsurvivor vs survivor | 9 | 15.26 | 0.0001 |
| nonsurvivor vs survivor | 10 | 16.92 | 0.0000 |
| nonsurvivor vs survivor | 11 | 18.85 | 0.0000 |
| nonsurvivor vs survivor | 12 | 21.09 | 0.0000 |
| nonsurvivor vs survivor | 13 | 23.64 | 0.0000 |
| nonsurvivor vs survivor | 14 | 26.50 | 0.0000 |
| nonsurvivor vs survivor | 15 | 29.64 | 0.0000 |
| nonsurvivor vs survivor | 16 | 33.01 | 0.0000 |
| nonsurvivor vs survivor | 17 | 36.51 | 0.0000 |
| nonsurvivor vs survivor | 18 | 40.02 | 0.0000 |
| nonsurvivor vs survivor | 19 | 43.40 | 0.0000 |
| nonsurvivor vs survivor | 20 | 46.50 | 0.0000 |
| nonsurvivor vs survivor | 21 | 49.17 | 0.0000 |
| nonsurvivor vs survivor | 22 | 51.30 | 0.0000 |
| Joint | 5 | 165.28 | 0.0000 |

Delta-method

<table>
<thead>
<tr>
<th>death_30_at</th>
<th>Contrast</th>
<th>Std. Err.</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>nonsurvivor vs survivor</td>
<td>1</td>
<td>0.7766853</td>
<td>0.2706044</td>
</tr>
<tr>
<td>nonsurvivor vs survivor</td>
<td>2</td>
<td>0.7557797</td>
<td>0.2554936</td>
</tr>
<tr>
<td>nonsurvivor vs survivor</td>
<td>3</td>
<td>0.7446448</td>
<td>0.2437229</td>
</tr>
<tr>
<td>nonsurvivor vs survivor</td>
<td>4</td>
<td>0.7332194</td>
<td>0.2415978</td>
</tr>
<tr>
<td>nonsurvivor vs survivor</td>
<td>5</td>
<td>0.7155759</td>
<td>0.2391677</td>
</tr>
<tr>
<td>nonsurvivor vs survivor</td>
<td>6</td>
<td>0.7048185</td>
<td>0.2363613</td>
</tr>
<tr>
<td>nonsurvivor vs survivor</td>
<td>7</td>
<td>0.6941855</td>
<td>0.2337058</td>
</tr>
<tr>
<td>nonsurvivor vs survivor</td>
<td>8</td>
<td>0.6836223</td>
<td>0.2310524</td>
</tr>
<tr>
<td>nonsurvivor vs survivor</td>
<td>9</td>
<td>0.6731390</td>
<td>0.2284082</td>
</tr>
<tr>
<td>nonsurvivor vs survivor</td>
<td>10</td>
<td>0.6626559</td>
<td>0.2257660</td>
</tr>
<tr>
<td>nonsurvivor vs survivor</td>
<td>11</td>
<td>0.6521728</td>
<td>0.2231239</td>
</tr>
<tr>
<td>nonsurvivor vs survivor</td>
<td>12</td>
<td>0.6416906</td>
<td>0.2204831</td>
</tr>
<tr>
<td>nonsurvivor vs survivor</td>
<td>13</td>
<td>0.6312085</td>
<td>0.2178432</td>
</tr>
<tr>
<td>nonsurvivor vs survivor</td>
<td>14</td>
<td>0.6207264</td>
<td>0.2152034</td>
</tr>
<tr>
<td>nonsurvivor vs survivor</td>
<td>15</td>
<td>0.6102442</td>
<td>0.2125635</td>
</tr>
<tr>
<td>nonsurvivor vs survivor</td>
<td>16</td>
<td>0.5997621</td>
<td>0.2099236</td>
</tr>
<tr>
<td>nonsurvivor vs survivor</td>
<td>17</td>
<td>0.5892799</td>
<td>0.2072837</td>
</tr>
<tr>
<td>nonsurvivor vs survivor</td>
<td>18</td>
<td>0.5787978</td>
<td>0.2046438</td>
</tr>
<tr>
<td>nonsurvivor vs survivor</td>
<td>19</td>
<td>0.5683156</td>
<td>0.2020039</td>
</tr>
<tr>
<td>nonsurvivor vs survivor</td>
<td>20</td>
<td>0.5578334</td>
<td>0.1993641</td>
</tr>
<tr>
<td>nonsurvivor vs survivor</td>
<td>21</td>
<td>0.5473512</td>
<td>0.1967243</td>
</tr>
<tr>
<td>nonsurvivor vs survivor</td>
<td>22</td>
<td>0.5368689</td>
<td>0.1940845</td>
</tr>
</tbody>
</table>

319. graph save "Graph" //Users/Chiara/Documents/fileDO 15 Maggio/Marg_RDW.gph", replace
(file /Users/Chiara/Documents/fileDO 15 Maggio/Marg_RDW.gph saved)
combine

```
* combine */Users/Chiara/Documents/fileDO 15 Maggio/Marg_RDW.gph */Users/Chiara/Documents/fileDO 15 Maggio/RDW_R
> DN.gph", ywidth(8) ysize(4)
```

```
graph save "Graph" */Users/Chiara/Documents/fileDO 15 Maggio/Graph_RDW.gph", replace
```

```
user: /Users/Chiara/Documents/fileDO 15 Maggio/coorte_long_emocromo_anemia_1.dta", clear
```

```
*scatter no model
```

```
use */Users/Chiara/Documents/fileDO 15 Maggio/fileDO\coorte_long_emocromo_anemia_1.dta", clear
```

```
*scatter rbc b_day_malattia  if death_30==1, mcolor(red) legend(off) title("RBC variation over time") xtitle("day > since onset") ytitle("RBC per mmc X 1000000") [scatter rbc b_day_malattia  if death_30==0, mcolor(green) legend(off) ms(oh)
```

```
*keep if rdwcv!=.
```

```
*********Graph box**************************************
```

```
replace rbc=rbc*1000000
```

```
graph box rbc, over(death_30, label(nolabel)) over(b_day_malattia) asyvars box(1, fcolor(navy)) nooutsides ytitle
> "(Cells per mmc x 1000000) yline(3000000, lcolor(red)) legend(off)
```

```
graph save "Graph" */Users/Chiara/Documents/fileDO 15 Maggio/BOX_RBC.gph", replace
```

```
**** modelling
```

```
use */Users/Chiara/Documents/fileDO 15 Maggio/fileDO\coorte_long_emocromo_anemia_1.dta", clear
```

```
mixed rbc Ln c.b_day_malattia##i.death_30 || progr:b_day_malattia, cov(unstr)
```

```
Performing EM optimization:
```

```
Performing gradient-based optimization:
```

```
Iteration 0:   log likelihood = 1661.5037
```

```
Iteration 1:   log likelihood = 1661.5103
```

```
Iteration 2:   log likelihood = 1661.5103
```

```
Computing standard errors:
```

```
Mixed-effects ML regression                     Number of obs     = 1,805
Group variable: progr                          Number of groups = 379
Obs per group: min   = 1
               avg   = 4.8
               max   = 22
Wald chi2(3)  = 129.70
Log likelihood = 1661.5103
```

```
rbc Ln         Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
```

```
b_day_malattia -.0059862   .0007063    -8.48   0.000    -.0073706   -.0046018
death_30 nonsurvivor    -.1346529   .0307841    -4.37   0.000    -.1949886   -.0743173
death_30 c.b_day_malattia nonsurvivor    -.0034302   .0021124    -1.62   0.104    -.0075704    .0007099
_cons            15.38927   .0110902  1387.65   0.000     15.36753      15.411
```

```
Random-effects Parameters  |   Estimate   |   Std. Err.   |      [95% Conf. Interval]
```

```
progr: Unstructured  
var(b_day_malattia)    .0000655   9.52e-06      .0000493    .0000871
var(_cons)             .0259037   .0026059      .0212682    .0315496
cov(b_day_malattia,_cons) -.0005826   .0001341     -.0008455   -.0003197
```

```
var(Residual)          .0044198   .0001783      .0040837    .0047836
```

```
LR test vs. linear model: chi2(3)  = 2292.52
```

```
Prob > chi2 = 0.0000
```

```
Note: LR test is conservative
and provided only for reference.
```

```
est store linear
```

```
mixed rbc Ln c.b_day_malattia#i.c_day_malattia#i.death_30 i.p_age2 i.p_cardio i.p_obeso i.p_rene || progr:b_day_malattia, cov(unstr)
```

```
Performing EM optimization:
```

```
Performing gradient-based optimization:
```

```
Iteration 0:   log likelihood = 1694.3095
```

```
Iteration 1:   log likelihood = 1694.3168
```

```
Iteration 2:   log likelihood = 1694.3168
```

```
Computing standard errors:
```

```
Mixed-effects ML regression                     Number of obs     = 1,805
Group variable: progr                          Number of groups = 379
Obs per group: min   = 1
               avg   = 4.8
               max   = 22
Wald chi2(9)  = 207.96
Log likelihood = 1694.3168
```

```
Prob > chi2 = 0.0000
```

```
Note: LR test is conserving
and provided only for reference.
```

```
set store linear
```

```
mixed rbc Ln c.b_day_malattia#i.c_day_malattia#i.death_30 i.p_age2 i.p_cardio i.p_obeso i.p_rene || progr:b_day_malattia, cov(unstr)
```

```
Performing EM optimization:
```

```
Performing gradient-based optimization:
```
| rbc_ln | Coef. (Std. Err.) | z | P>|z| | [95% Conf. Interval] |
|--------|------------------|------|---------|---------------------|
| b_day_malattia | -0.0073368 (0.002025) | -3.62 | 0.000 | (-0.0113056, -0.0033679) |
| c.b_day_malattia#c.b_day_malattia | 0.0000585 (0.0000771) | 0.76 | 0.448 | (-0.0000926, 0.0002096) |
| death_30 nonsurvivor | -0.0426850 (0.0380358) | -1.12 | 0.262 | (-0.1172345, 0.0318629) |
| death_30#c.b_day_malattia nonsurvivor | -0.0130316 (0.0051749) | -2.52 | 0.012 | (-0.0231742, -0.002889) |
| death_30#c.b_day_malattia#c.b_day_malattia nonsurvivor | 0.0004259 (0.0002116) | 2.01 | 0.044 | (0.0000111, 0.0008407) |
| 1.p_age2 | -0.0644802 (0.0157717) | -4.09 | 0.000 | (-0.095392, -0.0335683) |
| 1.p_cardio | 0.0093844 (0.0169037) | 0.56 | 0.579 | (-0.0237463, 0.0425151) |
| 1.p_obeso | 0.0368329 (0.0299484) | 1.23 | 0.219 | (-0.0218649, 0.0955307) |
| 1.p_rene | -0.2186919 (0.0348034) | -6.28 | 0.000 | (-0.2869053, -0.1504786) |
| _cons | 15.43243 (0.0170308) | 906.15 | 0.000 | (15.39905, 15.46581) |

Random-effects Parameters

<table>
<thead>
<tr>
<th></th>
<th>Estimate (Std. Err.)</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>propr: Unstructured</td>
<td></td>
<td></td>
</tr>
<tr>
<td>var(b_day_malattia)</td>
<td>0.0000644 (0.000010)</td>
<td>(0.0000523, 0.000092)</td>
</tr>
<tr>
<td>var(_cons)</td>
<td>0.0245928 (0.0025468)</td>
<td>(0.0200752, 0.030127)</td>
</tr>
<tr>
<td>cov(b_day_malattia,_cons)</td>
<td>-0.0006992 (0.0001403)</td>
<td>(-0.0009741, -0.0004242)</td>
</tr>
<tr>
<td>var(Residual)</td>
<td>0.0043675 (0.0001767)</td>
<td>(0.0040346, 0.004728)</td>
</tr>
</tbody>
</table>

LR test vs. linear model: ch2(3) = 2164.87 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

345. est store quadratic
346. lrtest linear quadratic

Likelihood-ratio test LR chi2(6) = 65.61 (Assumption: linear nested in quadratic) Prob > chi2 = 0.0000

347. ***margins****
348. quiet: mixed rbc_ln c.b_day_malattia##c.b_day_malattia##i.death_30 i.p_age2 i.p_cardio i.p_obeso i.p_rene || prog > r:b_day_malattia, cov(unstr)
349. margins death_30, at(b_day_malattia=(0(1)21)) expression(exp(predict(xb))) asbalanced

Adjusted predictions Number of obs = 1,805
Expression : exp(predict(xb))

1. _at : b_day_mala~a = 0
day_30 (ambalanced)
p_age2 (ambalanced)
p_cardio (ambalanced)
p_obeso (ambalanced)
p_rene (ambalanced)
2. _at : b_day_mala~a = 1
day_30 (ambalanced)
p_age2 (ambalanced)
p_cardio (ambalanced)
p_obeso (ambalanced)
p_rene (ambalanced)
3. _at : b_day_mala~a = 2
day_30 (ambalanced)
p_age2 (ambalanced)
p_cardio (ambalanced)
p_obeso (ambalanced)
p_rene (ambalanced)
4. _at : b_day_mala~a = 3
day_30 (ambalanced)
p_age2 (ambalanced)
p_cardio (ambalanced)
p_obeso (ambalanced)
p_rene (ambalanced)
5. _at : b_day_mala~a = 4
day_30 (ambalanced)
p_age2 (ambalanced)
p_cardio (ambalanced)
p_obeso (ambalanced)
p_rene (ambalanced)
6. _at : b_day_mala~a = 5
day_30 (ambalanced)
p_age2 (ambalanced)
p_cardio (ambalanced)
p_obeso (ambalanced)
p_rene (ambalanced)
7. _at : b_day_mala~a = 6
day_30 (ambalanced)
p_age2 (ambalanced)
p_cardio (ambalanced)
p_obeso (ambalanced)
p_rene (ambalanced)
8. _at : b_day_mala~a = 7
day_30 (ambalanced)
p_age2 (ambalanced)
p_cardio (ambalanced)
p_obeso (ambalanced)
<table>
<thead>
<tr>
<th>_at</th>
<th>b_day_mala-a</th>
<th>death_30</th>
<th>p_age2</th>
<th>p_cardio</th>
<th>p_obeso</th>
<th>p_rene</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>≥</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>≥</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>≥</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>≥</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>≥</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>≥</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>≥</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>≥</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>≥</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>≥</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>≥</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>≥</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>≥</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>≥</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Delta-method | Margin | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|--------------|--------|-----------|------|--------|---------------------|
| | | | | | |
| _at#death_30 | | | | | |
| 1#survivor | 4474709| 117652.2 | 38.03| 0.000 | 4244115-4705303 |
| 1#nonsurvivor| 4287722| 158954.8 | 26.97| 0.000 | 3976176-4599267 |
Variables that uniquely identify margins: b_day_malattia death_30

Contrasts of adjusted predictions

<table>
<thead>
<tr>
<th>Expression</th>
<th>Number of obs</th>
<th>1,805</th>
</tr>
</thead>
<tbody>
<tr>
<td>1_at</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b_day_male = a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>death_30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_age2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_cardio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_obeso</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_rene</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2_at</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b_day_male = a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>death_30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_age2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_cardio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_obeso</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_rene</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3_at</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b_day_male = a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>death_30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_age2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_cardio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_obeso</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_rene</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4_at</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b_day_male = a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>death_30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_age2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_cardio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_obeso</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_rene</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5_at</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b_day_male = a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>death_30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_age2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_cardio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_obeso</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_rene</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6_at</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b_day_male = a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>death_30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_age2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_cardio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_obeso</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_rene</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7_at</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b_day_male = a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>death_30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_age2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_cardio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_obeso</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_rene</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8_at</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b_day_male = a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>death_30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_age2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_cardio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_obeso</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_rene</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

350 - marginsplot, ytitle("Cells per mmc") xlab(0(1)21) ylab(2000000(1000000)6000000) yline(3000000, lcolor(red)) legend = (df)
<table>
<thead>
<tr>
<th>df</th>
<th>chi2</th>
<th>Prob>chi2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.28</td>
<td>0.2572</td>
</tr>
<tr>
<td></td>
<td>2.61</td>
<td>0.1065</td>
</tr>
<tr>
<td></td>
<td>4.54</td>
<td>0.0330</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>death_30 at</th>
<th>nonsurvivor vs survivor</th>
<th>df</th>
<th>chi2</th>
<th>Prob>chi2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>1.28</td>
<td>0.2572</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>2.61</td>
<td>0.1065</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>4.54</td>
<td>0.0330</td>
</tr>
</tbody>
</table>
(nonsurvivor vs survivor) 4 1 7.11 0.0077
(nonsurvivor vs survivor) 5 1 10.18 0.0014
(nonsurvivor vs survivor) 7 1 13.54 0.0002
(nonsurvivor vs survivor) 8 1 16.90 0.0000
(nonsurvivor vs survivor) 9 1 20.07 0.0000
(nonsurvivor vs survivor) 10 1 22.71 0.0000
(nonsurvivor vs survivor) 11 1 24.54 0.0000
(nonsurvivor vs survivor) 12 1 27.45 0.0000
(nonsurvivor vs survivor) 13 1 28.24 0.0000
(nonsurvivor vs survivor) 14 1 28.29 0.0000
(nonsurvivor vs survivor) 15 1 27.78 0.0000
(nonsurvivor vs survivor) 16 1 26.71 0.0000
(nonsurvivor vs survivor) 17 1 25.07 0.0000
(nonsurvivor vs survivor) 18 1 22.90 0.0000
(nonsurvivor vs survivor) 19 1 20.32 0.0000
(nonsurvivor vs survivor) 20 1 17.48 0.0000
(nonsurvivor vs survivor) 21 1 14.56 0.0001
(nonsurvivor vs survivor) 22 1 11.74 0.0006

Joint 5 36.28 0.0000

<table>
<thead>
<tr>
<th>death_30 vs progr</th>
<th>Delta-method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contrast</td>
<td>Std. Err.</td>
</tr>
<tr>
<td>Delta-method</td>
<td></td>
</tr>
</tbody>
</table>

352 | graph save "Graph" /Users/Chiara/Documents/fileDO 15 Haggio/Marg_BRC.qph", replace (file /Users/Chiara/Documents/fileDO 15 Haggio/Marg_BRC.qph saved)

353 | *** combine*****
354 | 59 cr combine /Users/Chiara/Documents/fileDO 15 Haggio/Marg_BRC.qph", replace (file /Users/Chiara/Documents/fileDO 15 Haggio/Marg_BRC.qph saved)

360 | graph save "Graph" /Users/Chiara/Documents/fileDO 15 Haggio/Graph_RBC.qph", replace (file /Users/Chiara/Documents/fileDO 15 Haggio/Graph_RBC.qph saved)

361

362

363

364

365

366

367 | use /Users/Chiara/Documents/fileDO 15 Haggio/Marg_BRC.qph", replace

368 | scatter hgb b_day_malattia if death_30==1, mcolor(red) legend(off) title("HGB variation over time") title("day > since onset") ytitle("HGB (g/dl)"") xlab(5(5)30) ylab(0(100)150) > 1000000, locolor(red) legend(off)

369 | keep if hgb>

370

371

372 | graph box hgb, over(b_day_malattia) xwidthbox(), mcolor(navy) nooutsides ytitle > "HGB (g/dl)"") ytitle("HGB variation over time") title("day > since onset") ytitle("HGB (g/dl)"") xlab(5(5)30) ylab(0(100)150) > Legend环绕

373 | graph save "Graph" /Users/Chiara/Documents/fileDO 15 Haggio/Marg_BX_B.qph", replace (file /Users/Chiara/Documents/fileDO 15 Haggio/Marg_BX_B.qph saved)

374

375 | *** modelling

376 | use /Users/Chiara/Documents/fileDO 15 Haggio/Marg_BRC.qph", replace

377 | mixed hgb ln c.b_day_malattia#i.death_30 i.p_age2 i.p_cardio i.p_obeso i.p_rene || progr:b_day_malattia, cov(unstruct)*

Performing EM optimization:
Performing gradient-based optimization:
Iteration 0: log likelihood = 1759.0077
Iteration 1: log likelihood = 1759.0077
Iteration 2: log likelihood = 1759.0077

Computing standard errors:
Mixed-effects NL regression
Number of obs = 1,805
Group variable: progr
Number of groups = 379

Obs per group:
min = 1
arg = 4.8
max = 22

Valid chi2(7) = 207.52
Prob > chi2 = 0.0000

hgb_ln | Conf. Std. Err. z P>|z| [95% Conf. Interval]
--------|-----------------|---------|----------|-----------------|-----------------|
b_day_malattia | -0.0061723 | 0.0006761 | -9.13 | 0.000 | -0.0074975 -0.0048471
day_30&b_day_malattia | -0.002463 | 0.0020197 | -1.21 | 0.226 | -0.0064992 -0.0005559
day_30#c.b_day_malattia | 0.0001142 | 0.0000741 | 1.54 | 0.123 | -0.000031 0.0002593
1.p_age2 | -0.0602628 | 0.0152214 | -3.96 | 0.000 | -0.0900962 -0.0304294
1.p_obeso | 0.0075202 | 0.0289389 | 0.26 | 0.795 | -0.0491989 0.0642397
1.p_rene | -0.1946001 | 0.0335085 | -5.83 | 0.000 | -0.2602756 -0.1289246
_cons | 2.690466 | 0.0129946 | 207.04 | 0.000 | 2.664997 2.715935

Random-effects Parameters | Estimate | Std. Err. [95% Conf. Interval]
progr: Variance | 8.56e-06 | 0.0000457 | 8.38e-06 8.76e-06
var(b_day_malattia) | 0.0000603 | 8.54e-06 | 0.0000457 0.0000796
var(_cons) | 0.021043 | 0.0021668 | 0.0171972 0.0257487
cov(b_day_malattia,_cons) | -0.0005393 | 0.0001172 | -0.0007689 -0.0003097
var(Residual) | 0.0040964 | 0.0001641 | 0.003787 0.0044311

LR test vs. linear model: chi2(3) = 2144.80
Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

378 . est store linear
379 . mixed hgb_ln c.b_day_malattia##c.b_day_malattia##i.death_30 i.p_age2 i.p_obeso i.p_rene i.p_cardio || progr:b_day_malattia, cov(unstr)
Performing EM optimization:
Performing gradient-based optimization:
Iteration 0: log likelihood = 1760.7311
Iteration 1: log likelihood = 1760.7359
Iteration 2: log likelihood = 1760.7359
Computing standard errors:
Log likelihood = 1760.7359

hgb_ln | Conf. Std. Err. z P>|z| [95% Conf. Interval]
b_day_malattia | -0.0089773 | 0.0019427 | -4.62 | 0.000 | -0.0127849 -0.0051697
day_30&b_day_malattia | -0.496847 | 0.061198 | -8.19 | 0.000 | -0.622042 -0.371652
day_30#c.b_day_malattia | 0.000937 | 0.0002034 | 4.62 | 0.000 | -0.0003059 0.0011764
1.p_age2 | -0.0607034 | 0.0152433 | -4.00 | 0.000 | -0.1876106 -0.0337962
1.p_obeso | 0.0075202 | 0.0289389 | 0.26 | 0.795 | -0.0491989 0.0642397
1.p_rene | -0.1946001 | 0.0335085 | -5.83 | 0.000 | -0.2602756 -0.1289246
1.p_cardio | 0.0181757 | 0.0163432 | 1.11 | 0.268 | -0.0302088 0.0665512
_cons | 2.705509 | 0.0162643 | 166.35 | 0.000 | 2.673632 2.737387

Random-effects Parameters | Estimate | Std. Err. [95% Conf. Interval]
progr: Variance | 8.56e-06 | 0.0000457 | 8.38e-06 8.76e-06
var(b_day_malattia) | 0.0000603 | 8.54e-06 | 0.0000457 0.0000796
var(_cons) | 0.021043 | 0.0021668 | 0.0171972 0.0257487
cov(b_day_malattia,_cons) | -0.0005393 | 0.0001172 | -0.0007689 -0.0003097
var(Residual) | 0.0040964 | 0.0001641 | 0.003787 0.0044311

LR test vs. linear model: chi2(3) = 2144.62
Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

380 . est store quadratic
381 . lrtest linear quadratic
Likelihood-ratio test
chi2(3) = 3.46
Prob > chi2 = 0.1776

Note: LR test is conservative and provided only for reference.
User: Chiara Montaldo

```
382  margins***************
384  > quiet: mixed bhp bs c.b_day_malattia##i.death_30 i.p_age2 i.p_cardio i.p_obeso i.p_rene || progr:b_day_malattia, c
385  > or(user)
386  > margins death_30, at(b_day_malattia=(0(1)21))  expression(exp(predict(xb))) asbalanced

Adjusted predictions  Number of obs  = 1,805
Expression   :
   : exp(predict(xb))

1._at   : b_day_mala~a = 0
   death_30  (asbalanced)
   p_age2  (asbalanced)
   p_cardio  (asbalanced)
   p_obeso  (asbalanced)
   p_rene  (asbalanced)
2._at   : b_day_mala~a = 1
   death_30  (asbalanced)
   p_age2  (asbalanced)
   p_cardio  (asbalanced)
   p_obeso  (asbalanced)
   p_rene  (asbalanced)
3._at   : b_day_mala~a = 2
   death_30  (asbalanced)
   p_age2  (asbalanced)
   p_cardio  (asbalanced)
   p_obeso  (asbalanced)
   p_rene  (asbalanced)
4._at   : b_day_mala~a = 3
   death_30  (asbalanced)
   p_age2  (asbalanced)
   p_cardio  (asbalanced)
   p_obeso  (asbalanced)
   p_rene  (asbalanced)
5._at   : b_day_mala~a = 4
   death_30  (asbalanced)
   p_age2  (asbalanced)
   p_cardio  (asbalanced)
   p_obeso  (asbalanced)
   p_rene  (asbalanced)
6._at   : b_day_mala~a = 5
   death_30  (asbalanced)
   p_age2  (asbalanced)
   p_cardio  (asbalanced)
   p_obeso  (asbalanced)
   p_rene  (asbalanced)
7._at   : b_day_mala~a = 6
   death_30  (asbalanced)
   p_age2  (asbalanced)
   p_cardio  (asbalanced)
   p_obeso  (asbalanced)
   p_rene  (asbalanced)
8._at   : b_day_mala~a = 7
   death_30  (asbalanced)
   p_age2  (asbalanced)
   p_cardio  (asbalanced)
   p_obeso  (asbalanced)
   p_rene  (asbalanced)
9._at   : b_day_mala~a = 8
   death_30  (asbalanced)
   p_age2  (asbalanced)
   p_cardio  (asbalanced)
   p_obeso  (asbalanced)
   p_rene  (asbalanced)
10._at  : b_day_mala~a = 9
   death_30  (asbalanced)
   p_age2  (asbalanced)
   p_cardio  (asbalanced)
   p_obeso  (asbalanced)
   p_rene  (asbalanced)
11._at  : b_day_mala~a = 10
   death_30  (asbalanced)
   p_age2  (asbalanced)
   p_cardio  (asbalanced)
   p_obeso  (asbalanced)
   p_rene  (asbalanced)
12._at  : b_day_mala~a = 11
   death_30  (asbalanced)
   p_age2  (asbalanced)
   p_cardio  (asbalanced)
   p_obeso  (asbalanced)
   p_rene  (asbalanced)
13._at  : b_day_mala~a = 12
   death_30  (asbalanced)
   p_age2  (asbalanced)
   p_cardio  (asbalanced)
   p_obeso  (asbalanced)
   p_rene  (asbalanced)
14._at  : b_day_mala~a = 13
   death_30  (asbalanced)
   p_age2  (asbalanced)
   p_cardio  (asbalanced)
   p_obeso  (asbalanced)
   p_rene  (asbalanced)
15._at  : b_day_mala~a = 14
   death_30  (asbalanced)
   p_age2  (asbalanced)
   p_cardio  (asbalanced)
   p_obeso  (asbalanced)
   p_rene  (asbalanced)
16._at  : b_day_mala~a = 15
   death_30  (asbalanced)
   p_age2  (asbalanced)
   p_cardio  (asbalanced)
   p_obeso  (asbalanced)
   p_rene  (asbalanced)
17._at  : b_day_mala~a = 16
   death_30  (asbalanced)
   p_age2  (asbalanced)
   p_cardio  (asbalanced)
   p_obeso  (asbalanced)
   p_rene  (asbalanced)
18._at  : b_day_mala~a = 17
   death_30  (asbalanced)
   p_age2  (asbalanced)
   p_cardio  (asbalanced)
   p_obeso  (asbalanced)
   p_rene  (asbalanced)
19._at  : b_day_mala~a = 18
   death_30  (asbalanced)
   p_age2  (asbalanced)
   p_cardio  (asbalanced)
   p_obeso  (asbalanced)
   p_rene  (asbalanced)
20._at  : b_day_mala~a = 19
   death_30  (asbalanced)
   p_age2  (asbalanced)
   p_cardio  (asbalanced)
   p_obeso  (asbalanced)
   p_rene  (asbalanced)
21._at  : b_day_mala~a = 20
   death_30  (asbalanced)
   p_age2  (asbalanced)
   p_cardio  (asbalanced)
   p_obeso  (asbalanced)
   p_rene  (asbalanced)
```


Δt	day	n	nonsurvivor	survivor
15 | day | 14 | (asbalanced)
16 | day | 15 | (asbalanced)
17 | day | 16 | (asbalanced)
18 | day | 17 | (asbalanced)
19 | day | 18 | (asbalanced)
20 | day | 19 | (asbalanced)
21 | day | 20 | (asbalanced)
22 | day | 21 | (asbalanced)

| Delta-method | Margin | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|--------------|--------|-----------|---|------|----------------------|
| Δt|day|nonsurvivor|survivor|

<table>
<thead>
<tr>
<th>Δt</th>
<th>day</th>
<th>n</th>
<th>nonsurvivor</th>
<th>survivor</th>
</tr>
</thead>
</table>
| 15 | day | 14 | (asbalanced)
| 16 | day | 15 | (asbalanced)
| 17 | day | 16 | (asbalanced)
| 18 | day | 17 | (asbalanced)
| 19 | day | 18 | (asbalanced)
| 20 | day | 19 | (asbalanced)
| 21 | day | 20 | (asbalanced)
| 22 | day | 21 | (asbalanced)

Notes

- The data appears to be from a statistical analysis or a research study, focusing on survival rates or other health-related metrics.
- The table shows comparisons across different time points (Δt), with columns for nonsurvivor and survivor counts.
- Specific metrics such as death rate, and age-related data are indicated.
- The data includes additional columns for margin and standard error, suggesting a focus on statistical analysis.

References

- For detailed analysis and interpretation, consult the source document or the relevant research literature.
- Further exploration into the data can be achieved through statistical software or detailed analysis tools.

User: Chiara Montaldo

Date: 19/05/20, 17:13

Page: 53 of 56
Variables that uniquely identify margins: b_day_malattia death_30

Contrasts of adjusted predictions

Expression : \(\exp(\text{predict}(xb)) \)

<table>
<thead>
<tr>
<th>Expression</th>
<th>Number of obs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. at</td>
<td>0 (balanced)</td>
</tr>
<tr>
<td>2. at</td>
<td>1 (balanced)</td>
</tr>
<tr>
<td>3. at</td>
<td>2 (balanced)</td>
</tr>
<tr>
<td>4. at</td>
<td>3 (balanced)</td>
</tr>
<tr>
<td>5. at</td>
<td>4 (balanced)</td>
</tr>
<tr>
<td>6. at</td>
<td>5 (balanced)</td>
</tr>
<tr>
<td>7. at</td>
<td>6 (balanced)</td>
</tr>
<tr>
<td>8. at</td>
<td>7 (balanced)</td>
</tr>
<tr>
<td>9. at</td>
<td>8 (balanced)</td>
</tr>
<tr>
<td>10. at</td>
<td>9 (balanced)</td>
</tr>
<tr>
<td>11. at</td>
<td>10 (balanced)</td>
</tr>
<tr>
<td>12. at</td>
<td>11 (balanced)</td>
</tr>
<tr>
<td>13. at</td>
<td>12 (balanced)</td>
</tr>
<tr>
<td>14. at</td>
<td>13 (balanced)</td>
</tr>
</tbody>
</table>
15. at : b_day_mala-a
dead_30 (asbalanced)
p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

16. at : b_day_mala-a
dead_30 (asbalanced)
p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

17. at : b_day_mala-a
dead_30 (asbalanced)
p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

18. at : b_day_mala-a
dead_30 (asbalanced)
p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

19. at : b_day_mala-a
dead_30 (asbalanced)
p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

20. at : b_day_mala-a
dead_30 (asbalanced)
p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

21. at : b_day_mala-a
dead_30 (asbalanced)
p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

22. at : b_day_mala-a
dead_30 (asbalanced)
p_age2 (asbalanced)
p_cardio (asbalanced)
p_obeso (asbalanced)
p_rene (asbalanced)

<table>
<thead>
<tr>
<th>df</th>
<th>chl2</th>
<th>P>chl2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.45</td>
<td>0.0631</td>
</tr>
<tr>
<td>2</td>
<td>4.19</td>
<td>0.0407</td>
</tr>
<tr>
<td>3</td>
<td>5.03</td>
<td>0.0250</td>
</tr>
<tr>
<td>4</td>
<td>6.96</td>
<td>0.0146</td>
</tr>
<tr>
<td>5</td>
<td>8.06</td>
<td>0.0045</td>
</tr>
<tr>
<td>6</td>
<td>9.18</td>
<td>0.0025</td>
</tr>
<tr>
<td>7</td>
<td>10.28</td>
<td>0.0013</td>
</tr>
<tr>
<td>8</td>
<td>11.33</td>
<td>0.0008</td>
</tr>
<tr>
<td>9</td>
<td>12.28</td>
<td>0.0005</td>
</tr>
<tr>
<td>10</td>
<td>13.10</td>
<td>0.0003</td>
</tr>
<tr>
<td>11</td>
<td>13.75</td>
<td>0.0002</td>
</tr>
<tr>
<td>12</td>
<td>14.23</td>
<td>0.0002</td>
</tr>
<tr>
<td>13</td>
<td>14.55</td>
<td>0.0001</td>
</tr>
<tr>
<td>14</td>
<td>14.70</td>
<td>0.0001</td>
</tr>
<tr>
<td>15</td>
<td>14.72</td>
<td>0.0001</td>
</tr>
<tr>
<td>16</td>
<td>14.82</td>
<td>0.0001</td>
</tr>
<tr>
<td>17</td>
<td>14.93</td>
<td>0.0001</td>
</tr>
<tr>
<td>18</td>
<td>14.18</td>
<td>0.0002</td>
</tr>
<tr>
<td>19</td>
<td>13.88</td>
<td>0.0002</td>
</tr>
<tr>
<td>20</td>
<td>13.55</td>
<td>0.0002</td>
</tr>
<tr>
<td>21</td>
<td>13.21</td>
<td>0.0003</td>
</tr>
<tr>
<td>22</td>
<td>12.91</td>
<td>0.0003</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>df</th>
<th>chl2</th>
<th>P>chl2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.45</td>
<td>0.0631</td>
</tr>
<tr>
<td>2</td>
<td>4.19</td>
<td>0.0407</td>
</tr>
<tr>
<td>3</td>
<td>5.03</td>
<td>0.0250</td>
</tr>
<tr>
<td>4</td>
<td>6.96</td>
<td>0.0146</td>
</tr>
<tr>
<td>5</td>
<td>8.06</td>
<td>0.0045</td>
</tr>
<tr>
<td>6</td>
<td>9.18</td>
<td>0.0025</td>
</tr>
<tr>
<td>7</td>
<td>10.28</td>
<td>0.0013</td>
</tr>
<tr>
<td>8</td>
<td>11.33</td>
<td>0.0008</td>
</tr>
<tr>
<td>9</td>
<td>12.28</td>
<td>0.0005</td>
</tr>
<tr>
<td>10</td>
<td>13.10</td>
<td>0.0003</td>
</tr>
<tr>
<td>11</td>
<td>13.75</td>
<td>0.0002</td>
</tr>
<tr>
<td>12</td>
<td>14.23</td>
<td>0.0002</td>
</tr>
<tr>
<td>13</td>
<td>14.55</td>
<td>0.0001</td>
</tr>
<tr>
<td>14</td>
<td>14.70</td>
<td>0.0001</td>
</tr>
<tr>
<td>15</td>
<td>14.72</td>
<td>0.0001</td>
</tr>
<tr>
<td>16</td>
<td>14.82</td>
<td>0.0001</td>
</tr>
<tr>
<td>17</td>
<td>14.93</td>
<td>0.0001</td>
</tr>
<tr>
<td>18</td>
<td>14.18</td>
<td>0.0002</td>
</tr>
<tr>
<td>19</td>
<td>13.88</td>
<td>0.0002</td>
</tr>
<tr>
<td>20</td>
<td>13.55</td>
<td>0.0002</td>
</tr>
<tr>
<td>21</td>
<td>13.21</td>
<td>0.0003</td>
</tr>
<tr>
<td>22</td>
<td>12.91</td>
<td>0.0003</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>df</th>
<th>chl2</th>
<th>P>chl2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.45</td>
<td>0.0631</td>
</tr>
<tr>
<td>2</td>
<td>4.19</td>
<td>0.0407</td>
</tr>
<tr>
<td>3</td>
<td>5.03</td>
<td>0.0250</td>
</tr>
<tr>
<td>4</td>
<td>6.96</td>
<td>0.0146</td>
</tr>
<tr>
<td>5</td>
<td>8.06</td>
<td>0.0045</td>
</tr>
<tr>
<td>6</td>
<td>9.18</td>
<td>0.0025</td>
</tr>
<tr>
<td>7</td>
<td>10.28</td>
<td>0.0013</td>
</tr>
<tr>
<td>8</td>
<td>11.33</td>
<td>0.0008</td>
</tr>
<tr>
<td>9</td>
<td>12.28</td>
<td>0.0005</td>
</tr>
<tr>
<td>10</td>
<td>13.10</td>
<td>0.0003</td>
</tr>
<tr>
<td>11</td>
<td>13.75</td>
<td>0.0002</td>
</tr>
<tr>
<td>12</td>
<td>14.23</td>
<td>0.0002</td>
</tr>
<tr>
<td>13</td>
<td>14.55</td>
<td>0.0001</td>
</tr>
<tr>
<td>14</td>
<td>14.70</td>
<td>0.0001</td>
</tr>
<tr>
<td>15</td>
<td>14.72</td>
<td>0.0001</td>
</tr>
<tr>
<td>16</td>
<td>14.82</td>
<td>0.0001</td>
</tr>
<tr>
<td>17</td>
<td>14.93</td>
<td>0.0001</td>
</tr>
<tr>
<td>18</td>
<td>14.18</td>
<td>0.0002</td>
</tr>
<tr>
<td>19</td>
<td>13.88</td>
<td>0.0002</td>
</tr>
<tr>
<td>20</td>
<td>13.55</td>
<td>0.0002</td>
</tr>
<tr>
<td>21</td>
<td>13.21</td>
<td>0.0003</td>
</tr>
<tr>
<td>22</td>
<td>12.91</td>
<td>0.0003</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>df</th>
<th>chl2</th>
<th>P>chl2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.45</td>
<td>0.0631</td>
</tr>
<tr>
<td>2</td>
<td>4.19</td>
<td>0.0407</td>
</tr>
<tr>
<td>3</td>
<td>5.03</td>
<td>0.0250</td>
</tr>
<tr>
<td>4</td>
<td>6.96</td>
<td>0.0146</td>
</tr>
<tr>
<td>5</td>
<td>8.06</td>
<td>0.0045</td>
</tr>
<tr>
<td>6</td>
<td>9.18</td>
<td>0.0025</td>
</tr>
<tr>
<td>7</td>
<td>10.28</td>
<td>0.0013</td>
</tr>
<tr>
<td>8</td>
<td>11.33</td>
<td>0.0008</td>
</tr>
<tr>
<td>9</td>
<td>12.28</td>
<td>0.0005</td>
</tr>
<tr>
<td>10</td>
<td>13.10</td>
<td>0.0003</td>
</tr>
<tr>
<td>11</td>
<td>13.75</td>
<td>0.0002</td>
</tr>
<tr>
<td>12</td>
<td>14.23</td>
<td>0.0002</td>
</tr>
<tr>
<td>13</td>
<td>14.55</td>
<td>0.0001</td>
</tr>
<tr>
<td>14</td>
<td>14.70</td>
<td>0.0001</td>
</tr>
<tr>
<td>15</td>
<td>14.72</td>
<td>0.0001</td>
</tr>
<tr>
<td>16</td>
<td>14.82</td>
<td>0.0001</td>
</tr>
<tr>
<td>17</td>
<td>14.93</td>
<td>0.0001</td>
</tr>
<tr>
<td>18</td>
<td>14.18</td>
<td>0.0002</td>
</tr>
<tr>
<td>19</td>
<td>13.88</td>
<td>0.0002</td>
</tr>
<tr>
<td>20</td>
<td>13.55</td>
<td>0.0002</td>
</tr>
<tr>
<td>21</td>
<td>13.21</td>
<td>0.0003</td>
</tr>
<tr>
<td>22</td>
<td>12.91</td>
<td>0.0003</td>
</tr>
</tbody>
</table>

Delta-method

<table>
<thead>
<tr>
<th>df</th>
<th>chl2</th>
<th>P>chl2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.45</td>
<td>0.0631</td>
</tr>
<tr>
<td>2</td>
<td>4.19</td>
<td>0.0407</td>
</tr>
<tr>
<td>3</td>
<td>5.03</td>
<td>0.0250</td>
</tr>
<tr>
<td>4</td>
<td>6.96</td>
<td>0.0146</td>
</tr>
<tr>
<td>5</td>
<td>8.06</td>
<td>0.0045</td>
</tr>
<tr>
<td>6</td>
<td>9.18</td>
<td>0.0025</td>
</tr>
<tr>
<td>7</td>
<td>10.28</td>
<td>0.0013</td>
</tr>
<tr>
<td>8</td>
<td>11.33</td>
<td>0.0008</td>
</tr>
<tr>
<td>9</td>
<td>12.28</td>
<td>0.0005</td>
</tr>
<tr>
<td>10</td>
<td>13.10</td>
<td>0.0003</td>
</tr>
<tr>
<td>11</td>
<td>13.75</td>
<td>0.0002</td>
</tr>
<tr>
<td>12</td>
<td>14.23</td>
<td>0.0002</td>
</tr>
<tr>
<td>13</td>
<td>14.55</td>
<td>0.0001</td>
</tr>
<tr>
<td>14</td>
<td>14.70</td>
<td>0.0001</td>
</tr>
<tr>
<td>15</td>
<td>14.72</td>
<td>0.0001</td>
</tr>
<tr>
<td>16</td>
<td>14.82</td>
<td>0.0001</td>
</tr>
<tr>
<td>17</td>
<td>14.93</td>
<td>0.0001</td>
</tr>
<tr>
<td>18</td>
<td>14.18</td>
<td>0.0002</td>
</tr>
<tr>
<td>19</td>
<td>13.88</td>
<td>0.0002</td>
</tr>
<tr>
<td>20</td>
<td>13.55</td>
<td>0.0002</td>
</tr>
<tr>
<td>21</td>
<td>13.21</td>
<td>0.0003</td>
</tr>
<tr>
<td>22</td>
<td>12.91</td>
<td>0.0003</td>
</tr>
</tbody>
</table>
(nonsurvivor vs survivor) 18 -1.205991 .3174533 -1.828188 -.5837943
(nonsurvivor vs survivor) 19 -1.232092 .3271942 -1.873381 -.5908036
(nonsurvivor vs survivor) 20 -1.257719 .3375714 -1.919346 -.5960909
(nonsurvivor vs survivor) 21 -1.282876 .3484714 -1.965867 -.6000843
(nonsurvivor vs survivor) 22 -1.307570 .3597942 -2.012753 -.6023865

388 . graph save "Graph" "/Users/Chiara/Documents/fileDO 15 Maggio/Marg_Hb.gph", replace
(file /Users/Chiara/Documents/fileDO 15 Maggio/Marg_Hb.gph saved)

389 . *margins death_30, at(b_day_malattia=(0(1)30)) expression(exp(predict(xb)))

390 . *marginsplot, title("HGb kinetic day 0 to day 30 after onset") ytitle("HGb (g/dL; log-scale)"") xlab(0(5)30) ylab(4
 > (2)16)

391 . *margins ar.death_30, at(b_day_malattia=(0(1)30)) expression(exp(predict(xb)))

392 . **combine*****

393 . gr combine "/Users/Chiara/Documents/fileDO 15 Maggio/Marg_Hb.gph" "/Users/Chiara/Documents/fileDO 15 Maggio/Marg_Hb
 > .gph", xsize(8) ysize(4)

394 . graph save "Graph" "/Users/Chiara/Documents/fileDO 15 Maggio/Graph_Hb.gph", replace
(file /Users/Chiara/Documents/fileDO 15 Maggio/Graph_Hb.gph saved)

395 . end of do-file

396 . log close

397 . name: <unnamed>

log type: smcl

closed on: 19 May 2020, 17:05:04