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Introduction
About Search at Mercari
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About Mercari

● Japan’s largest consumer-to-consumer (C2C)
online marketplace 

● FY2022 numbers:*

○ Gross merchandise value (GMV): ~¥880 billion 
(~$6.7 billion USD)

○ Net sales: ~¥150 billion (~$1.1 billion USD)

Introduction

https://about.mercari.com/en/ir/library/pl/
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Search at Mercari

● Over 20 million monthly active users (MAU)

● 100s of millions of active listings in catalog

● 1,000s of queries per second (QPS)

Introduction
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Search Topology

● “Traditional” term-based search 

○ Lucene/Elasticsearch

Introduction
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The Problem
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Blind spots (that AI can see)
● Ambiguous keywords

● Semantics (“cool toys for boys”)

● Personalization

Problem

ワンピース
(One Piece)
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Integrating ML into a “traditional” term-based search architecture

● Classic search infrastructure and workflow; no “easy hooks” for AI

● Latency budget: 10’s of ms

The Problem



10

Integrating ML into a “traditional” term-based search architecture

● Classic search infrastructure and workflow; no “easy hooks” for AI

● Latency budget: 10’s of ms

● User search experience at all costs

The Problem



11

Phase 1: use ML to re-rank search results

Insight

Listing 1

Listing 2

Listing 3

Listing 4

Listing 2

Listing 3

Listing 1

Listing 4

Ranking function

We want to re-rank the search results so that more relevant listings 
are placed higher.

Most relevant 
listing

Least relevant 
listing

Relevancy

Re-ranked SERP*Original SERP*
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MLOps
What is it and why do we even care?
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● ML(Dev)Ops

● “Set of practices that aim to deploy and maintain ML models in 
production reliably and efficiently[1]”

What

[1] S. Shankar, R. Garcia, J. M. Hellerstein, and A. G. Parameswaran, “Operationalizing machine learning: An interview study,” arXiv preprint arXiv:2209.09125, 2022.
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● ML application development, deployment, and maintenance 
challenging

Why
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● Variance between data, use-cases, constraints, …
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● ML application development, deployment, and maintenance 
challenging

● Variance between data, use-cases, constraints, …

● No universal solutions

● MLOps still nascent

Why
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How
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How

● AI as an implementation detail
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How

● AI as an implementation detail

● Use-case-driven “MLOps”
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How

● AI as an implementation detail

● Use-case-driven “MLOps”

● Iterate on bottlenecks and requirements

● Good feedback signals

● Judicious resource allocation

● Starting small but soon
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Data Pipelines
In 5 minutes or less



26

● A dozen 500+ line SQL files

● Manually executed

Data Pipelines…?
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● A dozen 500+ line SQL files

● Manually executed

● Painful

Data Pipelines…?
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● A hundred 10-100+ line SQL files

● Inefficient & inaccessible

● Painful

Data Pipelines…
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● A few dozen SQL files

● Structured 

● Painful?

Data Pipelines!
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System Evolution
Growing an ML system while running the business
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● Model serving within search server

● Features computed in search workflow 

v0: In-Situ Model Serving
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● Custom-made python microservice for model serving

● RPC with timeout and “baseline” response

● Basic monitoring of production metrics

v1: Decoupled Model Serving
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● Offline feature store from data pipelines

● Online feature store with direct ETLs

● Timeouts & failsafes redux 

v2: Simple Feature Store
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A/B Test Setup: Before



35

v3: Batteries-Included Model Serving Framework
● Seldon & Istio
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A/B Test Setup: After



37

v3: Batteries-Included Model Serving Framework 
● Seldon + Istio

● Shadow Traffic
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Shadow Traffic: Test in Prod
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v3: Batteries-Included Model Serving Framework
● Seldon + Istio

● Shadow Traffic

● Fine-grained model serving 



40

Future Directions
Reliability & Effectiveness
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Outlier, adversarial, and drift detection

Monitoring
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Detect drift to preempt downstream performance degradations

Drift Detection
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Conclusion
● ML-enhanced search possible with incremental investments

● Resilience of use-case-driven platforms and systems

● Engineering/business trade-offs

● “One is too small a number to achieve greatness”

● Build something meaningful by building together


