Resource-Oriented Programming
in Libra Move and Flow Cadence

Hsuan Lee %
Co-founder & CEO, portto



Who am |?

1. Co-founder & CEO @ portto
2. VP of Engineering @ Cobinhood & DEXON
3. Software Engineer @ 17 Media, Agoda, Yahoo



Outline of this Speech

The history of programming languages
Pain-points in smart contracts
Resource-oriented programming
Some examples

P WODN



History of programming languages

1950s 1970s 1970s 1990s
O O O O

“High-Level” Relational DB Object-Oriented Internet



Programming on blockchain

e Introduced by Ethereum
e General purpose programming

e Suitable for

o Transfer scarce assets
Control access
Provide auditable execution
Provide traceable proof??

o O O



What’s wrong with current model?

Centralized ledger

Reduce chance of parallelism

Data structure does not reflect ownership
Huge attack surface

Difficult to audit & analyze



Common attacks

1. Reentrance
a. DAO hack:

https://quantstamp.com/blog/what-is-a-re-entrancy-attack

b. ERC777 + Uniswap / Lendf.me:
https://www.abmedia.io/detailed-explanation-of-uniswaps-erc777-reentry-risk/

2. Abuse authorization

a. Parity wallets got locked:
https://qithub.com/openethereum/openethereum/issues/6995

b. Centralized ERC20:
https://etherscan.io/address/0xc12d1c73ee7dc3615bad4e37e4abfdbddfa38907e



https://quantstamp.com/blog/what-is-a-re-entrancy-attack
https://www.abmedia.io/detailed-explanation-of-uniswaps-erc777-reentry-risk/
https://github.com/openethereum/openethereum/issues/6995
https://etherscan.io/address/0xc12d1c73ee7dc3615ba4e37e4abfdbddfa38907e

Who you are (list) What you have

Data structure V.S. Resources

Contract level VM level

Existing ROP



Resource lifecycle

Create Transfer Delete
O O O
Carefully controlled Uncopyable, Deliberate,

Must be assigned once Never by accident



ROP accounts

Account O Account 1
Public Private Public Private
Ref Ref Ref
N/ _— /o

—

St Res Res w
orage ¥ o J Storage




Ethereum fungible token

contract ERC20 {
mapping (address => uint256) private _balances;

function _transfer(address sender, address recipient, uint256 amount) {

require(_balances[sender] >= amount);
_balances[sender] = _balances[sender] - amount;

_balances[recipient] = _balances[recipient] + amount
}
}



ROP fungible token

pub resource Vault: Provider, Receiver {
pub var balance: UFix64

init(balance: UFix64) {
self.balance = balance

pub fun withdraw(amount: UFix64): @Vault {
self.balance = self.balance - amount
return <-create Vault(balance: amount)

}

pub fun deposit(from: @Vault) {
self.balance = self.balance + from.balance
destroy from
}
}

Public

Ref
balance
deposit

Account

N

Private

Ref
withdraw

-

/

-

Storage

Vault

~




ROP fungible token

Account O Account 1 Account 2
_ _ N\ 4 N/ I 4 N/ I
Public Private Public Private Public Private
Ref
balance withdraw balance withdraw
/ deposit deposit
N N \ J \ J
Storage Code
4 N 4 N

Vault Token St Vault St Vault
Minter Contract orage 30 orage 0

- J - J




ROP fungible token demo

https://play.onflow.org/26b79fc4-bde4-4783-85ca-b5bdbfdbc543



https://play.onflow.org/26b79fc4-bde4-4783-85ca-b5bdbfdbc543

ROP Advantages

Built-in security

Less human error

Better parallelism

State rent made possible
Resource hierarchy



Resource-oriented resources

o Getting Started With Move
e (Cadence Lanquage Reference
e (Cadence Fungible Tokens



https://developers.libra.org/docs/move-overview
https://docs.onflow.org/docs/cadence
https://docs.onflow.org/docs/fungible-tokens

Download Slides

"1
LY}
E

ShE

,
.%

BB (3



Good Stuff

#1535 4]
H

Flow & /& B &1t ¥ Blocto Bi#% 3 Discord i =k S s



https://www.facebook.com/groups/flow.tw/
https://jobs.lever.co/binance?location=Taipei
https://discord.gg/Y2sfssn

Questions?



