Novel melt-spun liquid-core filaments for drug-release and similar applications

Edith Perret
M. Röthlisberger, S. Dul, P. Meier, G. Giovannini
R. Hufenus

Dornbirn GFC, 13.09.2023
Tailoring the properties of polymer fibers

X-ray analytics

Raman spectroscopy etc.

- Polymer treatment
- Production parameters
- Fiber treatment

Properties

Structure

Applications
Continuous LiCoF co-extrusion line
Hufenus et al., Materials & Design 2016, 110, 685
Industrial production of LiCoFs

First industrial-scale monofilament line up and running

Spinnereistrasse 10, 6020 Emmen, Switzerland
Why LiCoFs?

Functional liquids: essential oils/flame-retardant liquids

Physical/chemical properties of filaments

Dissolving active agents in liquid (reservoir/encapsulation)

Choice of material combinations

Bioinspired designs (induce movements)

Pressure-/diffusion controlled delivery
Applications of LiCoFs

What applications do we have in mind?

- Odorant
- Insecticidal
- Dilatant (Shear-thickening)
- Microhydraulic
- Optical
- Medical
- Flame-retardant
Towards a new generation of medical textiles

Drug-loaded liquid-core melt-spun fibers

- Controlled local drug-delivery
- Continuous or responsive release
- Reservoir of drugs
- Upscalability, weavability, flexibility, eco-friendly

- Heart valves
- Gauze
- Bandages
- Patches
- Band-aids
- Insulin pumps
- Hernia repair
- Stents
- Sutures
- Protective equip.
- Wound healing
- Pumping devices
Liquid-core fibers for medical applications

Drug-containing solution / polymer

Fossil-based

Biocompatible

$T_m \sim 60^\circ \text{C}$

$M_w = 50 \text{ kDa}$

➢ Possibility to offline exchange liquid core with other drug solutions.
Melt spinning of liquid-core fibers

Liquid-core materials

Carrier liquids:

- Glycerol (~10 Å) ✗
 ![Glycerol structure](Image)
- Polyethylene glycol (PEG) ✗
 Mw=200 Da
 Mw=750 Da (paste-like, melts close to 40°C)
- Polyethylene glycol methyl-ether (mPEG)
 Mw=500 Da
- Water mixed with 5wt.% PEG (Mw=200’000 Da) ✓

Drugs:

- Fluroescein sodium salt
 ![Fluroescein sodium salt structure](Image)
 $R_g = 5.0 \text{ Å}$
- Ibuprofen
 ![Ibuprofen structure](Image)
 $R_g = 3.2 \text{ Å}$
- Methylene blue
 ![Methylene blue structure](Image)
 $L \sim 13.8-14.5 \text{ Å}$
- Bovine serum albumin
 ![Bovine serum albumin structure](Image)
 $R_g = 27.6 \text{ Å}$
Mechanical properties
Monofilaments and liquid-core fibers

- Highest tensile strength for liquid-core fiber with mPEG500
- Molecular orientation seems to be affected by type of liquid core
- Fibers with small cores have higher tensile strengths than fibers with large cores

Liquid-core fibers: Outer $\phi \sim 185\text{-}195\mu m$

- Small core (sc) $\phi \sim 55\text{-}65\mu m$
- Larger core (lc) $\phi \sim 70\text{-}75\mu m$

PET for 6000m/min
UTS $\sim 440\text{-}570$ MPa
el. at break 45-65%
X-ray analytics
WAXD/SAXS

PCL monofilament
oriented
LiCoF (mPEG500f_lc)

➢ High tensile strength correlates indeed with high crystalline orientation
➢ Fibers with smaller core have a higher tensile strength due to higher crystalline orientation
Diffusion trials
Cut fibers / loops immersed in PBS

Possible drug-delivery mechanisms

Diffusion-controlled

Pressure-driven

Immersion for 24 hours at 20°C and 37°C.

Analytics:
• Fluorescence spectroscopy (fluorescein sodium salt, BSA-FITC)
• UPLC UV-vis (ibuprofen)
• UV-vis (methylene blue)
Diffusion trials
Cut fibers / loops immersed in PBS

Immersion for 24 hours.

➢ Temperature affects the diffusion rate
➢ Fluorescein sodium salt / Ibuprofen diffuses through PCL sheath
➢ Core-size influences the amount of diffused material after 24 hours (not shown)
➢ Structure of PCL influences the diffusion (not shown)
Diffusion mechanisms
For highly drawn LiCoFs:

- Small molecules
 - **PCL**
 - Fluorescein sodium salt
 - $R_0 = 5.0 \text{ Å}$
 - Ibuprofen
 - $R_0 = 3.2 \text{ Å}$

- Large molecules
 - Methylene blue
 - $L \sim 13.8\text{-}14.5 \text{ Å}$
 - Bovine serum albumin
 - $R_0 = 27.6 \text{ Å}$
Conclusions/Outlook

❖ **Successful melt-spinning**: Liquid-core fibers for medical applications with reasonable mechanical properties

❖ **Diffusion trials**: Diffusion rate depends on many factors:
Core size, sheath thickness, sheath structure, temperature, drug concentration, molecule size etc.

Planned future work:

❖ Melt-spinning with different types of drugs / solutions / polymers ($\varnothing < 150 \, \mu m$).

❖ Different diffusion trials (concentrations, types of drugs / carrier liquids / polymer materials).
Liquid-core melt-spun filaments
From research to industrial implementation

Innosuisse

Innovation projects carried out with Swiss partners
- Innovation projects with implementation partners

Vouchers for preliminary studies
- Innovation cheque

Systemic and trans-disciplinary innovation
- Flagship Initiative

Innovation projects with international partners
- Projects of Swiss SMEs with international SMEs
 - Eurostars
- Cross-border innovation projects
 - Eureka
- Innovation projects with partner countries
 - Bilateral cooperation

What ideas do you have in mind?

https://www.innosuisse.ch
We are seeking students for a master thesis or internship.

Thank you for your attention!