Introduction to Priovant

April 2024

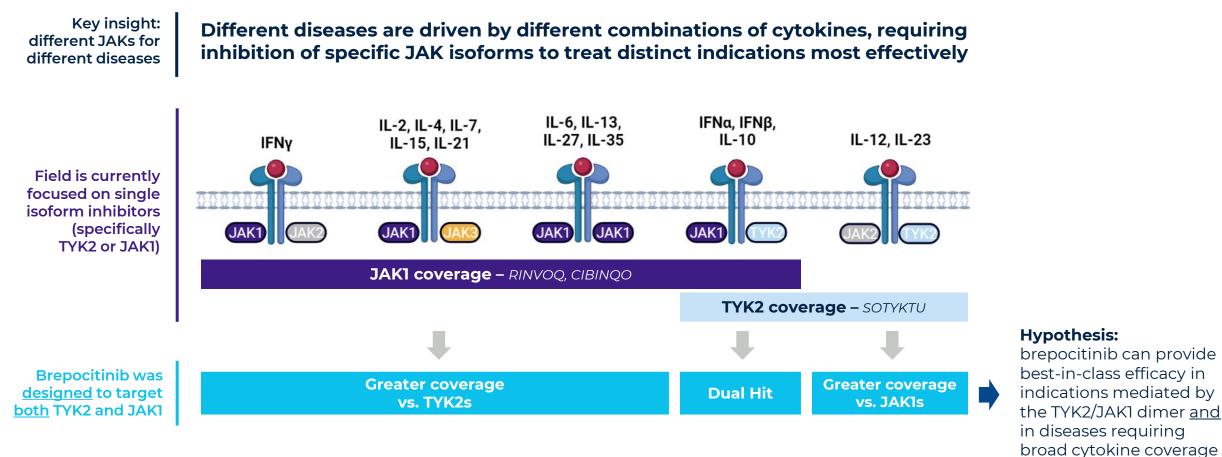
Anchor Asset: Brepocitinib Potential First-In-Class Dual Inhibitor of TYK2 and JAK1

Brepocitinib Highlights

Novel Mechanism: Dual inhibition of TYK2 and JAK1 is expected to provide greater efficacy than agents that inhibit either alone in multiple highly inflammatory autoimmune diseases

Robust Clinical Data: Clinically meaningful results in seven phase 2 studies completed to-date with oral formulation (once-daily administration)

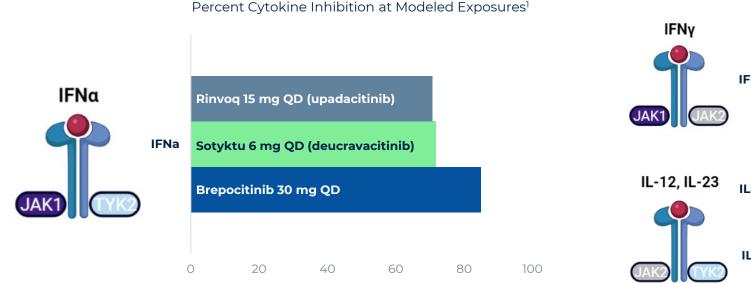
Well-Characterized Safety Profile: Exposure in >1,400 subjects and patients suggests safety profile consistent with approved JAK inhibitors


Distinctive Strategy: Orphan and specialty autoimmune franchise across diseases with high morbidity and mortality, few approved therapies (including no JAKi), and pathobiologies for which both TYK2 and JAK1 inhibition are expected to contribute to efficacy

Two Registrational Programs:

Single registrational Phase 3 study in dermatomyositis (DM) nearly fully enrolled with data expected in 2025; potential NDA submission by YE 2025

Phase 3 program in non-infectious uveitis expected to initiate in 2H 2024


ORAL BREPOCITINIB Optimized Pharmacology for Highly Inflammatory Diseases with Multiple Pathogenic Cytokines

in diseases requiring broad cytokine coverage

In Vitro Data Support Mechanistic Benefits of Dual Inhibition of TYK2 and JAK1

Dual Hit

Greater Coverage

Percent Cytokine Inhibition at Modeled Exposures¹ Rinvog 15 mg QD IFNγ Sotyktu 6 mg QD Brepocitinib 30 mg QD 0 10 20 30 40 Rinvog 15 mg QD IL-23 Sotyktu 6 mg QD Brepocitinib 30 mg QD Rinvog 15 mg QD IL-12 Sotyktu 6 mg QD Brepocitinib 30 mg QD

40

60

Brepocitinib may be able to achieve deeper Type I IFN suppression than is possible by targeting either TYK2 or JAK1 alone Brepocitinib may recapitulate <u>in a single molecule</u> the cytokine suppression profiles of both the leading TYK2 and JAK1 agents

20

 \bigcirc

80

100

ORAL BREPOCITINIB Clinically Meaningful Results in Seven Completed Phase 2 Studies

Study Population	N ¹	Brepocitinib Dose	Primary Endpoint Result	
Psoriatic Arthritis Patients with active PsA	218	30 mg once daily	23.4% placebo-adjusted ACR20 RR at week 16	P = 0.0197
Plaque Psoriasis Patients with moderate-to-severe PsO	212	30 mg once daily	-10.1 placebo-adjusted CFB in PASI Score at week 12	P < 0.0001
Ulcerative Colitis Patients with moderate-to-severe UC	167	30 mg once daily	-2.28 placebo-adjusted CFB in Mayo Score at week 8	P = 0.0005
Alopecia Areata Patients with moderate-to-severe AA	94 ²	30 mg once daily ³	49.18 placebo-adjusted CFB in SALT Score at week 24	P < 0.0001 ⁴
Hidradenitis Suppurativa Patients with moderate-to-severe HS	100	45 mg once daily ⁵	18.7% placebo-adjusted HiSCR Rate at week 16	P = 0.0298 ⁴
Crohn's Disease Patients with moderate-to-severe CD	151	60 mg once daily ⁶	21.4% placebo-adjusted SES-CD 50 Rate at week 12	P = 0.0012 ⁴
Non-Infectious Uveitis Patients with active, non-anterior NIU	26	45 mg once daily	29.4% Treatment Failure Rate at week 24 ⁷	

1) Overall study N represents patients randomized to all brepocitinib dose levels or placebo and excludes patients randomized to other agents

2) Includes patients from initial 24-week study period only

3) 60 mg QD for 4 weeks followed by 30 mg QD for 20 weeks

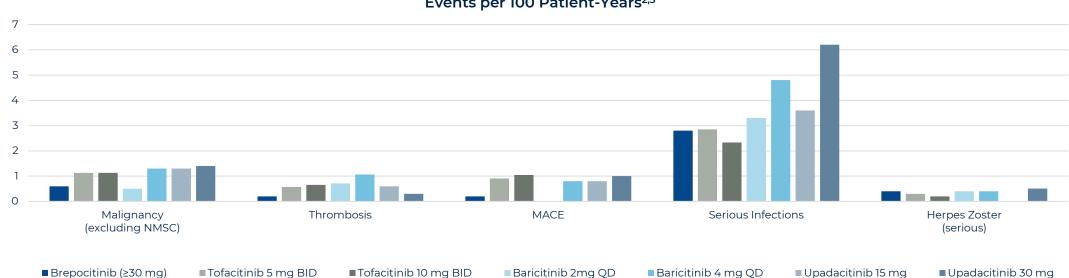
4) One-sided p-value (pre-specified statistical analysis)

5) Brepocitinib 45 mg once daily was the only brepocitinib dose evaluated in this study

6) Brepocitinib 60 mg once daily was the only brepocitinib dose evaluated in this study

7) Study did not include a placebo arm

CFB: change from baseline; RR: response rate; NC: not calculated



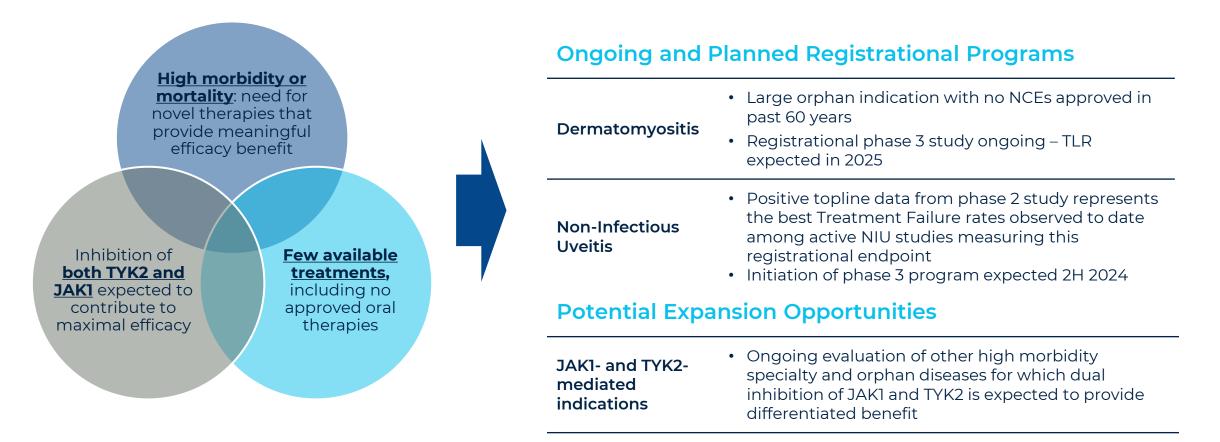
ORAL BREPOCITINIB Safety Overview

Clinical experience in more than 1,400¹ exposed subjects and patients suggests a safety profile consistent with those of approved JAK inhibitors

Comparable Incidence Rates of TEAEs of Interest vs. Approved JAKs

No direct head-to-head data available – cross-trial comparison of studies with different inclusion-exclusion criteria and design elements

Events per 100 Patient-Years^{2,3}


Total exposure count includes 8 completed Phase 1 studies and 7 completed Phase 2 studies (PsA, PsO, AA, UC, Vitiligo, HS, SLE) in addition to 1 ongoing Phase 2 study (Crohn's). 1)

Analysis includes only completed studies for which CSRs are available (all completed Phase 2 studies listed above). Some patients received multiple dose levels. For any given dose level, patients are 2) counted only once. Brepocitinib ≥30 mg comprises over 90% of aggregated patient-years of brepocitinib exposure in this analysis. Note that all data are shown as Events per 100-Patient Years except for tofacitinib, which is provided as Subjects with Event per 100 Patient-Years.

priovar CONFIDENTIAL

References for this chart provided in Appendix 1. 3)

Priovant Focus: Indications with High Unmet Need and Tailored to Novel Mechanism of Dual TYK2/JAK1 Inhibition

Dermatomyositis

GOTTRON'S PAPULES

Red to violaceous papules overlying the knuckles

V-SIGN RASH

Irregular, patchy erythema on the chest

Dermatomyositis: A Debilitating Inflammatory Myopathy

Dermatomyositis is a rare, chronic, immune-mediated disease of the muscles and skin affecting approximately 37,000¹ adults in the United States

10-40%	Mortality at five years ²		
100%	Red, painful, itchy skin rash often disseminated across substantial body surface area		
88%	Have proximal muscle weakness ³ , limiting activities of daily living (ADL)		
	 63% struggle to climb stairs⁴ 		
	 50% report falls⁵ 		
	 33% require mobility aids⁵ 		
0	Other oral therapies in industry-sponsored late- stage development ⁵		
Ο	NCEs approved in last 60 years		

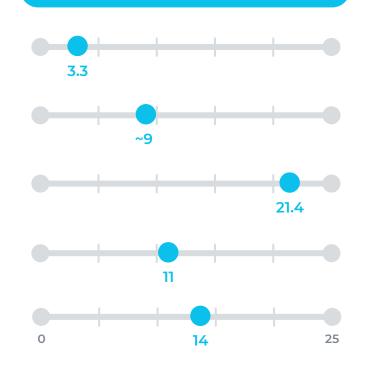
- Priovant/TMA Survey (data on file) 4)
- MSU Burden of Disease Survey 2022 5) Phase 3 trials or adaptive Phase 2/3 trials

Dermatomyositis Prevalence

Increasing disease awareness and diagnosis has led to higher incidence and prevalence estimates over time; Priovant estimates there are approximately 37,000 adult DM patients in the United States

Ahlstrom et al (1993) County-specific study in Sweden

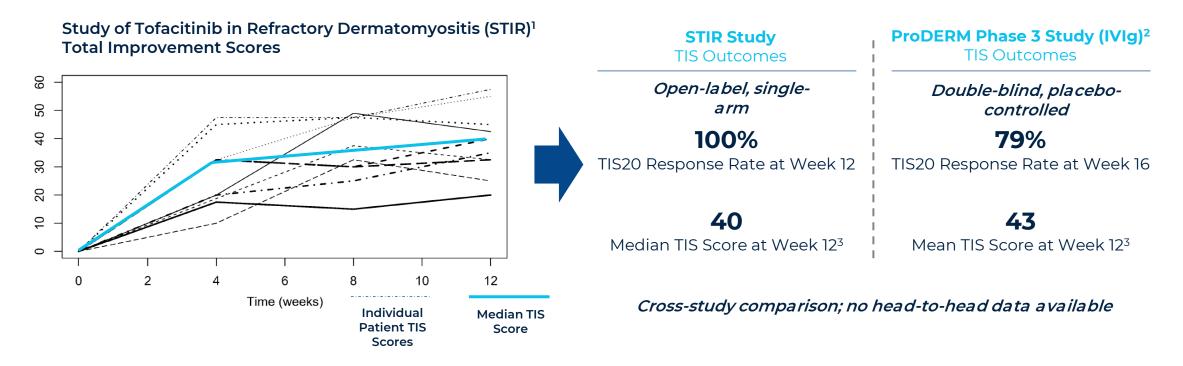
Smoyer-Tomic et al (2012) US healthcare claims data analysis from 2004-2008


Reeder et al (2010) Medical record analysis of residents of Olmsted County, MN from 1976-2007

Foch et al (2024) Analysis of MarketScan database from 2018-2021

Priovant Claims Analysis

Analysis of Komodo claims database from 2016-2020


ESTIMATED PREVALENCE PER 100,000

A prevalence rate of ~14/100,000 individuals implies approximately 37,000 adult patients in the United States with dermatomyositis

JAK INHIBITION IN DERMATOMYOSITIS Clinical Proof-of-Concept with Tofacitinib

Investigator-initiated open-label study of tofacitinib in refractory dermatomyositis demonstrated activity comparable to that of IVIg, <u>the only approved non-corticosteroid/corticotropin therapy for dermatomyositis</u>

Clinical PoC further validated by extensive JAK case report literature⁴

- 1) Paik et al, Arth Rheum (2020)
- 2) Aggarwal et al, NEJM (2022)
- 3) STIR study: median is the only statistical analysis provided; ProDERM study: mean is the only statistical analysis provided
- 4) Paik et al, Clin Exp Rheum (2022)

DERMATOMYOSITIS

Single Phase 3 Study

Phase 3 program will use the total improvement score (TIS), a validated myositis improvement index that served as basis of approval for IVIg. Topline results expected in 2025 → potentially the next approved drug of any modality for dermatomyositis.

52-WEEK TREATMENT PERIOD

Subjects with dermatomyositis (N = 225)

Week 52: Primary Efficacy Assessment

(Total Improvement Score)

Eligible Patients

Adult subjects with active dermatomyositis who are refractory or intolerant to at least one standard-of-care therapy

Primary Endpoint

Mean Total Improvement Score (TIS) at Week 52

Secondary Endpoints

- Proportion of subjects achieving TIS ≥ 40 points
- CFB in HAQ Disability Index Score
- CFB in CDASI Activity Score
- Reduction in prednisone dose

Safety Endpoints

Incidence of treatment-emergent AEs, SAEs, AEs of special interest, clinically significant vital signs or lab abnormalities

BREPOCITINIB

Only Late-Stage Oral Therapy in Industry-Sponsored Development for DM

Molecule/Program	Sponsor	Route of Administration	Development Stage
Global Development Programs			
Brepocitinib Dual TYK2/JAK1 inhibitor	priovant	Oral, once-daily	Phase 3
OCTAGAM 10% Human immunoglobulin (IVIg)	octa pharma*	IV Infusion	Approved
IgPro20 Human immunoglobulin	CSL Behring	Subcutaneous infusion	Phase 3
Dazukibart Anti-IFN-β mAb	Pfizer	IV infusion	Phase 3 ¹
Efgartigimod Anti-FcRn antibody fragment	argenx	Subcutaneous injection	Phase 2/3 ²

Includes ongoing and planned (announced) company-sponsored Phase 3 studies in dermatomyositis; excludes glucocorticoids and corticotropin injection

1) Basket study in PM & DM.

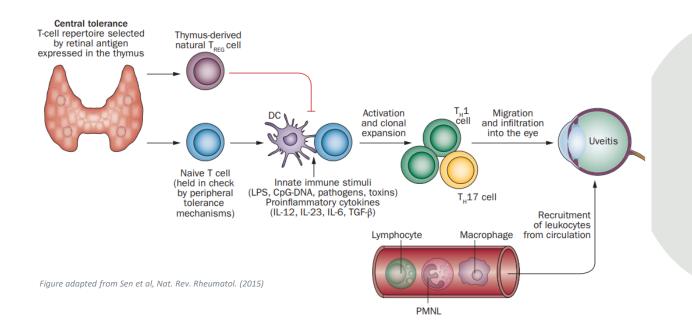
Non-Infectious Uveitis

POSTERIOR SEGMENT INFLAMMATION

Illustrative fluorescein angiography image indicating diffuse areas of capillary leakage and disc hyperfluorescence

NON-INFECTIOUS UVEITIS (NIU) A Sight-Threatening Ocular Disease

Non-anterior NIU is a chronic autoimmune disease characterized by intraocular inflammation that affects approximately 70-100,000¹ people in the United States


4 th	Leading cause of blindness among working- age population in the developed world ²
30,000	Patients receiving biologics for non-anterior NIU, including Humira (only approved nonsteroidal therapy) and off-label medicines ³
Most Common Symptoms	Light sensitivity, pain, redness and floaters
Etiology	Approximately half idiopathic, half in context of other systemic autoimmune disease ⁴
1	Approved targeted therapy (Humira)

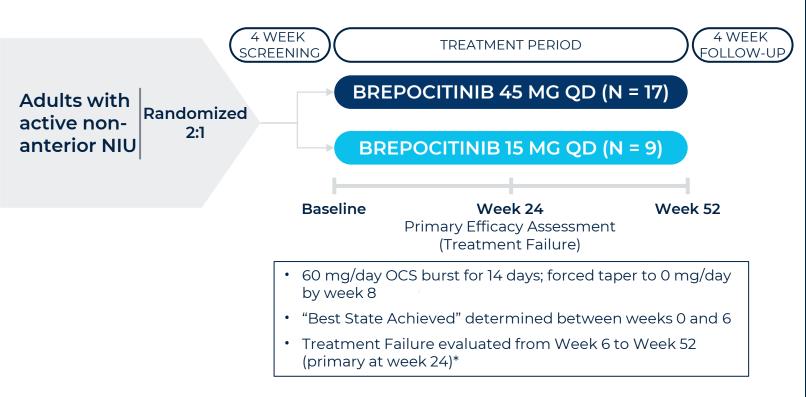
 Thorne et al, JAMA Ophthalmol. (2016)
 Barisani-Asenbauer, T., Maca, S.M., Mejdoubi, L. et al, Orphanet J Rare Dis (2012)
 Roivant/Priovant analysis of medical claims from Inovalon, including idiopathic and systemic disease-associated NIU.4) Lopalco et al, Clin Exp Rheum 2018.

Mechanistic Rationale For Brepocitinib In NIU

Dual TYK2/JAK1 inhibitor distinctively suppresses IL6, IFNy, IL12, IL23 with single targeted agent, addressing TH1- and TH17-driven autoimmunity

Th1 and Th17 cells are the primary pathogenic effectors contributing to the development and maintenance of uveitis

Brepo suppression of TH17 pathway

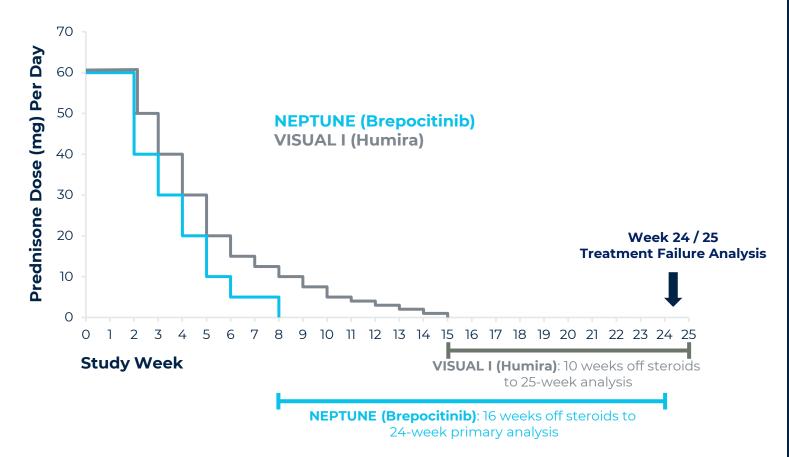

- IL6 (signalling suppressed by JAK1)
- IL23 (signalling suppressed by TYK2)

Brepo suppression of TH1 pathway

- IL12 (signalling suppressed by TYK2)
- IFNy (signalling suppressed by JAK1)

BREPOCITINIB IN NIU NEPTUNE Study Design

A Phase 2 Randomized, Double-Masked, Dose-Ranging Study to Investigate the Safety and Efficacy of Oral Brepocitinib in Adults with Active Non-Infectious Intermediate-, Posterior-, and Panuveitis



Key Efficacy Endpoints

- Treatment Failure rate at Week
 24 (primary)
- Treatment Failure Sub-Components: Change on ACC grade, VH grade, inflammatory lesions, and BCVA*
- Change in central subfield thickness (including macular edema)

BREPOCITINIB IN NIU Steroid Taper Sets Higher Bar Compared To Precedent Studies

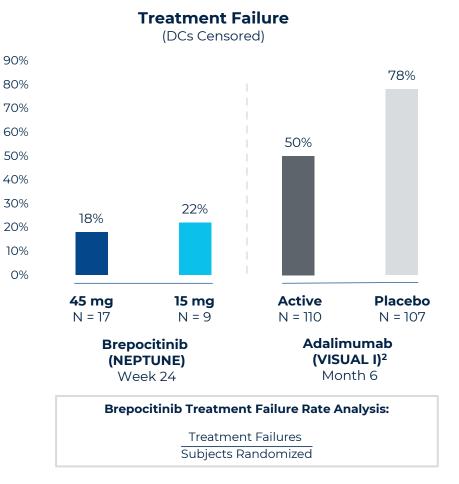
NEPTUNE (brepocitinib) study is modeled on VISUAL I (active uveitis registrational study for Humira) with one key exception – brepocitinib steroid taper was more than twice as fast

Key Implications of Different Tapers

Brepocitinib patients tapered from 60 mg/day to 0 mg/day more than twice as quickly as Humira/placebo patients in VISUAL I (6 weeks compared to 13 weeks) → much higher risk of flares

- Requires that brepocitinib act more quickly
- Requires brepocitinib meet higher efficacy bar to prevent flares


Brepocitinib had to provide steroidfree benefit for >50% longer to prevent treatment failure by week 24


 Requires that brepocitinib demonstrate more durable steroidsparing benefit

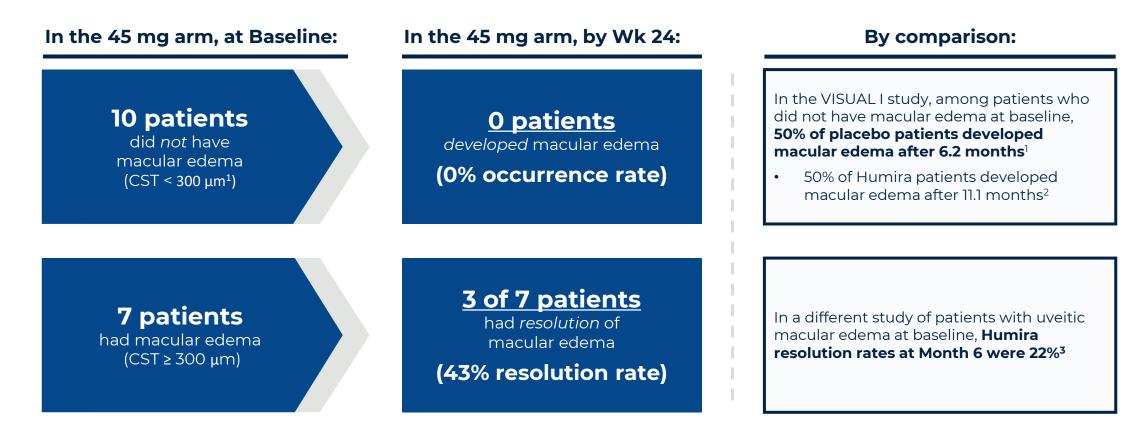
priovant

PRIMARY EFFICACY ENDPOINT INCLUDING CROSS-STUDY COMPARISON TO VISUAL I (HUMIRA) Treatment Failure Rate at Week 24

Patients (%)

<u>Disclaimer</u>: Figures reflect cross-trial comparison and not results from a head-to-head study. Differences exist between trial designs and subject characteristics, and caution should be exercised when comparing data across studies.

1) Jaffe et al, NEJM (2016)



²⁾ Data as reported on HumiraPro.com/Uveitis; DCs are censored. Analysis population for Humira unknown.

³⁾ Intercurrent Event (ICE) = Treatment discontinuation or use of rescue medication prior to Week 24.

Brepocitinib Proof-of-Concept in Potentially Resolving and Preventing Macular Edema

Data suggests potential to resolve macular edema <u>and</u> potential to prevent or reverse swelling before threshold for macular edema is reached and patient is formally diagnosed with UME

<u>Disclaimer</u>: Figures reflect cross-trial comparison and not results from a head-to-head study. Differences exist between trial designs and subject characteristics, and caution should be exercised when comparing data across studies.

CST: central subfield thickness.

2. Definition of macular edema in NEPTUNE was CST ≥ 300 µm, normalized by central reader across instrument types.

3. Jaffe et al, NEJM 2016.

BREPOCITINIB

There is Limited Competition in NIU, with Few Late-Stage Treatments Currently in Development

Molecule/Program	Sponsor	Route of Administration	Development Stage
Global Development Programs			
Brepocitinib Dual TYK2/JAK1 inhibitor	priovant	Oral, once-daily	Entering Phase 3
Humira Anti-TNF-α mAb	abbvie	Subcutaneous injection	Approved
Yutiq/Retisert Fluocinolone corticosteroid		Intravitreal implant	Approved (Posterior NIU Only)
Vamikibart Anti-IL-6 mAb	Roche	Intravitreal injection	Phase 3 (Uveitic Macular Edema) ¹
Izokibep Small protein inhibitor of IL-17A	ACELYRIN 🛆	Subcutaneous injection	Phase 2
ESK-001 Allosteric TYK2 inhibitor	🖌 alumis	Oral	Phase 2

APPENDIX 1 Additional References

Slide 6: Safety Overview

TEAEs Incidence Rate Chart

Brepocitinib source data: Brepocitinib Clinical Study Reports (Priovant data on file)

<u>Tofacitinib source data:</u> Pfizer ORAL Surveillance Study (malignancy, MACE); Cohen et al (2020) (thrombosis, serious infections, and herpes zoster) <u>Baricitinib source data:</u> FDA Risk Review (May 2018) (thrombosis); Smolen et al (2019) (malignancy, MACE, serious infections, herpes zoster) <u>Upadacitinib source data:</u> FDA Risk Review (Aug 2019)

Multiple Slides: Comparative Cytokine Inhibition

Cytokine Inhibition at Modeled Therapeutic Exposures

Methodology: Using the modeling approach described in Dowty et al, Pharmacol Res Perspect (2019), estimated ICxx (% levels of cytokine inhibition) values were calculated for brepocitinib, tofacitinib, baricitinib, upadacitinib, deucravacitinib, and filgotinib at various therapeutic dose levels. <u>Brepocitinib source data:</u> Brepocitinib Investigator's Brochure; Priovant data on file <u>Tofacitinib source data:</u> Dowty et al, Pharmacol Res Perspect (2019); Dowty et al, J Pharmacol Exp Ther (2013) <u>Baricitinib source data:</u> Dowty et al, Pharmacol Res Perspect (2019) <u>Upadacitinib source data:</u> Dowty et al, Pharmacol Res Perspect (2019); EMA Risk Assessment Report – RINVOQ (June 2021) <u>Deucravacitinib source data:</u> Priovant data on file; Chimalakonda et al, Dermatol Ther (2021); Wrobleski et al, J Med Chem (2019) <u>Filgotinib source data:</u> Dowty et al, Pharmacol Res Perspect (2019); Scholze et al, PLoS ONE (2014)

