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The first tabular foundation model, TabPFN, and its successor TabPFNv2 have impacted tabular
AI substantially, with dozens of methods building on it and hundreds of applications across
different use cases.
This report introduces TabPFN-2.5, the next generation of our tabular foundation model, scaling
to 20× data cells compared to TabPFNv2. On industry standard benchmarks with up to 50,000
data points and 2,000 features, TabPFN-2.5 substantially outperforms tuned tree-based models
and matches the accuracy of AutoGluon 1.4, a complex four-hour tuned ensemble that even
includes the previous TabPFNv2.
For production use cases, we introduce a new distillation engine that converts TabPFN-2.5 into
a compact MLP or tree ensemble, preserving most of its accuracy while delivering orders-of-
magnitude lower latency and plug-and-play deployment.
This new release will immediately strengthen the performance of the many applications and
methods already built on the TabPFN ecosystem.
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Figure 1: TabPFN-2.5 performance on the standard TabArena-lite benchmark, TabPFNv2 classification
subset. TabPFN-2.5 outperforms any other model in a forward pass, and marks a strong leap from
TabPFNv2. When fine-tuned on real data, Real-TabPFN-2.5 shows even stronger performance. The
horizontal dotted line stands for AutoGluon 1.4 extreme mode tuned for 4 hours, an ensemble of models
including TabPFNv2 [1].
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1 Introduction
Tabular data is ubiquitous, forming the backbone of decision-making in countless domains, from finance
to healthcare. For decades, traditional tabular machine learning—built on gradient-boosted trees [2–4],
random forests [5], and linear or additive models—has been the workhorse of applied data science. Yet
these methods remain limited: they require extensive dataset-specific tuning, often provide uncalibrated
or unreliable uncertainty estimates without significant modification, and lack the generalization and
transferability of modern foundation models.

Tabular foundation models (TFMs) offer a new paradigm. They address these limitations by pretraining
on large synthetic distributions of tabular tasks and performing inference via in-context learning instead
of gradient descent. They are training-free predictors meta-trained to yield strong calibration, without
the need for time-consuming and labor-intensive hyperparameter tuning necessary for gradient-boosted
trees. Their strong generalization makes them particularly attractive for data-scarce domains.

Our initial release, TabPFNv1 [6] served as a proof-of-concept that a transformer could learn a
Bayesian-like inference algorithm, though it was limited to small (up to 1k samples), clean, numerical-
only data. Our successor, TabPFNv2 [7], scaled this idea into a practical model for datasets up to
10,000 samples. TabPFNv2 handles the messy and heterogeneous data seen in the real world—including
categorical features, missing values, and outliers.

This paper describes the next release of TabPFN: TabPFN-2.5. Our key contributions are:

• SOTA Performance: In a forward pass, TabPFN-2.5 outperforms tuned tree-based models (like
XGBoost and CatBoost) and matches the accuracy of AutoGluon 1.4 tuned for 4 hours—a complex
ensemble that includes all previous methods, even TabPFNv2.

• Improved Scalability: We scale the power of in-context learning to datasets of up to 50,000
samples (5x increase over TabPFNv2) and 2,000 features (4x increase), making TFMs viable for a
much wider range of real-world problems 1.

• Fast Inference: We dramatically improve inference speed. We introduce TabPFN-as-MLP/TreeEns,
a proprietary output engine, that yields an MLP or tree ensemble, combining most of TabPFN’s
accuracy with the low-latency inference and easy deployment of MLPs and tree ensembles.

We begin by surveying the growing ecosystem of TabPFN applications and extensions (Section 2).
We then describe our methodological advances (Section 3) and present the experimental results (Section
4). We then discuss how to get the best speed out of TabPFN on common hardware (Section 5) as
well as our non-commercial open-source license (Section 6). We conclude by discussing the remaining
limitations and opportunities for future work (Sections 7). For installation and usage examples, see the
online documentation at https://docs.priorlabs.ai/.

2 Ecosystem & Adoption
2.1 Community Adoption
Since its release, TabPFNv2 has become a widely used baseline for tabular ML. The Nature paper [7] has
been cited in almost 400 papers within 10 months of its publication, and the open-source package has
surpassed 2,000,000 downloads on PyPI2. Adoption spans both research and production, especially in
settings with sparse data or frequent retraining requirements. This widespread adoption has matured
TabPFN from a research model into a stable product. With feedback from our community of nearly 1,500
users on Discord, and hundreds of closed GitHub issues, we have shipped numerous stability fixes, and
cross-platform device compatibility. In addition to commercial use-cases, we also collected 100 published
use cases across a broad range of areas (please see Appendix B for a detailed list):

• Healthcare and Life Sciences. Adoption is strongest in healthcare (50+ published applications),
driven by TabPFN’s exceptional performance in data-scarce settings—a common challenge in
medicine. Use cases span oncology, neurology, cardiology, and pharmacology, powering applications

1In exploratory runs, classification datasets up to ∼160k rows × 500 features and regression datasets up to ∼85k × 500
features fit into memory on an NVIDIA H100 (80 GB) using FP16 and FlashAttention-3. These configurations are outside
our validated range and not included in reported benchmarks.

2Google Scholar entry (accessed Nov 6, 2025; Download stats for tabpfn on pepy.tech (accessed Nov 6, 2025): https:
//www.pepy.tech/project/tabpfn
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like diagnosis, prognosis, and treatment response prediction from complex multimodal (clinical,
imaging, omics) data.

• Financial Services, Banking, and Insurance. While we see strong commercial traction,
public-facing use cases are rare due to the competitive, private nature of this industry (3 collected).
Applications in this domain typically involve proprietary forecasting, uplift modeling, and risk
assessments.

• Energy and Utilities. We’ve identified 14 published cases centered on complex forecasting and
optimization. Key applications include environmental forecasting (algal blooms, wildfire risk),
renewable-energy nowcasting, and process/asset optimization across water, oil & gas.

• Manufacturing and Industrial. The 13 diverse published use cases in this area highlight
TabPFN’s flexibility. Applications include anomaly detection in IIoT security, predictive maintenance
for rotating machinery, physics-aware optimization for battery thermal modeling, and semiconductor
test optimization.

• Other Industries Over 20 further applications demonstrate broad utility, spanning geoscience,
agriculture, materials, and engineering. These range from microbiome classification and lunar
regolith analysis to soil property modeling, fuel-blend optimization and crop yield forecasting.

2.2 A Foundational Layer for New Research
Beyond direct application, TabPFN now serves as a foundational layer for new research domains. Its
ability to act as a powerful, pre-trained “algorithm-in-a-box” has unlocked new approaches to complex
problems. We expect TabPFN-2.5 to directly boost performance in all these areas:

• Time Series Forecasting: TabPFN-TS [8] extends TabPFN to time-series forecasting by in-
corporating temporal context into its in-context learning mechanism, outperforming specialized
time-series models without any retraining.

• Node Classification in Graphs: Various works [9, 10] represent graph nodes as tabular instances
with relational and structural features, directly using tabular foundation models like TabPFN to
solve the problem.

• Data Streams: TabPFNv2 was used for in-context learning on Evolving Data Streams [11].
TabPFN can adapt to non-stationary data streams online, without retraining, enabling continual
learning in evolving environments.

• Reinforcement Learning: TabPFNv2 was used to replace gradient-based policy optimization
with in-context optimization over trajectories, creating a powerful general-purpose optimizer for RL
tasks [12].

• Bayesian optimization: GIT-BO [13] uses TabPFNv2 inside of high-dimensional Bayesian
Optimization, as it enables efficient search in high-dimensional and heterogeneous design spaces.

• Multimodal Learning & Encoding: TabPFN is used to integrate tabular data with other
modalities. It can serve as a frozen tabular encoder to generate robust embeddings for combination
with data like images (e.g., in the TIME framework [14]), or handle modalities in a unified manner
by adding modality-specific projectors [11].

• Causal Inference: Do-PFN [15], CausalPFN [16], and CausalFM [17] pre-train PFNs to predict
interventional outcomes, and show strong performance in estimating causal effects.

2.3 The TabPFN-Extensions Ecosystem
We maintain the TabPFN–Extensions repository (https://github.com/PriorLabs/tabpfn-extensions),
which offers extensions around the core model, developed together with a growing community around
TabPFN. These extensions leverage TabPFN capabilities for:

• Interpretability. SHAP values, feature selection, partial dependence.

• Unsupervised Tasks. Data generation, augmentation, outlier detection.
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• Advanced Modeling. Many-class classification, regression-via-classifier.

• Performance & Integration. Lightweight HPO, ensembling, and integration with tree/forest
baselines.

Figure 11 in the appendix provides a minimal workflow to help users pick the right components for their
task.

3 Model Overview
TabPFN-2.5 follows the same general design as TabPFNv2 but introduces deeper architectures, richer
synthetic priors, and new calibration and inference modules. We summarize only the key changes here.

Data. We improved our prior data generation substantially, broadened the set of distributions and
scaled up to more data points and more features, while keeping the prediction tasks difficult. Like the
original TabPFNv2, TabPFN-2.5 is trained purely on synthetically generated data. We also release a
version that is fine-tuned on real data following Real-TabPFN [18]. It is trained on a curated corpus of
43 real-world tabular datasets sourced from OpenML and Kaggle, deduplicated against all internal
benchmarks and the full TabArena suite. We refer to this version as Real-TabPFN-2.5, and report strong
improvement in Figures 3 and 4. See Appendix C for details on training and deduplication.

Architecture. We follow the alternating-attention transformer design of TabPFNv2, which attends
across both data points and features to achieve permutation invariance, but introduces some changes:

• We increase the network depth from 12 to 18 layers for our regression model and 24 layers for our
classification model.

• We simultaneously increase the feature group size (the number of features being embedded together),
which allows for faster training and inference. We use a group size of 3 for TabPFN-2.5, compared
to 2 for TabPFNv2.

• For our regression models, we found small improvement in replacing the linear encoder used in
TabPFNv2 by a 2-layer MLP.

• Finally, we add 64 additional “thinking” rows to the input dataset of TabPFN-2.5, which are learned
during pretraining. Inspired by results from the LLM literature [19, 20], these rows give additional
computational capacity to the model and can also act as attention sinks to help the model ignore
other rows [21].

Other core components from TabPFNv2—feature/sample dual attention, caching separation of train-
ing/test context, and positional feature embeddings—remain unchanged.

Preprocessing. We aggregate predictions across multiple dataset permutations and feature transfor-
mations to enhance robustness and generalization. In the updated TabPFN-2.5 configuration, additional
feature transformations are introduced to enhance robustness against outlier-prone feature distributions
and to increase the diversity among the individual estimators. Specifically, we combine robust scaling
and soft clipping (following [22]) with quantile transformations and standard scaling to balance stability
and sensitivity across features. Following TabPFNv2, we also include singular value decomposition (SVD)
components as additional features in some of the estimators, capturing high-energy directions of variance
that provide complementary global structure information.

Hyperparameter Tuning of TabPFN with TabPFN. TabPFN’s hyperparameter space spans
architectural, training, and prior-data parameters, making exhaustive grid search computationally
infeasible. To explore this space efficiently, we adopted a surrogate-based optimization strategy.

We first trained ≈ 100 models on a broad but sparse grid of hyperparameter configurations drawn from
plausible prior ranges and evaluated them on a curated in-house validation suite, producing a compact
set of hyperparameter–performance pairs.

With ∼ 50 hyperparameters and only 100 datapoints, direct interpolation was prone to overfitting.
We therefore used a regression model well-suited for data-scarce structured prediction—our previous
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TabPFNv2 model—as a surrogate to predict validation performance over a denser grid of 10,000 configu-
rations. This self-referential “TabPFN-tunes-TabPFN” strategy efficiently surfaced promising regions of
the search space for full, compute-intensive training runs.

Tuning custom metrics. TabPFN-2.5 adds new post-processing capabilities that enhance both
calibration and metric-specific optimization. Our framework now supports tuning the classifier’s decision
threshold, enabling direct optimization of metrics beyond accuracy—such as the F1-score—by adjusting
the operating point to the desired trade-off between precision and recall. For multiclass classification, it
allows to apply temperature scaling to the final softmax outputs to improve probability calibration. This
threshold tuning procedure can yield substantial performance improvements (see Appendix H). Unless
otherwise noted, however, all classification results in this report are computed using uncalibrated, default
scores, without temperature scaling or threshold tuning.

Reducing inference costs. Through optimized preprocessing, adoption of FlashAttention-3 [23], and
parallel evaluation across multiple GPUs, TabPFN-2.5 scales inference to datasets with up to 50,000 rows
and 2,000 features.

Creating fast, deployable models. To improve deployment flexibility, we developed a proprietary
distillation engine that, given a training data set, outputs a multi-layer perceptron (TabPFN-2.5-as-MLP)
or tree ensemble classifier (TabPFN-2.5-as-TreeEns) whose performance is close to the one of TabPFN
on this dataset (see Figure 7). In contrast to TabPFN, this resulting MLP or tree ensemble classifier
is dataset-specific, does not perform in-context learning, takes as input a single data point, and has
extremely low latency and memory footprint for making predictions. Because it outputs a standard
MLP or tree ensemble, it can be seamlessly integrated into existing production pipelines, including those
constrained by latency, interpretability, or regulatory requirements that hinder a change in the class of
models being deployed. This increases TabPFN-2.5’s practical use in real-world decision systems. Other
types of models could easily be supported.

Model Rows Feat. Type Depth Inference mode

TabPFN-v1 1,000 100 Num. 8 ICL
TabPFN-v2 10,000 500 Mixed 12 ICL
TabPFN-2.5 50,000 2000 Mixed 18–24 ICL+MLP/Trees

Table 1: Summary of TabPFN model variants. Max
Rows and Features are the recommended maximum sizes.
Models fit larger datasets but are not built and evaluated
for these settings.
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Figure 2: TabPFN-2.5 clearly outper-
forms TabPFNv2. We show normal-
ized performance for each dataset of the
TabPFNv2 subset of TabArena. TabPFN-
2.5 often performs much better and is
never much worse.

4 Experimental Results
We first demonstrate state-of-the-art performance on the industry standard benchmark TabArena and
using our own benchmarking framework. Then, we report our advances to reduce inference latency.
Finally, we demonstrate that TabPFN-2.5 yields new state-of-the-art performance for causal machine
learning.
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4.1 Performance on the Industry Standard Benchmark TabArena
TabArena [24] is the most curated tabular benchmark, based on the largest number of candidate datasets
considered, and created by open-source contributors from a wide range of institutions. It will appear
at the NeurIPS 2025 Datasets & Benchmarks track and is thus most up-to-date. We follow the paper’s
recommendation to benchmark on “TabArena-Lite”, which is a cheaper but representative version of the
full benchmark using only one test fold. The benchmark contains a set of 51 datasets selected from 1053
to be representative of real-world tabular data. See Erickson et al. [24] for the list of datasets.

Pushing the limit on medium-sized datasets. Figure 3 shows results for TabPFN-2.5 on TabArena-
Lite with up to 10,000 data points and 500 features, demonstrating that TabPFN-2.5, in a forward pass,
outperforms the wide range of existing tabular prediction methods. On classification, TabPFN-2.5 in
a forward pass outperforms AutoGluon 1.4, an ensemble tuned for four hours and including best other
methods (even TabPFNv2). Using our Real-TabPFN-2.5 variant fine-tuned on real datasets (deduplicated
from TabArena datasets) widens the lead even further. On the other hand, our regression model benefits
much more from tuning and outperforms AutoGluon 1.4 after being tuned for 60 configurations.

Scaling to larger datasets. Figure 4 shows a similar experiment with up to 50,000 data points and
2,000 features, clearly ranking TabPFN-2.5 as the best default model, and outperforming (for regression
datasets) or approaching (for classification datasets) AutoGluon 1.4 (tuned for 4 hours) when tuned.
Again, we highlight the very strong default performance of Real-TabPFN-2.5 on these larger classification
datasets.

A significant improvement upon TabPFNv2. Comparing the default performance of TabPFN-2.5
and TabPFNv2, we see a big leap in performance in Figure 3. In addition, looking at performance on
each dataset in TabArena (TabPFNv2 compatible subset) in Figure 2, we see that TabPFN-2.5 clearly
outperforms TabPFNv2 on almost all datasets, and is never much worse. In Appendix G, we detail the
results on TabArena-Lite, comparing TabPFN-2.5 to other foundation models like TabICL [25] or LimiX
[26].
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Figure 3: TabArena-Lite results on classification (left) and regression (right), restricted to datasets
with less than 10K training samples and 500 features. Note that tuning for TabPFN-2.5 is only
based on 60 random configs compared to 200 for the baselines. The vertical dotted line stands for
AutoGluon 1.4 extreme mode tuned for 4 hours, an ensemble of models including TabPFNv2 [1].

4.2 Performance on Internal Benchmarks
A diverse internal benchmark. In addition to the public TabArena benchmark, we built our own
benchmarking framework using proprietary data. It includes over 100 use cases from healthcare, finance,
insurance, retail and manufacturing. This benchmark focuses on comparing to gradient-boosted decision
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Figure 4: TabArena-Lite results on classification (left) and regression (right), restricted to datasets
with less than 50,000 training samples and 2,000 features. Note that tuning for TabPFN-2.5 is
only based on 60 random configs compared to 200 for the baselines. The vertical dotted line stands for
AutoGluon 1.4 extreme mode tuned for 4 hours, an ensemble of models including TabPFNv2 [1].

tree libraries that are frequently used in industry (XGBoost [2], CatBoost [3], LightGBM [4]), both
in their default version and tuned for one hour. In all cases, we show the results of three standard
gradient-boosted tree libraries (LightGBM, XGBoost and CatBoost). We tune all of the baselines for 1hr,
using random search on the established search spaces from [7]. TabPFN is tuned using our AutoTabPFN
system, resulting in a tuned and ensembled model.

TabPFN-2.5 shows strong results up to 50,000 samples and 2,000 features. Figure 5 and
Figure 6 show results on our internal benchmark for classification and regression datasets with up to 50k
data points and 500 features. We can see on these figures that TabPFN outperforms in one forward pass
all our tuned baselines. In Section F, we also show strong results on datasets with 500 to 2,000 features,
and provide more details on how we normalize the performance of each model across datasets.
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Figure 5: Results from our internal benchmark on classification datasets with up to 50k data
points. More details on the normalization is available in Appendix F. In the scatter plots (right), each
point represents a different dataset from our internal benchmark, and the axes measure the normalized
performance of TabPFN-2.5 and CatBoost (either default or tuned for 1 hour) on this dataset.

4.3 Measuring TabPFN-2.5 Training and Inference Speed
Figure 8 shows how TabPFN-2.5 classification speed scales with training set size, when using one or four
GPUs, as we vary the number of rows and columns in the dataset. The time measured includes both the
time to process the training rows (equivalent to the combination of “training” a classical ML model) and
“prediction” time on test rows. We can observe the expected scaling in O(r2 min(c, 500) + r min(c, 500)2),
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Figure 6: Results from our internal benchmark on regression datasets with up to 50k data
points. More details on the normalization is available in Appendix F. In the scatter plots (right), each
point represent a different dataset from our internal benchmark, and the axis measure the normalized
performance of TabPFN-2.5 and CatBoost (either default or tuned for 1 hour) on this dataset

Figure 7: TabPFN-as-MLP still outper-
forms tree-based models. For baseline,
light blue represents performance when tuned
for 1 hour, and darker blue default perfor-
mance. For TabPFN, we report default perfor-
mance.

where r is the number of rows and c is the number of columns, due to dual attention over rows and
capped per-estimator feature subsampling at 500 features. Section 5 contains results for regression, and
performance on common models of GPU, for reference. The inference speed reported here reflects the
latency of the full in-context learning model.

4.4 Fast Inference with TabPFN-2.5-as-MLP
We benchmark TabPFN-2.5-as-MLP against tuned LightGBM, XGBoost, and CatBoost models , as
well as the standard TabPFN-2.5 model, on our curated collection of internal open source datasets
with less than 10k data points. Figure 7 illustrates representative test-split performance. Empirically,
TabPFN-2.5-as-MLP offers competitive accuracy while reducing inference cost, making it attractive for
high-throughput or resource-constrained deployment scenarios.
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Figure 8: Time taken, in seconds, to fit TabPFN-2.5 classification models on various training set sizes, and
then make predictions on 500 test rows. Figure 16 in Section 5 reports results for regression, alongside
performance on A100 and T4 GPUs.
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Figure 9: PFN-based CATE estimators dominate
RealCause, outperforming specialized tree- and
deep-learning-based methods for causal inference.
Choice of propensity and outcome model is impor-
tant for CATE estimation.

Figure 10: Improvements in base model predictive
performance transfer to improved performance in
CATE estimation. Our new model, TabPFN-2.5,
is the strongest choice of base model for all meta-
learners.

4.5 TabPFN for Causal Inference
RealCause Benchmark. To systematically evaluate TabPFN’s potential as a causal estimator, we
leverage the RealCause benchmark [27], a semi-synthetic benchmark which begins with real-world
randomized control trial (RCT) data and synthetically creates observable confounding effects.3 We
measure the Precision in Estimating Heterogeneous Effects (PEHE), which corresponds to the root-mean-
squared error between predicted and RealCause’s ground-truth CATE values4. In Figure 9, we show that
PFN-based methods for CATE-estimation dominate the leaderboard, occupying the first seven positions.
TabPFN-2.5 applied as a T-Learner, a simple two-model approach that fits a separate model to the
treatment and control observations, achieves the strongest overall performance, outperforming specialized
tree- and deep-learning-based methods [28]. We also observe in Figure 10 that for each of our three
meta-learners, TabPFN-2.5 performs better out-of-the-box than TabPFNv2 and HPO5. This result shows
that improvements in base model predictive performance transfer to the problem of causal inference.

Foundation Models for Causal Inference. While we show strong results in unconfounded settings,
real-world causal inference often involves imperfect data and latent confounders. A growing line of work
aims to pre-train PFNs explicitly for causal reasoning—for example, predicting interventional outcomes
or learning causal structures directly [15–17, 30, 31]. We view this as one of the most exciting frontiers
for foundation models: extending TabPFN’s reasoning from predicting what is to inferring what would
happen if, and ultimately, understanding why.

5 How to Get Optimal Fit + Predict Speed from TabPFN-2.5
To achieve good performance, we recommend the following:

• Use a dedicated GPU or GPUs: We recommend NVIDIA H100 or A100 GPUs. Any dedicated
GPU supported by PyTorch is compatible, but some models may not have enough memory for
larger datasets or perform slowly. Integrated GPUs, MPS (Apple Silicon), and CPUs are also
supported, but are only suitable for small datasets.

• Use multiple GPUs: For larger datasets, fit + predict time can be dramatically reduced by paral-
lelizing inference over several GPUs. To enable this, set the device parameter of TabPFNClassifier
and TabPFNRegressor.

3Descriptions of the ACIC-2016, IHDP, and Lalonde-PSID and Lalonde-CPS datasets are provided in Appendix Table 3.
4For a description of the CATE estimation task and common estimators, please refer to Appendix D.
5Hyperparameter optimization is run for 60 seconds on an H100 per propensity and outcome model using FLAML [29].
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• Use batch inference: Unless the fitted-model cache is enabled (see below), the model is retrained
each time .predict() is called. This means that it is much faster to make a prediction for all your
test points in a single .predict() call. If you run out of memory, split the test points into batches
of 1000 to 10000 and call .predict() for each batch.

• Use PyTorch 2.8 or above: TabPFN-2.5 also supports earlier versions of PyTorch, but these
may have lower performance.

• For small datasets, enable the fitted-model cache: This is an experimental feature that trains
and stores the model during .fit(), making subsequent .predict() calls fast by using a KV-Cache.
It is enabled by setting the fit_mode parameter of TabPFNClassifier and TabPFNRegressor to
fit_with_cache. However, with this setting classification models will consume approximately 6.1
KB of GPU memory and 48.8 KB of CPU memory per cell in the training dataset (regression
models about 25% less), thus it is currently only suitable for small training datasets. For larger
datasets and CPU-based inference, we recommend the TabPFN-as-MLP/Tree output engine.

• If speed is important for your application, you may consider optimizing the memory_saving_mode
and n_preprocessing_jobs parameters of TabPFNClassifier and TabPFNRegressor. See the
code documentation for further information.

Figure 16 in the appendix shows the inference latency you can expect for three common models of
GPU, when using one or four GPUs. It also shows the maximum dataset size that fits in memory for
each GPU.

6 License and Availability
We release TabPFN-2.5 under our TABPFN-2.5 License v1.0 designed to be permissive for research and
internal evaluation. It explicitly allows testing, evaluation, and internal benchmarking, so an organization
can download the model and run preliminary assessments on its own datasets.

The key restriction is that the model, its derivatives, and its outputs cannot be used for any commercial
or production purpose. This includes, but is not limited to, revenue-generating products, competitive
benchmarking for procurement, client deliverables, or using the model’s results for internal commercial
decision-making.

For all production use cases, we offer a Commercial Enterprise License. This provides access to our
proprietary high-speed inference engine, dedicated support, integration tooling, and other internal models.

Please contact us at sales@priorlabs.ai for commercial licensing inquiries. The full non-commercial mode
license text can be found at https://huggingface.co/Prior-Labs/tabpfn_2_5/blob/main/LICENSE.

7 Conclusion and The Road Ahead
We are excited about this release. Taken together, our experiments on public (TabArena) and private
benchmarks demonstrate that TabPFN-2.5 sets a new state-of-the-art for tuning-free tabular models. In
a single forward pass, it matches the performance of complex 4-hour-tuned ensembles - ensembles that
even include our previous TabPFNv2 - for datasets up to 50,000 data points and 2,000 features. This
advantage holds for classification, regression, and sophisticated downstream tasks like causal inference.

While we have pushed the boundary to 50,000 samples, the next step is scaling to datasets with
millions of rows. We are actively developing new techniques—including retrieval, fine-tuning, and novel
architectures—and anticipate that systems based on Tabular Foundation Models (TFMs) will define
state-of-the-art performance for datasets with millions of data points within the next year.

Our broader vision beyond this release is to tackle the entire stack of problems with tabular-like
data, including time series, multimodal tabular data, causal inference, unsupervised tasks, integration of
domain knowledge and decision support, ultimately building the core intelligence engine for reasoning
over structured and multimodal data.
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B TabPFN Use Case Overview
TabPFNv2 has been applied to a broad set of use cases. We now list 100 published use cases across
different industries.

Healthcare and Life Sciences
We collected 50 published TabPFN use cases in this area, by far more than in any other area; we attribute
this partly to the scarcity of data in healthcare and life sciences, and partly to the open publishing culture
in this area. Use cases span oncology, neurology, cardiology, psychiatry, nephrology, and pharmacology.
Applications include diagnosis, prognosis, and treatment response prediction from multimodal clinical,
imaging, and omics data, often under severe data scarcity.

1. TabPFN was applied to distinguish cancer patients from healthy individuals using immune system
profiles from peripheral blood, facilitating predictions of immunotherapy responses. Link

2. A machine learning model employing TabPFN was developed for non-invasive diagnostic prediction
of minimal change disease in patients with nephrotic syndrome, utilizing clinical biomarkers. Link

3. TabPFN was integrated into a system for analyzing T-cell receptor repertoires combined with clinical
biomarkers to forecast immunotherapy outcomes in cancer patients, as explored by researchers at
BostonGene. Link

4. TabPFN enabled early detection of stillbirth risks through analysis of cardiotocography data,
supporting improved prenatal care. Link

5. Predictive modeling for postoperative outcomes following anterior cervical corpectomy utilized
TabPFN to assess patient demographics and surgical parameters. Link

6. A hybrid model incorporating TabPFN was introduced to predict dementia progression in Parkinson’s
disease patients, handling small datasets and missing values effectively. Link

7. A machine learning model based on TabPFN was developed to predict 90-day unfavorable outcomes
in stroke patients with distal vessel occlusions using CT perfusion imaging. Link

8. TabPFN was utilized in chemoproteomics for identifying small-molecule fragment-protein interac-
tions, aiding ligand discovery in drug development. Link

9. TabPFN facilitated the prediction of non-invasive ventilation outcomes in patients with acute
hypoxemic respiratory failure, supporting early identification of treatment failures. Link

10. An interpretable Transformer-based model leveraging TabPFN was created to predict intravenous
immunoglobulin resistance in pediatric patients with Kawasaki disease. Link

11. TabPFN was used to combine clinical, MR morphological, and delta-radiomics features to predict
lymphovascular invasion in invasive breast cancer patients. Link

12. TabPFN is proposed to predict mental health trajectories through digital phenotyping, enabling
proactive and personalized interventions in precision psychiatry. Link
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13. TabPFN contributed to cardiovascular disease risk stratification using clinical features from a large
patient cohort, incorporating interpretability techniques. Link

14. TabPFN outperformed traditional machine learning models for early prediction of acute kidney
injury in hospitalized patients, demonstrating generalizability across datasets. Link

15. TabPFN was integrated into a framework for predicting postoperative mobility and discharge
destinations in older adults using sensor data. Link

16. TabPFN supported the prediction of infant temperament from maternal mental health data, aiding
early identification of at-risk infants. Link

17. TabPFN was employed to characterize clinical risk profiles for complications in type 2 diabetes
mellitus patients, focusing on neuropathy and retinopathy. Link

18. TabPFN was extended with a longitudinal-to-cross-sectional transformation to forecast Alzheimer’s
disease progression on neuroimaging datasets. Link

19. TabPFN supported uncertainty calibration evaluation in medical data using variational techniques.
Link

20. TabPFN was applied to predict tumor response to chemotherapy in cholangiocarcinoma patients
using RNA expression landscapes. Link

21. TabPFN was incorporated into a generative model framework for tasks like data augmentation and
imputation in biomedicine. Link

22. TabPFN facilitated the prediction of gallstone malignancy risks through analysis of associated
disease factors. Link

23. TabPFN was used in classifying tuberculosis treatment outcomes based on clinical and sociodemo-
graphic data from national registries. Link

24. TabPFN contributed to early prediction of gestational diabetes using cell-free DNA and genetic
scores from early pregnancy blood samples. Link

25. TabPFN was used for predicting schizophrenia based on sense of agency features, emphasizing
interpretability. Link

26. TabPFN was integrated into a physiologically-based pharmacokinetic model for predicting dissolution
and absorption of amorphous solid dispersions in drug development. Link

27. TabPFN enabled classification of respiratory diseases from sound data, addressing clinical spectrum
diversity. Link

28. TabPFN was applied to small-data tabular learning in drug discovery, handling data scarcity and
distribution shifts. Link

29. TabPFN facilitated prediction of coronary heart disease risk in patients with cardiovascular-kidney-
metabolic syndrome, optimizing evaluation in small samples. Link

30. TabPFN was used to predict success of allogeneic stem cell mobilization in donors, aiding transplant
therapies. Link

31. TabPFN contributed to predicting manual strength using anthropometric data, focusing on accuracy
and interpretability. Link

32. TabPFN supported uncertainty-guided model selection for biomolecule efficacy prediction, enhancing
ensemble optimization in drug discovery, as studied at GSK. Link

33. TabPFN was utilized in a multitask deep learning framework for optimizing in vitro fertilization
decisions, including embryo transfer and pregnancy prediction. Link

34. TabPFN enabled a framework for early Long COVID detection through causal gene identification
and interpretability. Link
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35. TabPFN was used in a foundation model approach for neoadjuvant therapy recommendations in
breast cancer, integrating multi-omics data. Link

36. TabPFN facilitated prediction of recurrence and progression in oral potentially malignant disorder
patients post-surgery. Link

37. TabPFN supported prediction of occult lymph node metastasis in non-small cell lung cancer patients
treated with stereotactic ablative radiotherapy. Link

38. TabPFN was used in stroke diagnosis, addressing dataset imbalance and model interpretability for
clinical decisions. Link

39. TabPFN was integrated into a multimodal thesis framework for clinical predictions using tabular
and phenotypic data from large-scale projects. Link

40. TabPFN was used to predict diabetes-related hypo- and hyperglycemia during hemodialysis using
continuous glucose monitoring data, facilitating improved patient management. Link

41. TabPFN was applied to CorvisST biomechanical indices to classify corneal disorders, improving
diagnostic accuracy in ophthalmology. Link

42. TabPFN was incorporated into a non-invasive sleep staging framework using respiratory sound
features, advancing passive sleep monitoring. Link

43. TabPFN supported prediction of vancomycin blood concentrations to optimize antimicrobial dosing
strategies in clinical practice. Link

44. TabPFN was used to predict negative self-rated oral health in adults, identifying risk factors for
targeted public-health interventions. Link

45. TabPFN was extended to many features to enable robust analysis of high-dimensional biomedical
data, improving model stability and interpretability in clinical applications.

46. TabPFN supported multi-omics fusion for neoadjuvant therapy recommendation in breast cancer,
improving personalized treatment strategies. Link

47. TabPFN supported uncertainty-guided model selection for siRNA efficacy prediction, advancing
molecular screening and drug discovery workflows. Link

48. TabPFN was used to classify respiratory diseases from sound recordings, contributing to non-invasive
respiratory diagnostics. Link

49. TabPFN enhanced small-data learning in drug discovery, improving predictive performance under
severe data scarcity. Link

50. TabPFN predicted gastrointestinal bleeding risk in pediatric Henoch–Schönlein purpura patients,
supporting early clinical intervention. Link

Financial Services, Banking, and Insurance
While we have seen strong customer interest in this area, this is not reflected by the relatively few
published use cases (only 3) we managed to collect; we attribute this to the domain’s competitive nature
and disinclination to publish.

1. TabPFN was applied to usage-based premium calculations in actuarial science, leveraging driving
behavior data from IoT devices. Link

2. TabPFN facilitated cross-selling of health insurance products through deep learning analysis of
customer data. Link

3. TabPFN was used in corporate bond recovery rate prediction for credit risk management. Link
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Energy and Utilities
We collected 14 use cases focused on environmental forecasting (algal blooms, wildfire, rainfall), renewable-energy
nowcasting, process/asset optimization across water, oil & gas, and materials.

1. TabPFN was employed to predict river algal blooms through multi-classification of chlorophyll-a
concentrations, aiding water management. Link

2. TabPFN facilitated wildfire propagation prediction in Canadian conifer forests, classifying fire types
for environmental risk assessment. Link

3. TabPFN was integrated into a machine learning framework for optimizing energy consumption at
wastewater treatment plants. Link

4. TabPFN supported rainfall forecast post-processing using historical error patterns from environ-
mental data. Link

5. TabPFN enabled solar forecast error adjustment, particularly during rapid weather changes, as
developed by Open Climate Fix. Link

6. TabPFN was applied to predict ash fusibility in high-alkali coal for improved energy production.
Link

7. TabPFN contributed to predicting Henry coefficients for alkanes in zeolites, aiding hydroisomerization
in sustainable fuel production. Link

8. TabPFN facilitated shape-selectivity modeling in zeolites for long-chain alkane hydroisomerization,
optimizing catalyst design. Link

9. TabPFN was used in an integrated framework for estimated ultimate recovery prediction and
fracturing optimization in shale gas reservoirs. Link

10. TabPFN supported core data augmentation for enhanced reservoir parameter prediction in oil and
gas exploration. Link

11. TabPFN was employed to optimize energy performance in multistage centrifugal pumps through
entropy generation analysis. Link

12. TabPFN contributed to physics-informed regression for evaluating solar-reflective materials in facade
temperature modeling. Link

13. TabPFN was applied to generate advanced global heat flow maps at 0.2° resolution, integrating
high-resolution geophysical data to improve geothermal resource modeling. Link

14. TabPFN contributed to FuelCast, standardizing benchmarks for ship fuel consumption prediction
and improving efficiency in maritime operations. Link

Manufacturing and Industrial
We collected 13 diverse use cases including anomaly detection, predictive maintenance, physics-aware
optimization—spanning IIoT security, rotating machinery, semiconductor testing, geotechnical/optical
sensing, machining, battery thermal modeling, and concrete mix design.

1. TabPFN enabled early fault classification in rotating machinery, addressing data scarcity in industrial
scenarios. Link

2. TabPFN facilitated microcontroller performance prediction, aiding semiconductor screening with
minimal supervision, as studied at Infineon Technologies. Link

3. TabPFN was applied to caisson inclination prediction in ultra-deep construction, combining data
denoising techniques. Link

4. TabPFN supported event classification in phase-sensitive optical time-domain reflectometry systems
for distributed fiber sensing. Link
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5. TabPFN was integrated into an adaptive ensemble for intrusion detection in Industrial Internet of
Things networks. Link

6. TabPFN enabled a random forest-based framework for attack recognition in Internet of Things
networks, improving interpretability. Link

7. TabPFN facilitated geotechnical site characterization for predicting soil strength and imputing
mechanical parameters. Link

8. TabPFN was used in cryogenic-assisted abrasive waterjet machining for improving surface integrity
in titanium alloys. Link

9. TabPFN supported in-context learning for thermal behavior prediction in nano-phase change
materials for battery systems. Link

10. TabPFN was applied to explainable strength evaluation in multicomponent concrete mixtures. Link

11. TabPFN was integrated into a multimodal fusion framework linking microstructure to friction
behavior in martensitic stainless steel, improving wear resistance in materials engineering applications.
Link

12. TabPFN supported multiscale modeling to predict soil salinity in arid farmland, advancing sustain-
able agricultural management in regions such as Xinjiang. Link

13. TabPFN was used in explainable modeling of multicomponent concrete strength, identifying key
material factors and informing construction practices. Link

Other Industries
We collected 20 further heterogeneous TabPFN applications spanning geoscience, agriculture, materials,
and engineering domains—ranging from microbiome classification and lunar regolith analysis to soil
property modeling, crop yield and phenology forecasting, fuel-blend optimization, and spatial regression.

1. TabPFN was modified for microbiome data classification in metagenomics, matching species
abundance patterns with synthetic priors. Link

2. TabPFN enabled lunar regolith analysis for classifying meteorite compositions from spectral data.
Link

3. TabPFN facilitated winter wheat yield forecasting in agricultural regions by integrating climate and
remote sensing data. Link

4. TabPFN was applied to flood impact assessment on housing prices by geographic areas. Link

5. TabPFN showed the strongest performance on 31 predictive soil modeling datasets containing 30 to
460 samples. Link

6. TabPFN was applied to shallow natural gas hazard prediction in tunnel construction. Link

7. TabPFN supported automated feature engineering for energy consumption forecasting in domain-
specific applications. Link

8. TabPFN enabled Australian rice phenology prediction using remote sensing and weather data for
crop management. Link

9. TabPFN was applied to a multi-stage framework for predicting fuel blend properties through
automated feature engineering. Link

10. TabPFN enabled kriging prior regression for incorporating spatial context in soil mapping predictions.
Link

11. TabPFN was applied to predicting electric vehicle crash severity using deep learning models. Link

12. TabPFN enhanced clone-type recognition across programming languages through metrics-driven
analysis, improving stability and interpretability in software engineering. Link
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13. TabPFN was used to predict biomass-derived hard carbon performance in sodium-ion batteries,
facilitating material selection for energy storage systems. Link

14. TabPFN informed the development of TabImpute, enabling efficient zero-shot imputation for missing
tabular data and improving preprocessing pipelines. Link

15. TabPFN supported a target-specific framework for predicting fuel blend properties, optimizing
formulation strategies via automated feature engineering. Link

16. TabPFN, alongside TabICL and related foundation models, was evaluated for intrusion detection,
improving cybersecurity performance in IoT networks. Link

17. TabPFN supported continual learning for tabular data streams in resource-constrained environments.
Link

18. TabPFN was adapted for high-dimensional data through continued pre-training, enhancing robust-
ness in noisy environments. Link

19. TabPFN contributed to assessing robustness of language models for data fitting under irrelevant
variations. Link

20. TabPFN enabled fast zero-shot imputation for missing data across diverse domains. Link

C Data Contamination and Deduplication for Real-TabPFN-2.5
To ensure fair evaluation and eliminate data contamination, we implemented an enhanced multi-tiered
deduplication and filtering pipeline for Real-TabPFN-2.5. While based on the methodology used for
Real-TabPFN [18], the process was extended to deduplicate the training datasets against all internal
benchmarks, our curated in-house validation suite, and the public TabArena benchmark [24]. Our
deduplication procedure combines automated cross-referencing of dataset identifiers, feature schemas,
and row- and column-level hashes with manual metadata inspection to ensure that no training dataset
overlaps with, or is derived from, any evaluation dataset. Datasets failing these criteria were excluded
from the final training corpus.

C.1 Training Datasets
The following table lists the datasets curated for fine-tuning, along with their sources and access links.

Name Source
artificial-characters OpenML
BNG(breast-w) OpenML
BNG(tic-tac-toe) OpenML
connect_4 OpenML
eeg-eye-state OpenML
Employee-Turnover-at-TECHCO OpenML
eye_movements OpenML
FOREX_eurpln-hour-High OpenML
gas-drift OpenML
higgs OpenML
Intersectional-Bias-Assessment-(Training-Data) OpenML
law-school-admission-binary OpenML
Medical-Appointment OpenML
microaggregation2 OpenML
fried OpenML
mushroom OpenML
NewspaperChurn OpenML
nursery OpenML
WBCAtt OpenML
Internet Firewall Data OpenML

19

https://arxiv.org/abs/2510.12833
https://www.arxiv.org/abs/2510.02625
https://chemrxiv.org/engage/chemrxiv/article-details/68dc888d3e708a7649ff0ec9
https://www.mdpi.com/2079-9292/14/19/3792
https://arxiv.org/html/2510.04660v1
https://arxiv.org/abs/2510.06162
https://arxiv.org/pdf/2508.19563
https://www.arxiv.org/abs/2510.02625
https://www.openml.org/search?type=data&sort=runs&status=active&id=1459
https://www.openml.org/search?type=data&status=active&id=251
https://www.openml.org/search?type=data&status=active&id=137
https://www.openml.org/d/40668
https://www.openml.org/search?type=data&sort=runs&status=active&id=1471
https://openml.org/search?type=data&status=active&id=43551
https://openml.org/search?type=data&status=active&id=1044
https://www.openml.org/search?type=data&status=active&id=41787&sort=runs
https://www.openml.org/search?type=data&sort=runs&status=active&id=1476
https://openml.org/search?type=data&status=active&id=23512
https://openml.org/search?type=data&status=active&id=44201
https://openml.org/search?type=data&status=active&id=43904
https://openml.org/search?type=data&status=active&id=43617
https://www.openml.org/search?type=data&status=active&id=41671&sort=runs
https://www.openml.org/search?type=data&sort=runs&id=901&status=active
https://www.openml.org/search?type=data&status=active&id=43923&sort=runs
https://openml.org/search?type=data&status=active&id=44226
https://openml.org/search?type=data&status=active&id=1568
https://www.openml.org/search?type=data&status=active&id=46676&sort=runs
https://www.openml.org/search?type=data&sort=runs&id=43039&status=active


Name Source
aam_avaliacao_dataset Kaggle
Air Traffic Data Kaggle
ansible-defects-prediction Kaggle
AV Healthcare Analytics II Kaggle
Candidate Selection Kaggle
Cardio Disease Kaggle
Classification - Crop Damages in India (2015-2019) Kaggle
CSGO Round Winner Classification Kaggle
Flower Type Prediction Machine Hack Kaggle
Horse Racing - Tipster Bets Kaggle
How severe the accident could be Kaggle
hr-comma-sep Kaggle
ip-network-traffic-flows-labeled-with-87-apps Kaggle
Janatahack cross-sell prediction Kaggle
L&T Vehicle Loan Default Prediction Kaggle
League of Legends Diamond Games (First 15 Minutes) Kaggle
Richter’s Predictor Modeling Earthquake Damage Kaggle
Server Logs - Suspicious Kaggle
Sloan Digital Sky Survey DR14 Kaggle
Sloan Digital Sky Survey DR16 Kaggle
Term Deposit Prediction Data Set Kaggle
trajectory-based-ship-classification Kaggle
Travel Insurance Kaggle

D Details on Causal Inference Results
Causal Inference Most real-world decision problems ultimately hinge on causal questions—understanding
what would happen if we intervened, rather than merely observing correlations. Estimating Conditional
Average Treatment Effects (CATEs) is one of the central ways to answer these “what-if” questions: how
would an individual’s outcome change if a treatment were applied versus withheld?

Unconfounded Settings. Many causal inference methods require unconfoundedness, which broadly
states that there are no features not included in the dataset that influence both the treatment variable
and the outcome [32]. While recent studies have begun to challenge the validity and verifiability of
this assumption [15, 33], there are presently a wide variety of causal inference methods designed for the
unconfounded setting [34, 35].

Importance of Base Model. Recent empirical findings have shown that when unconfoundedness
holds, CATE estimation can be framed as an AutoML problem [36], as many CATE estimators require
a choice of classification or regression model to approximate the likelihood (propensity) of a treatment
and an outcome given an individual’s features. Parallel studies [15, 37] have shown that TabPFN is an
especially strong choice for meta-learners such as the X-, T-, and S-Learner [38], hypothesizing that its
strong performance in tabular prediction transfers to the problem of causal inference.

Table 3: Description of causal inference datasets in the RealCause benchmark.

Characteristic ACIC-2016 IHDP Lalonde-CPS Lalonde-PSID
Realizations 10 100 100 100
Samples 4,802 747 16,177 2,675
Features 58 25 8 8
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E The TabPFN Ecosystem
Figure 11 provides a minimal user workflow through components in the TabPFN–Extensions ecosystem.

Figure 11: A minimal user workflow through components in the TabPFN–Extensions ecosystem.

F Additional Internal Benchmark Details
F.1 Details on the normalization
For benchmarking, we normalize scores per dataset to enable averaging and clearer comparison across
datasets, ensuring that differences in dataset difficulty do not bias comparisons. For each dataset, we
linearly scale scores between 0 (worse model on this dataset) and 1 (best model). For each model, the
default and tuned versions are considered as two different models for the normalization. Bar heights show
the mean normalized performance, and error bars denote the standard error of the mean (SEM) across
datasets, reflecting uncertainty from dataset variability.

F.2 Additional results on large features
In Figure 12, we show results on an internal set of datasets containing from 500 to 2,000 features showing
strong default performance.
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Figure 12: TabPFN-2.5 default performs well up to 2,000 features. In our internal benchmark on
datasets from 500 features to 2,000 features, we can see that for both classification (left) and regression
(right), the default TabPFN-2.5 outperforms any other default model and is better than any tuned single
model for regression.
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G Detailed TabArena Results
In addition to the results shown in Section 4, we compare our TabPFN-2.5 model to other foundation
models in more detail below. In Figure 13, we show that TabPFN-2.5 outperforms TabICL on datasets
compatible with both models, and in Figure 14, we show much better performance when compared to
LimiX’s results on datasets with less than 50,000 samples and 2,000 features, which corresponds to the
datasets on which the TabArena maintainers could run LimiX at the time of writing.

Linear
RandomForest

TabDPT
ExtraTrees

FastaiMLP
TorchMLP

EBM
xRFM

ModernNCA
XGBoost

Mitra
CatBoost

LightGBM
TabICL

TabM
RealMLP

TabPFN-2.5
Real-TabPFN-2.5

600

800

1000

1200

1400

1600

El
o

Partially imputed Default Tuned Tuned + Ensembled

Figure 13: Comparison with TabICL [25]. In this plot, we show the performance of TabPFN-2.5 and
TabICL on a TabArena-lite subset compatible with both models, restricting to classification datasets
with less than 50K training samples and less than 500 features. On this subset, we see that
TabPFN-2.5 significantly outperforms TabICL.
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Figure 14: Comparison with LimiX [26]. In this plot, we show the performance of TabPFN-2.5 and
LimiX on datasets from TabArena-Lite with less than 50,000 training samples and less than 2,000
features. On this subset, we see that TabPFN-2.5 significantly outperforms LimiX. Note that these
results are still unverified by the original authors at the time of writing and thus not included in the main
paper results.

H Results with Tuned Decision Thresholds
Starting with TabPFN-2.5, our framework supports tuning the decision threshold to optimize for specific
metrics. Figure 15 quantifies the performance gains that this procedure can yield, illustrating substantial
improvement in F1-score for several imbalanced datasets when tuning the threshold.
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Figure 15: Absolute F1-score improvement from decision threshold tuning. The plot shows the difference
in F1-score (macro) between a model with an optimized decision threshold and the same model using a
default (untuned) threshold. This demonstrates the effectiveness of the tuning procedure for metric-specific
optimization.

I Supplementary Inference Time Details
Figure 16 shows the inference latency you can expect for three common models of GPUs. Figure 17 shows
that the time scales linearly with the number of test rows.
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Figure 16: Time taken, in seconds, to train TabPFN-2.5 models on various training set sizes, and then
make predictions on 500 test rows, using three common models of NVIDIA GPU: T4 15GB, A100 SXM
40GB, H100 SXM 80GB. Performance is shown for 100, 300, and 500 features. Datasets with more than
500 features have the same performance as datasets with 500, as each estimator will subsample to 500
features. Incomplete lines indicate that the GPU had insufficient memory for that dataset size.
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Figure 17: The time taken by TabPFN-2.5 to train and predict scales linearly in the test set size, shown
here for a classification model trained on datasets of 500 rows × 10 features, 5,000 rows × 100 features,
and 20,000 rows × 500 features. Measured on one H100 GPU.
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