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Abstract The class of spherical hyperexpansions is a multi-variable analog of
the class of hyperexpansive operators with spherical isometries and spherical
2-isometries being special subclasses. It is known that in dimension one, an invertible
2-hyperexpansion is unitary. This rigidity theorem allows one to prove a variant of
the Berger–Shaw Theorem which states that a finitely multi-cyclic 2-hyperexpansion
is essentially normal. In the present paper, we seek for multi-variable manifestations
of this rigidity theorem. In particular, we provide several conditions on a spherical
hyperexpansion which ensure it to be a spherical isometry. We further carry out the
analysis of the rigidity theorems at the Calkin algebra level and obtain some conditions
for essential normality of a spherical hyperexpansion. In the process, we construct sev-
eral interesting examples of spherical hyperexpansions which are structurally different
from the Drury-Arveson m-shift.
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1 Introduction

The investigation of the multi-variable scenario in the context of subnormal and com-
pletely hyperexpansive operators has led to several interesting problems. In this note,
we take up rigidity theorems (Theorems 1.1 and 1.2 below) in the 1-variable case for
studying their possible incarnations in the multi-variable situation.

The study of completely hyperexpansive operators was initiated in [4,10]. The class
of completely hyperexpansive operators is closely associated with the negative definite
functions on the semigroup N of natural numbers and is in some sense antithetical to the
class of subnormal contractions. For a masterful exposition on subnormal operators,
the reader is referred to [19]. Another class of operators which arises naturally in the
study of hyperexpansions is the class of m-isometric operators. These operators are
systematically studied in [1–3]. It is well known that every 2-isometry is completely
hyperexpansive and thus the Dirichlet shift is an important example of a completely
hyperexpansive operator. It was observed in [39, Example 2.3] that for 1 ≤ λ ≤ 2,

the one-variable weighted shift Tλ : √
(n + λ)/(n + 1) is completely hyperexpansive.

This weighted shift, which we shall refer to as λ-shift can be judiciously used to
construct interesting examples of operator tuples which are important in the context
of the rigidity theorems under consideration (see Sect. 3).

We shall discuss two analogs of hyperexpansivity in higher dimensions viz. toral
and spherical. The toral case is studied in [11] while the spherical case is initiated
in [16] and further studied in [14]. It turns out that there are quite a few structural
similarities between the Drury-Arveson 2-shift [5,25] and the classical Dirichlet shift.
In particular, the Drury-Arveson 2-shift is a spherical 2-isometry [29, Theorem 4.2],
and hence a spherical complete hyperexpansion [16, Proposition 4.9]. One may think
of interpreting the Drury-Arveson 2-shift as the ‘spherical’ analog of the Dirichlet shift.

We now turn our attention to the following rigidity theorem proved in [39, Remark
3.4] which provides a strong motivation for the results in this paper:

Theorem 1.1 Every invertible 2-hyperexpansive operator is unitary. In particular, the
spectrum σ(T ) of a 2-hyperexpansion T admits the following spectral dichotomy:

σ(T ) = D or σ(T ) ⊆ ∂D,

where D denotes the open unit disc in the complex plane C, and ∂D denotes the
boundary of D.

A special case of Theorem 1.1, where T is a 2-isometry, is independently proved
in [1, Proposition 1.23].

The class of m-isometries also enjoys the spectral dichotomy of Theorem 1.1 [1,
Lemma 1.21]. It is further known that there exist invertible non-unitary m-isometries
in abundance [1–3], and hence in general the first half of Theorem 1.1 does not hold
true for m-isometries. However, Theorem 1.2 stated below provides a counterpart of
Theorem 1.1 for m-isometries.

Theorem 1.2 Every invertible, expansive m-isometric operator is unitary. In partic-
ular, the spectrum σ(T ) of an m-isometry T admits the following spectral dichotomy:
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σ(T ) = D or σ(T ) ⊆ ∂D,

where D denotes the open unit disc in the complex plane C.

The first half of Theorem 1.2 follows from the fact that expansive m-isometries
are operators close to isometries in the sense of [13, Example 2.3]. This may
also be deduced from [Proposition 4.4, Sect. 4]. Although Theorems 1.1 and 1.2
admit simple proofs, they have some important consequences. For instance, Theo-
rem 1.1 plays a vital role in the derivation of the Wold-type decomposition for 2-
hyperexpansions [13,38]. One may also use this result (resp. Theorem 1.2) to obtain a
weaker version of the Berger–Shaw Theorem, which states that any 2-hyperexpansion
(resp. expansive m-isometry) with finite-dimensional co-kernel admits a compact self-
commutator [15].

By the Berger–Shaw phenomenon, we understand a result which states that under
some finiteness condition (e.g. finite cyclicity, finite-dimensional co-kernel), the self-
commutator is small (e.g. trace-class, compact) (refer to [12,26,32]). We find it neces-
sary here to bring out the relation between the Berger–Shaw phenomenon for spherical
hyperexpansions and the multi-variable analogs of Theorems 1.1 and 1.2.

Proposition 1.3 Let F denote a family of spherical 2-hyperexpansive (resp. spherical
p-isometric) m-tuples such that F is invariant under unital ∗-representations. Assume
further that if T ∈ F is Taylor invertible then T is a spherical unitary. Then every
Fredholm member of F is essentially spherical unitary.

Remark 1.4 In case m = 1, every finitely multi-cyclic member of F turns out to be
Fredholm.

We do not include the proof of Proposition 1.3 in this paper. However, we note
that it can be obtained using a technique of Agler and Stankus (see Sect. 5 for the
details). It is a challenging problem to find a family F satisfying the hypothesis of
Proposition 1.3 in dimension bigger than 1 if it exists. In fact, in the next section, we
observe that the family of spherical 2-expansions does not admit the rigidity property
stated in Proposition 1.3. This is nothing but a reflection of the failure of the Berger–
Shaw phenomenon. This failure also demands a modification of Proposition 1.3. To
state that we need some nomenclature.

Definition 1.5 Let F be a family of operator tuples. We say that F is a Berger–Shaw
family of type U (resp. a Berger–Shaw family of type I) if

1. F is invariant under unital ∗-representations,
2. there exists a rigidity conditionRu (resp. Ri ) such that the following happens: If

T ∈ F satisfies Ru (resp. Ri ) then T is a spherical unitary (resp. a spherical
isometry).

Example 1.6 The family of 2-hyperexpansive operators (resp. expansive m-isometries)
is a Berger–Shaw family of type U . Indeed, in view of Theorem 1.1 (resp. Theorem
1.2), one may take the rigidity condition Ru as the usual invertibility of operators.
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Proposition 1.7 Suppose F is a Berger–Shaw family of type U (resp.I) with the
rigidity condition Ru (resp. Ri ). If the image of T under the Calkin map satisfies Ru

(resp. Ri ) then T is essentially spherical unitary (resp. essentially spherical isometry).

Although, we do not use Definition 1.5 or Proposition 1.7 in the remaining part of
this paper, our ploy essentially is to find Berger–Shaw families of spherical hyperex-
pansions.

The paper is organized as follows. In Sect. 2, we introduce the notation and termi-
nology. In Sect. 3, we present examples of spherical hyperexpansions which include
two intrinsically different varieties of such operator tuples. The main results of the
paper are discussed in Sects. 4 and 5. Section 4 deals with the rigidity theorems in
higher dimensions providing several conditions on a spherical hyperexpansion which
ensure it to be a spherical isometry. In Sect. 5, we prove some rigidity theorems at
the Calkin algebra level obtaining conditions for essential normality of a spherical
hyperexpansion. We conclude the paper with a brief discussion of possible lines of
investigations.

2 Preliminaries

For a Hilbert space H, let B(H) denote the Banach algebra of bounded linear operators
on H. If T := (T1, . . . , Tm) is a tuple of commuting bounded linear operators Ti (1 ≤
i ≤ m) on H then we interpret T ∗ to be (T ∗

1 , . . . , T ∗
m) and for p = (p1, p2, . . . , pm) ∈

N
m, T p to be T p1

1 · · · T pm
m .

Definition 2.1 A commuting m-tuple Q := (Q1, . . . , Qm) of positive, bounded,
linear operators Q1, . . . , Qm acting on B(H) is called as the generating m-tuple on
H.

The study of the hyperexpansive and hypercontractive generating m-tuples is initi-
ated in [16]. In the present paper, we are mainly interested in the spherical generating
1-tuples. We recall a few definitions for ready reference.

Definition 2.2 Given a commuting m-tuple T = (T1, . . . , Tm) of operators on H, the
spherical generating 1-tuple associated with T is given by

Qs(X) :=
m∑

i=1

T ∗
i XTi (X ∈ B(H)).

Definition 2.3 Fix an integer p ≥ 1. We say that T is a spherical p-expansion (resp.
spherical p-contraction) if

Bp(Qs) :=
∑

q∈N,0≤q≤p

(−1)q
(

p

q

)
Qq

s (I ) ≤ 0 (resp. ≥ 0), (2.1)

where Q0
s (I ) = I.



Rigidity Theorems for Spherical Hyperexpansions 1549

We say that T is a spherical p-hyperexpansion (resp. spherical p-hypercontraction)
if T is a spherical k-expansion (resp. spherical k-contraction) for all k = 1, . . . , p.

If equality occurs in (2.1), then T is a spherical p-isometry. We say that T is a
spherical complete hyperexpansion (resp. spherical complete hypercontraction) if T
is a spherical p-expansion (resp. spherical p-contraction) for all positive integers p.

In all the above definitions, if p = 1 then we drop the prefix 1- and if m = 1 then we
drop the term spherical.

Let Qs be the spherical generating 1-tuple associated with T . Then T is jointly
left-invertible if there exists α > 0 such that Qs(I ) ≥ α I.

Definition 2.4 Let T be a jointly left-invertible m-tuple of bounded linear operators on
H. The spherical Cauchy dual of T is defined to be the m-tuple T s := (T s

1 , . . . , T s
m),

where T s
i := Ti (Qs(I ))−1 (i = 1, . . . , m).

For the basic theory of spherical Cauchy dual tuples, the reader is referred to [14,16].
In particular, we note that a commuting spherical Cauchy dual of a spherical completely
hyperexpansive multi-variable weighted shift is always subnormal [14, Proposition
3.4]. Thus the notion of the spherical Cauchy dual tuple allows one to think of the
theory of spherical complete hyperexpansions as an antithesis of that of the subnormal
tuples.

Recall that an m-tuple S = (S1, . . . , Sm) of commuting operators Si in B(H)

is subnormal if there exist a Hilbert space K containing H and an m-tuple N =
(N1, . . . , Nm) of commuting normal operators Ni in B(K) such that Ni h = Si h for
every h ∈ H and 1 ≤ i ≤ m.

A commuting m-tuple T = (T1, . . . , Tm) is called a spherical unitary if both T and
T ∗ are spherical isometries. Since a spherical isometry is subnormal [8, Proposition
2], T is a spherical unitary if and only if T is a normal spherical isometry. By a similar
argument, it can be seen that a spherical isometry on a finite-dimensional Hilbert space
is necessarily a spherical unitary.

We record here some elementary but useful facts pertaining to spherical hyperex-
pansions.

1. Every spherical 2-expansion is a spherical 2-hyperexpansion [16, Proposition
4.1(i)]. This is a spherical analog of the Richter’s Lemma [36, Lemma 1(a)].

2. The spherical Cauchy dual of a spherical 2-expansion is well-defined.
3. A normal spherical 2-expansion (resp. spherical p-isometry) is a spherical unitary.
4. The restriction T |M of a spherical 2-expansion (resp. a spherical p-isometry)

T = (T1, . . . , Tm) to an invariant subspace M (that is, TiM ⊆ M for all i =
1, . . . , m) is again a spherical 2-expansion (resp. a spherical p-isometry).

Definition 2.5 Given a commuting m-tuple T = (T1, . . . , Tm) on H, a toral gener-
ating m-tuple is given by

Qt := (Q1, . . . , Qm), Qi (X) := T ∗
i XTi (X ∈ B(H)).
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We say that T is toral complete hyperexpansion if

Bn(Qt ) :=
∑

p∈Nm ,0≤p≤n

(−1)|p|
(

n

p

)
Q p

t (I ) ≤ 0 for all n ∈ N
m \{0}, (2.2)

where Qq
t (I ) = (Qq1

1 ◦ · · · ◦ Qqm
m )(I ) for q = (q1, . . . , qm) ∈ N

m .

Similarly, one may define toral p-isometry and toral p-expansion.

For the basic theory of toral complete hyperexpansions, refer to [11].
Throughout this paper, we will frequently deal with the multi-sequence {Qn(I )}n∈Nm

associated with a generating m-tuple Q. Note that the multi-sequence associated with
the toral generating m-tuple Qt is given by {T ∗nT n}n∈Nm . On the other hand, the
multi-sequence associated with the spherical generating 1-tuple Qs is given by

⎧
⎨

⎩
∑

p∈Nm ,|p|=n

n!
p!T ∗ pT p

⎫
⎬

⎭
n∈N

.

3 Examples

An m-variable weighted shift T = (T1, . . . , Tm) with respect to an orthonormal basis
{en}n∈Nm of a Hilbert space H is defined by

Ti en := w(i)
n en+εi (1 ≤ i ≤ m),

where εi is the m-tuple with 1 in the i th place and zeros elsewhere. We indicate the
m-variable weighted shift operator T with weight sequence

{
w(i)

n : 1 ≤ i ≤ m, n ∈ N
m
}

by T : {w(i)
n }n∈Nm . We always assume that

{
w

(i)
n : 1 ≤ i ≤ m, n ∈ N

m
}

is a bounded

subset of the positive real line.
Notice that Ti commutes with Tj if and only if w

(i)
n w

( j)
n+εi

= w
( j)
n w

(i)
n+ε j

for all
n ∈ N

m .

A rather special example of a spherical m-isometry is the Drury-Arveson m-shift
([5,25], [29, Theorem 4.2]). The Drury-Arveson m-shift is the operator m-tuple Mz,m

of multiplication by the co-ordinate functions z1, . . . , zm in the reproducing kernel
Hilbert space associated with the positive definite kernel

1

1 − z1w1 − · · · − zmwm
(z, w ∈ B),

where u denotes the complex conjugate of the complex number u, and B denotes the
open unit ball in the m-dimensional hermitian space C

m . The operator m-tuple Mz,m



Rigidity Theorems for Spherical Hyperexpansions 1551

can also be realized as the weighted shift with weight-sequence

{√
ni + 1

|n| + 1
: 1 ≤ i ≤ m, n ∈ N

m

}
,

where |n| := n1 +· · ·+nm (n ∈ N
m). It may be concluded from [16, Proposition 4.9]

that the Drury-Arveson m-shift is a spherical complete hyperexpansion if and only if
m = 2.

Let T : {w(i)
n }n∈Nm be an m-variable weighted shift. Let βn(T ) denote

(
m∑

i=1

(
w(i)

n

)2
) 1

2

(n ∈ N
m).

We refer to the one-variable weighted shift Tβ : {βkε1}k∈N as the shift associated
with T .

The following lemma is borrowed from [14, Lemmas 3.1 and 3.3] for ready
reference.

Lemma 3.1 Let T : {w(i)
n }n∈Nm denote a commuting m-variable weighted shift and

let T s denote its spherical Cauchy dual m-tuple. Then T s is commuting if and only if
{βn(T )}n∈Nm satisfies

βn(T ) = β|n|ε1(T ) for all n ∈ N
m,

where |n| = n1 + · · · + nm . If this condition holds then T is a spherical p-expansion
(resp. spherical p-isometry) if and only if Tβ is a p-expansion (resp. p-isometry),
where Tβ stand for the shift associated with T .

We now present two examples of m-variable weighted shifts, each of which include
the Drury-Arveson m-shift as a special case.

Example 3.2 For λ ≥ 1, the m-variable weighted shift with weight sequence

√
ni + 1

|n| + m

√
|n| + λ

|n| + 1
(n ∈ N

m, 1 ≤ i ≤ m)

is denoted by Tλ,m . The following special cases are noteworthy:

1. λ = 1 : Notice that T1,m is nothing but the Szegö m−shi f t with weight sequence

{√
ni + 1

|n| + m
: 1 ≤ i ≤ m, n ∈ N

m

}
.
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2. λ = 2 : Notice that T2,m is the m-variable weighted shift with weight sequence

{√
ni + 1

|n| + m

√
|n| + 2

|n| + 1
: 1 ≤ i ≤ m, n ∈ N

m

}
.

Further if m = 2, then note that T2,m is nothing but the Drury-Arveson 2-shift.
3. λ = m : Notice that Tm,m is the Drury-Arveson m-shift.

Notice that the shift associated with Tλ,m is precisely the λ-shift Tλ as discussed in
Sect. 1. By Lemma 3.1, Tλ,m is a spherical complete hyperexpansion if and only if
Tλ is a complete hyperexpansion. The latter one is true if and only if 1 ≤ λ ≤ 2 [39,
Example 2.3]. It is easy to conclude from Lemma 3.1 and [9, Proposition 8] that Tλ,m

is a spherical p-isometry if and only if λ = p is a positive integer.

Example 3.3 We use the notation Tλ·m for the m-variable weighted shift with weight
sequence

√
ni + λ

|n| + 1
(n ∈ N

m, 1 ≤ i ≤ m),

where λ is a positive real number. Notice that T1·m is the Drury-Arveson m-shift.
Observe that the shift associated with Tλ·m is precisely the (λm)-shift Tλm . Again
by Lemma 3.1, Tλ·m is a spherical complete hyperexpansion if and only if Tλm is
a complete hyperexpansion. The latter one is true if and only if 1/m ≤ λ ≤ 2/m
[39, Example 2.3]. Similarly, one may conclude from [9, Proposition 8] that Tλ·m is a
spherical p-isometry if and only if λm = p is a positive integer. In particular, T(p/m)·m
is a spherical p-isometry.

For an excellent account on various notions of invertibility, Fredholmness and multi-
parameter spectral theory, the reader is referred to [21]. For T ∈ B(H), we reserve
the symbols σ(T ), σp(T ), σap(T ), σe(T ) for the Taylor spectrum, point-spectrum,
approximate-point spectrum, essential spectrum of T respectively.

The following result records some elementary spectral properties of spherical
2-hyperexpansions [16, Corollary 4.2] and spherical p-isometries [29, Proposition
3.1 and Lemma 3.2]:

Proposition 3.4 Let T be a spherical 2-expansive (resp. a spherical p-isometric)
m-tuple. Then the following statements are true:

(i) The approximate-point spectrum of T is contained in the boundary of the closed
unit ball in C

m . In particular, the Taylor spectrum of T is contained in the closed
unit ball in C

m .

(ii) The spectral radius sup{‖z‖ : z ∈ σ(T )} of T is 1, where ‖z‖2 := |z1|2 + · · · +
|zm |2 for z := (z1, . . . , zm) ∈ C

m .
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Corollary 3.5 Let T : {w(i)
n } be a spherical 2-expansive (resp. a spherical

p-isometric) m-variable weighted shift. If

inf
n∈Nm

√(
w

(1)
n−ε1

)2 + · · · +
(
w

(m)
n−εm

)2 = 1, (3.3)

with the interpretation that w
(i)
n−εi

= 0 if ni = 0, then the Taylor spectrum of T is the
closed unit ball in C

m .

Proof In view of (3.3), one may conclude from [22, Corollary 4.3] that B ⊆ σp(T ∗),
where B denotes the open unit ball in C

m . However, since σp(T ∗) ⊆ σ(T ∗) and
σ(T ∗) = {z : z ∈ σ(T )}, we have B ⊆ σ(T ), where z denotes the componentwise
complex conjugate of z ∈ C

m . Also, since σ(T ) is closed, we must have B ⊆ σ(T ).

By the preceding proposition, σ(T ) = B. 
�
Remark 3.6 Let Tλ,m and Tλ·m be as in Examples 3.2 and 3.3 respectively. It is easy
to see that Tλ,m and Tλ.m satisfy the condition (3.3) above. Consequently, we obtain
the following:

λ ≥ m : If 1 ≤ λ ≤ 2 or λ is a positive integer then σ(Tλ,m) = B.

λ ≥ 1 : If 1/m ≤ λ ≤ 2/m or λm is a positive integer then σ(Tλ·m) = B.

In particular, the Taylor spectrum of the Drury-Arveson m-shift is the closed unit ball
in C

m .

The following proposition describes a method of constructing a spherical hyperex-
pansion by using a toral hyperexpansion:

Proposition 3.7 Let T := (T1, . . . , Tm) be an m-tuple on H and set S := (T1/
√

m,

. . . , Tm/
√

m). If T is a toral complete hyperexpansion (resp. toral p-expansion resp.
toral p-isometry) then S is a spherical complete hyperexpansion (resp. spherical
p-expansion resp. spherical p-isometry).

Proof Let Qt := (Q1, . . . , Qm) denote the toral generating m-tuple associated with
T . Let Q (resp. P) denote the spherical generating 1-tuple associated with T (resp. S).
Note that for X ∈ B(H), P(X) = 1

m Q(X) and Q(X) = ∑m
i=1 Qi (X). We contend

that

Bn(P) = 1

mn

∑

|p|=n

Bp(Qt ) (n ∈ N),

where Bn(·) and Bp(·) be as defined in (2.2) of Sect. 2. We prove this by induction on
n ≥ 1. If n = 1 then

B1(P) = I − P(I ) = 1

m
(m I − Q(I )) = 1

m

m∑

i=1

[I − Qi (I )] = 1

m1

∑

|p|=1

Bp(Qt ).
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Next suppose that the desired identity is true for some n ≥ 1. Observe that

Bn+1(P) = Bn(P) − P(Bn(P))

= 1

mn

∑

|p|=n

Bp(Qt ) − P

⎛

⎝ 1

mn

∑

|p|=n

Bp(Qt )

⎞

⎠

= 1

mn

∑

|p|=n

[
Bp(Qt ) − 1

m
Q(Bp(Qt ))

]

= 1

mn+1

∑

|p|=n

m∑

i=1

Bp+εi (Qt ),

where εi is the m-tuple with 1 in the i-th entry and zeros elsewhere. The required result
is now immediate. 
�

Note that the converse of Proposition 3.7 is false as seen by considering the Drury-
Arveson 2-shift.

Example 3.8 Let T be a complete hyperexpansion (resp. p-isometry). It is easy
to see that the m-tuple (T, . . . , T ) is a toral complete hyperexpansion (resp. toral
p-isometry). Now by Proposition3.7, (T/

√
m, . . . , T/

√
m) is a spherical complete

hyperexpansion (resp. spherical p-isometry). In particular if 1 ≤ λ ≤ 2 (resp. λ = p
a positive integer), then the m-tuple (Tλ/

√
m, . . . , Tλ/

√
m) is a spherical complete

hyperexpansion (resp. spherical p-isometry). For instance if D denotes the Dirichlet
shift T2, then (D/

√
2, D/

√
2) is a spherical 2-isometry.

The following example is crucial in the context of possible generalization of
Theorems 1.1 and 1.2 in higher dimensions. In fact, it shows that their verbatim
analogs fail in dimension bigger than one.

Example 3.9 By Proposition 3.7, S = (Tλ/
√

2, U/
√

2) is spherical complete hyper-
expansion (resp. spherical p-isometry) for 1 ≤ λ ≤ 2 (resp. λ = p a positive integer),
where U a unitary operator which commutes with the λ-shift Tλ. Since the weight-
sequence of Tλ converges to 1, the spectrum of Tλ is contained in the closed unit disc
D̄ [37]. Now by the projection property for the Taylor spectrum [21, Theorem 4.9],

σ(S) ⊆ D̄√
2

× ∂D√
2
. Consequently, S is Taylor invertible.

It can be easily checked that for λ > 1, S is not a spherical isometry.

We would like to point out some distinctive features of the examples discussed
above.

Remark 3.10 1. The Taylor spectrum of (D/
√

2, D/
√

2) is contained in the bidisc

{(z, w) ∈ C
2 : |z| ≤ 1/

√
2, |w| ≤ 1/

√
2},

whereas the Taylor spectrum of the Drury-Arveson 2-shift is the entire closed unit
ball (see Remark 3.6 above).
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2. The components of the Drury-Arveson 2-shift are non-isometric subnormal con-
tractions [31, Proposition 4]. On the contrary, the components of a spherical
complete hyperexpansion constructed via Proposition 3.7 above are subnormal if
and only if they are scalar multiples of isometries. This follows from the fact that
a subnormal 2-hyperexpansion is necessarily an isometry. In the next section, we
shall prove however that the subnormality and joint hyponormality of a spherical
2-hyperexpansion are equivalent to it being a spherical isometry.

3. For the subclass of spherical 2-hyperexpansions S, as discussed in Proposition 3.7,
there is an easy analog of Theorems 1.1: If the Taylor spectrum of S is contained
in the ball-shell

{(z, w) ∈ C
2 : 0 < |z| ≤ 1/

√
2, 0 < |w| ≤ 1/

√
2}

then S is a spherical unitary. This is immediate from the projection property of
the Taylor spectrum [21] and Theorem 1.1. Similar assertion holds for the class
of spherically expansive spherical p-isometries discussed in Proposition 3.7.

4. It was noted in [9, Proposition 8] that for λ = p, an integer, the λ-shift Tλ is a
p-isometry but not a (p −1)-isometry. Thus for every integer p ≥ 2, the operator
S = (Tp/

√
2, U/

√
2) of Example 3.9 is a Taylor invertible spherical p-isometry

which is not a spherical (p − 1) isometry.
Note that in dimension 1, it is well known that if T is an invertible m-isometry

and m is even, then T is an (m − 1)-isometry [1, Proposition 1.23]. Thus the
spherical analog of this result is no longer true in higher dimensions.

4 Some Rigidity Theorems

A multi-variable analog of Theorem 1.1 (resp. Theorem 1.2) would require an invert-
ible spherical 2-hyperexpansion (resp. spherically expansive spherical p-isometry) to
be a spherical unitary. The notion of invertibility of an operator tuple has different
manifestations; Taylor invertibility being most profound.

As already pointed out, with Taylor invertibility, the verbatim analog of Theorem 1.1
(resp. Theorem 1.2) fails in higher dimensions. In fact, it has been well-known that
there are examples of Taylor invertible spherical isometries which are not spherical
unitaries [28, Theorem 3.1]. Further, Example 3.9 shows that an invertible spherical
2-hyperexpansion may not even be a spherical isometry and as a special case, if D
denotes the Dirichlet shift, then S = (D/

√
2, I/

√
2) is a Taylor-invertible spherical

2-isometry, which is not a spherical isometry. Note that this example also reveals that
the spectral dichotomy of Theorems 1.1 and 1.2 does not hold as σp(S∗) ∩ B (and
hence σ(S) ∩ B) is a non-empty set that excluds the origin.

At this stage we introduce a notion of structural invertibility of an operator tuple,
suitable for our investigations, and prove a multi-variable analog of Theorem 1.1 with
invertibility interpreted as the structural invertibility.

Definition 4.1 Let T = (T1, . . . , Tm) be a commuting m-tuple and Qs be the spherical
generating 1-tuple associated with T . We say that T is structurally invertible if there
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exists a commuting m-tuple S = (S1, . . . , Sm) with associated spherical generating
1-tuple Ps such that

Qk
s ◦ Pk

s (I ) = I = Pk
s ◦ Qk

s (I ) for every positive integer k.

We refer to S as a structural inverse of T .

Clearly, a spherical isometry is structurally invertible. Further, its structural inverse
is again a spherical isometry. Furthermore, if a bounded linear operator is invertible
then it is structurally invertible.

Proposition 4.2 Let T be a spherical 2-expansive structurally invertible m-tuple on
H. Then T is a spherical isometry.

Proof Let S denote a structural inverse of T . Let Ps and Qs denote the spherical
generating 1-tuples associated with the commuting m-tuples S and T respectively.

By the linearity of Ps and the definition of the structural inverse,

P2
s (I − 2Qs(I ) + Q2

s (I )) = P2
s (I ) − 2Ps(I ) + I.

Now the fact that Ps sends negative elements to negative elements implies that S is
a spherical 2-expansion, and hence a spherical expansion (see the discussion prior to
Definition 2.5). Consequently, I = Qs ◦ Ps(I ) ≥ Qs(I ), so that Qs(I ) = I. Hence
T is a spherical isometry as desired. 
�

To obtain a multi-variable counterpart of Theorem 1.2, we need a lemma.

Lemma 4.3 Let T be a spherical p-isometric m-tuple on H. Then T is a spherical
contraction if and only if it is a spherical isometry.

Proof Let T be a spherical contraction and a spherical p-isometry for p ≥ 2. We
claim that T is a spherical (p − 1)-isometry. Let Qs denote the spherical generating
1-tuple associated with T . Since T is a spherical contraction, the sequence {Qk

s (I )}k∈N

of positive contractions is monotonically non-increasing. It follows that {Qk
s (I )}k∈N

converges in the strong operator topology to a positive operator, say A ∈ B(H). Let
Bn(·) be as in (2.1) of Sect. 2. Since

0 = Bp(Qs) = Bp−1(Qs) − Qs(Bp−1(Qs)),

by an inductive argument,

Bp−1(Qs) = Qk
s (Bp−1(Qs)), k ∈ N.

It suffices now to check that {Qk
s (Bp−1(Qs))}k∈N converges in the strong operator

topology to the zero operator. Note that

Qk
s (Bp−1(Qs)) =

∑

q∈N,0≤q≤p−1

(−1)q
(

p

q

)
Qq+k

s (I ) −→
∑

q∈N,0≤q≤p−1

(−1)q
(

p

q

)
A
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in the strong operator topology. Since p ≥ 2, the claim stands verified. By a finite
inductive argument, T is a spherical isometry. 
�

Proposition 4.4 Let T be a spherical p-isometric structurally invertible m-tuple on
H. If T is a spherical expansion then it is a spherical isometry.

Proof Assume that T is a spherical expansion. Let S denote a (structural) inverse
of T and let Bn(·) be as in (2.1) of Sect. 2. It is easy to see that P p

s (Bp(Qs)) =
(−1)p Bp(Ps), where Qs (resp Ps) denotes the spherical generating 1-tuple associated
with T (resp. S). In particular, the structural inverse S of T is a spherical p-isometry.
Since T is a spherical expansion, S is a spherical contraction. By the previous lemma,
S must be a spherical isometry. It follows that T is also a spherical isometry. 
�

We now introduce a notion of defect operators which provides a suitable language
for the discussion that follows in the sequel, and also measures in some sense the
deviation of a tuple from it being a spherical isometry.

Definition 4.5 Let T be an m-tuple and let Qs be the spherical generating 1-tuple
associated with T . The defect operator DT,n is given by

DT,n := Qn
s (I ) − Qs(I )n (n ≥ 2).

Remark 4.6 Clearly, the defect operator DT,n are unitary invariants of T . Note that
for a spherical isometry (or a normal tuple) T, all the defect operators DT,n are 0.

Conversely, if all the defect operators DT,n are 0, then by the Spectral Theorem, there
exists a spectral measure E(·) such that

Qn
s (I ) =

∫

[0,‖Qs (I )‖]
tnd E(t) (n ≥ 1).

If, in addition, T is a spherical contraction, then T is a spherical complete hypercon-
traction.

Lemma 4.7 Let T be a spherical 2-expansive m-tuple. Then we have:

(i) DT,2 ≤ 0.

(ii) DT,3 ≤ 0.

Proof Let Qs be the spherical generating 1-tuple associated with T .
The first part follows from

(I − Qs(I ))2 + Q2
s (I ) − (Qs(I ))2 = I − 2Qs(I ) + Q2

s (I ) ≤ 0.

The proof of (ii) capitalizes on the notion of the spherical Cauchy dual tuple. Let Ps

denote the spherical generating 1-tuple associated with the spherical Cauchy dual T s
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of T . Notice that the first half of [16, Theorem 6.6] may be rephrased as Ps ◦Qs(I ) ≤ I.
It follows that

(Ps(I )
1
2 − Ps(I )−

1
2 )2 + Ps ◦ Q2

s (I ) − Ps(I )−1

= Ps(I ) − 2I + Ps ◦ Q2
s (I )

≤ Ps(I ) − 2Ps ◦ Qs(I ) + Ps ◦ Q2
s (I )

= Ps(I − 2Qs(I ) + Q2
s (I )).

By the spherical 2-expansivity of T and the positivity of Ps, one has

Ps ◦ Q2
s (I ) ≤ Ps(I )−1 = Qs(I ). (4.4)

But Ps ◦ Q2
s (I ) = Qs(I )−1 Q3

s (I )Qs(I )−1, which yields the desired result. 
�
Proposition 4.8 Let T be a spherical 2-expansive m-tuple. Then T is a spherical
isometry if and only if T satisfies any one of the following:

(i) DT,2 ≥ 0.

(ii) DT,3 ≥ 0.

Proof (i) By Lemma 4.7, Q2
s (I ) = Qs(I )2. As T is a spherical 2-expansion, I −

2Qs(I ) + Q2
s (I ) ≤ 0. Now Q2

s (I ) = Qs(I )2 gives I − 2Qs(I ) + Qs(I )2 =
(I − Qs(I ))2 ≤ 0 forcing T to be a spherical isometry.

(ii) Let Qs and Ps be as in the proof of Lemma 4.7. By Lemma 4.7, Q3
s (I ) = Qs(I )3.

Then (4.4) implies that Ps ◦ Q2
s (I ) = Qs(I ). Then arguing as in the proof of

Lemma 4.7, one obtains

Ps(I ) − 2I + Qs(I ) ≤ 0.

Since Ps(I ) = Qs(I )−1, we must have Qs(I ) = I.

�

Proposition 4.9 Let T be a spherical 2-expansive (resp. spherical p-isometric)
m-tuple on H. Then T is a spherical isometry if and only if T satisfies any one of
the following:

(i) There is an integer N ≥ 2 such that DT,n ≥ 0 for all n ≥ N .

(ii) Let Qs be the spherical generating 1-tuple associated with T . Then

〈Qn
s (I )h, h〉 ≤ 〈Qn−1

s (I )h, h〉 1
2 〈Qn+1

s (I )h, h〉 1
2 (4.5)

for all h ∈ H and for all integers n ≥ 1.

Proof Let n ≥ N . We claim that the inequality ‖Qn
s (I )‖ ≥ ‖Qs(I )‖n holds under

the assumptions of both (i) and (ii). The argument is fairly standard.

(i) Since DT,n ≥ 0, one has ‖Qn
s (I )‖ ≥ ‖Qs(I )n‖ = ‖Qs(I )‖n .
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(ii) Since the norm of a positive operator P is given by sup‖h‖=1〈Ph, h〉, by (4.5),

‖Qn
s (I )‖ ≤ ‖Qn−1

s (I )‖ 1
2 ‖Qn+1

s (I )‖ 1
2 .

It then follows that for k = 0, . . . , n − 1,

‖Qn−k
s (I )‖k+2

‖Qn−k−1
s (I )‖k+1

≥ ‖Qn−k−1
s (I )‖2(k+2)/‖Qn−k−2

s (I )‖k+2

‖Qn−k−1
s (I )‖k+1

= ‖Qn−k−1
s (I )‖k+3

‖Qn−k−2
s (I )‖k+2

.

In particular, Ak := ‖Qn−k
s (I )‖k+2

‖Qn−k−1
s (I )‖k+1 is decreasing in k. Thus

‖Qn+1
s (I )‖ ≥ ‖Qn

s (I )‖2

‖Qn−1
s (I )‖ = A0 ≥ A1 ≥ · · · ≥ An−1 = ‖Qs(I )‖n+1

for every positive integer n. This completes the proof of the claim.
To complete the proof, we need the following spectral radius formula of Müller and

Soltysiak [34, Theorem 1] (see also [17, Theorem 1]): For a commuting m-tuple T of
bounded linear operators on a Hilbert space, the spectral radius r(T ) of T is given by

r(T ) = lim
n→∞ ‖Qn

s (I )‖ 1
2n .

It follows from the claim and the spectral radius formula that r(T ) is at least ‖Qs(I )‖ 1
2 .

However, by Proposition 3.4(ii), r(T ) = 1. Thus T is a spherical contraction. Since a
spherical 2-expansion is a spherical expansion (see the discussion prior to Definition
2.5), T must be a spherical isometry in case T is a spherical 2-expansion. In case T is
a spherical p-isometry, the desired conclusion follows from Lemma 4.3. 
�

An m-tuple S = (S1, . . . , Sm) of commuting operators Si in B(H) is jointly hypo-
normal if the m × m matrix ([S∗

j , Si ])1≤i, j≤m is positive definite, where [A, B] stands
for the commutator AB − B A of A and B.

It is not difficult to see that a subnormal tuple is jointly hyponormal [7, Proposi-
tion 2].

Lemma 4.10 Let T be a jointly hyponormal m-tuple. Then DT,2 ≥ 0.

Proof Observe that

Q2
s (I ) − Qs(I )2 =

m∑

i, j=1

(
T ∗

i T ∗
j Ti Tj − T ∗

i Ti T
∗
j Tj

)

=
m∑

i, j=1

T ∗
i [T ∗

j , Ti ]Tj .
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It is now easy to see that

〈([T ∗
j , Ti ])1≤i, j≤m(Ti x)1≤i≤m, (Ti x)1≤i≤m〉 ≥ 0

for all x ∈ H if and only if Q2
s (I ) ≥ Qs(I )2. In particular, DT,2 ≥ 0. 
�

Proposition 4.11 For any spherical 2-expansive m-tuple T, the following are equiv-
alent:

(i) T is subnormal.
(ii) T is jointly hyponormal.

(iii) T is a spherical isometry.

Proof We already recorded the implication (i) �⇒ (ii) while (iii) �⇒ (i) is a well-
known result of A. Athavale [8, Proposition 2]. To see (ii) �⇒ (iii), note that DT,2 ≥ 0
in view of Lemma 4.10. The desired conclusion now follows from Proposition 4.8(i).


�
Next we present a counterpart of the previous proposition for spherical p-isometries

(cf. [16], Proposition 3.16).

Proposition 4.12 Let T be a spherical p-isometric m-tuple on H. Then T is subnor-
mal if and only T is a spherical isometry.

Proof The result generalizes [39, Proposition 4.5] and can be obtained along the same
lines. For completeness, we give here a direct proof. Suppose T is a subnormal m-tuple
with normal extension N . Then

〈Qn
s (I )h, h〉 = 〈Pn

s (I )h, h〉 = 〈Ps(I )nh, h〉

for any h ∈ H, where Ps denotes the spherical generating 1-tuple associated with N .

Now a simple application of the Cauchy-Schwarz inequality yields (4.5). By Propo-
sition 4.9, T is necessarily a spherical isometry. 
�

The question whether there are non-trivial jointly hyponormal spherical p-isometries
in higher dimensions remains unanswered. In particular, it is interesting to know
whether a jointly hyponormal tuple always satisfies (4.5) of Proposition 4.9.

As an immediate consequence of Theorem 1.1 (resp. Theorem 1.2), note that a
2-hyperexpansion (resp. expansive m-isometry) on a finite-dimensional complex
Hilbert space must be unitary. It is interesting to know what happens in the multi-
variable situation. Although the verbatim analog of Theorem 1.1 (resp. Theorem 1.2)
is false in higher dimensions, we are able to provide a partial answer to this. First a
lemma (cf. [12, Proposition 2.7]).

Lemma 4.13 Let T = (T1, . . . , Tm) be a spherical expansive m-tuple. Then the
following statements are true:

(i) T admits the decomposition

Ti = Ni ⊕ Ci (i = 1, . . . , m),
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where N = (N1, . . . , Nm)is a normal spherical expansion and C = (C1, . . . , Cm)

is a completely non-normal spherical expansion.
(ii) Let T s be the spherical Cauchy dual of T . Suppose T s∗ := ((T s

1 )∗, . . . , (T s
m)∗)

is a spherical contraction. If there exists λ ∈ ∂B such that λ is an eigenvalue of
T then the restriction of T to ker(T − λI ) is normal.

Proof (i) One may decompose any arbitrary m-tuple of bounded linear operators on
a Hilbert space into a normal part and a completely non-normal part [28, Corollary
4.2]. Write Ti = Ni ⊕ Ci (i = 1, . . . , m), where N = (N1, . . . , Nm) is a normal
spherical expansion and C = (C1, . . . , Cm) is a completely non-normal spherical
expansion. Here we used the fact that the restriction of a spherical expansion to an
invariant subspace is again a spherical expansion.

(ii) Let λ ∈ ∂B belongs to the point-spectrum σp(T ) of T . Thus there exists a
non-zero vector h ∈ H such that Ti h = λi h for all i = 1, . . . , m. We first verify that

Qs(I )h = h, (4.6)

where Qs(I ) = ∑m
i=1 T ∗

i Ti . Since 〈Qs(I )h, h〉 = ‖h‖2 and since Qs(I ) ≥ I, one
has Qs(I )h = h. This completes the verification of (4.6).

Suppose T s∗ is a spherical contraction. It suffices to prove that

T ∗
i h = λi h for all i = 1, . . . , m.

Fix 1 ≤ i ≤ m. It follows from (4.5) that T s
i h = Ti Qs(I )−1h = Ti h = λi h. Now

consider

m∑

i=1

‖(T s
i )∗h − λi h‖2 =

m∑

i=1

(
‖(T s

i )∗h‖2 − [〈λi h, T s
i h〉 + 〈T s

i h, λi h〉] + ‖λi h‖2
)

=
m∑

i=1

(
‖(T s

i )∗h‖2 − |λi |2‖h‖2
)

=
m∑

i=1

‖(T s
i )∗h‖2 − ‖h‖2.

Since T s∗ is a spherical contraction, it follows that (T s
i )∗h = λi h. Since Qs(I )h = h

in view of (4.6), one has T ∗
i h = λi h. 
�

Remark 4.14 The additional assumption of Lemma 4.13(ii) that T s∗ is a spherical
contraction is redundant in case m = 1.

Proposition 4.15 Let T = (T1, . . . , Tm) be a spherical 2-expansive (resp. spherically
expansive spherical p-isometric) m-tuple on a finite-dimensional Hilbert space and
let T s denote the spherical Cauchy dual of T . If T s∗ := ((T s

1 )∗, . . . , (T s
m)∗) is a

spherical contraction, then T is a spherical unitary.
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Proof Suppose T s∗ is a spherical contraction. We prove the result only for spherical
2-expansions as the same argument works for spherical p-isometries. By Lemma 4.13
(i), T can be decomposed into a normal part N and a completely non-normal part
C. Since the restriction of a spherical 2-expansion to an invariant subspace is again a
spherical 2-expansion, N and C both are spherical 2-expansions. Also, since a normal
spherical 2-expansion is a spherical unitary, N is a spherical unitary. Observe next that
in view of σp(T ) ⊆ σap(T ), σp(T ) ⊆ ∂B by Proposition 3.4. Since C is completely
non-normal, by Lemma 4.13(ii), its point-spectrum is empty. It then follows that in
case H is finite-dimensional, the completely non-normal part of T must be absent,
and hence T is a spherical unitary. 
�
Remark 4.16 Let T = (T1, . . . , Tm) be a spherical 2-expansive (resp. spherical
p-isometric) m-tuple on H. If H is infinite-dimensional then Ti is not compact for
some 1 ≤ i ≤ m. The proof of this relies on the basic fact that the Calkin algebra is
non-trivial if and only if H is infinite-dimensional.

We remark that the proof of Proposition 4.15 could be done without using part(ii)
of Lemma 4.13. The previous results raise the following natural question: Is the theory
of spherical 2-expansions (in particular, the theory of spherical 2-isometries) strictly
infinite-dimensional? After the communication of the present paper, it was revealed
from the electronic version of the notes by Prof. S. Richter that this is indeed not the
case.

5 Rigidity Theorems at the Calkin Algebra Level

In this section, capitalizing on the ideas of Agler and Stankus [3, Proposition 10.6], we
obtain some rigidity theorems at the Calkin algebra level. These results rely heavily
on the results of Sect. 4.

Let C(H) denote the norm-closed ideal of compact operators on H. Since
B(H)/C(H) is a unital C∗-algebra, the Calkin algebra, there exist a Hilbert space K
and an injective unital ∗-representation π : B(H)/C(H) → B(K) [18, Chapter VIII].
In particular, π ◦ q : B(H) → B(K) is a unital ∗-representation, where q : B(H) →
B(H)/C(H) is the quotient (Calkin) map. Set π ◦q(T ) := (π ◦q(T1), . . . , π ◦q(Tm)).

Finally, let DT denote the defect operator I − ∑m
i=1 T ∗

i Ti .

Recall that T = (T1, . . . , Tm) is essentially normal (resp. essentially spherical
isometry resp. essentially spherical unitary) if π ◦ q(T ) is normal (resp. spherical
isometry resp. spherical unitary). Note that T is essentially spherical isometry (resp.
essentially spherical unitary) if and only if DT ∈ C(H) (resp. DT , DT ∗ ∈ C(H)).

Remark 5.1 Note that if DT = 0 (resp. DT ∈ C(H)) then the defect operator DT,n = 0
(resp. DT,n ∈ C(H)) for all n ≥ 2 (see Definition 4.5).

Here is a partial converse to Remark 5.1.

Proposition 5.2 Let T be a spherical 2-expansive m-tuple on H such that DT,2 ∈
C(H) or DT,3 ∈ C(H). Then T is essentially spherical isometry.
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Proof We use the notations introduced in the beginning of this section. Note that
Dπ◦q(T ),n = π ◦ q(DT,n) = 0 for n = 2 or 3. Since unital ∗-representations send
self-adjoint (resp. positive) elements to self-adjoint (resp. positive) ones, π ◦ q(T ) is
a spherical 2-expansion such that either Dπ◦q(T ),2 = 0 or Dπ◦q(T ),3 = 0. Now apply
Proposition 4.8 to the m-tuple π ◦ q(T ). 
�
Remark 5.3 A spherical 2-hyperexpansion T is essentially jointly hyponormal (that
is, π ◦ q(T ) is jointly hyponormal) if and only if T is essentially spherical isometry.

In case m = 1, the following captures the well-known fact that any finitely multi-
cyclic isometry is essentially unitary.

Lemma 5.4 Let T be a spherical expansive m-tuple. Then T is essentially spherical
unitary iff T ∗ is essentially spherical isometry.

Proof Suppose that T ∗ is essentially spherical isometry. Since unital ∗-representations
send self-adjoint (resp. positive) elements to self-adjoint (resp. positive) ones,
Dπ◦q(T )∗ = π ◦ q(DT ∗) = 0, so that π ◦ q(T )∗ is a spherical isometry, and π ◦ q(T )

is a spherical expansion. By [8, Proposition 2], the components of π ◦ q(T )∗ are
hyponormal operators. Thus

0 = Dπ◦q(T )∗ ≤ Dπ◦q(T ) ≤ 0.

That is, π ◦q(T ) is a spherical unitary. Equivalently, T is essentially spherical unitary.

�

For a subspace M of H, PM denotes the orthogonal projection onto M and EM
denotes the embedding of M into H.

Proposition 5.5 Let T be a spherical expansive m-tuple on H such that T ∗ is essen-
tially spherical isometry. If M is an invariant subspace of T such that PM

∑m
i=1 Ti

(I − PM)T ∗
i EM is compact then T |M is essentially spherical unitary.

Proof Suppose PM
∑m

i=1 Ti (I − PM)T ∗
i EM is compact. Since T is a spherical

expansion, so is S := T |M. By Lemma 5.4, it now suffices to check that S∗ =
PMT ∗EM is essentially spherical isometry. Note that

DS∗ = PMEM − PM
m∑

i=1

Ti PMT ∗
i EM

= PMEM − PM
m∑

i=1

Ti T
∗

i EM + PM
m∑

i=1

Ti (I − PM)T ∗
i EM

= PMDT ∗ EM + a compact operator.

Thus DS∗ is compact if so is DT ∗ . 
�
Corollary 5.6 Let T be a spherical expansive m-tuple on H such that T ∗ is essentially
spherical isometry. Then for any invariant subspace M of T of finite co-dimension,
T |M is essentially spherical unitary.
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Example 5.7 Let Tλ,m (resp. Tλ·m) be the m-variable weighted shifts as discussed in
Example 3.2 (resp. Example 3.3), where λ ≥ 1 (resp. λm ≥ 1). Then T ∗

λ,m (resp.
T ∗

λ·m) turns out to be spherically expansive essentially spherical isometry, and hence
essentially spherical unitary (Lemma 5.4). This can be seen by direct computations as
well.

Let T stand for Tλ,m or Tλ·m . Then T can be represented as the operator tuple of
multiplication by the co-ordinate functions z1, . . . , zm on a reproducing kernel Hilbert
space Hm with reproducing kernel κ(·, ·).

1. For k ∈ N
m, consider the subspace Nk of Hm given by

Nk = { f ∈ Hm : 〈 f, zl〉 = 0 if li < ki for some 1 ≤ i ≤ m}.

Note that Nk is an invariant subspace of T . Also, Nk (resp. N⊥
k ) is spanned by

{zl : l ≥ k} (resp. {zl : li < ki for some 1 ≤ i ≤ m}.). It is easy to check that

m∑

i=1

∥∥∥∥(I − PNk )T
∗

i PNk

zl

‖zl‖
∥∥∥∥

2

→ 0 as |l| → ∞.

By Proposition 5.5, T |Nk is essentially spherical unitary.
2. For positive integer n and for w1, . . . wn ∈ B, consider the subspace Mn of Hm

given by

Mn = { f ∈ Hm : f (wi ) = 0 for i = 1, . . . , n}.

Clearly, Mn is an invariant subspace of T . Also, the subspace orthogonal to Mn

is spanned by κ(·, wi ) (i = 1, . . . , m), and hence Mn is of codimension n. By
Corollary 5.6, T |Mn is essentially spherical unitary.

On the other hand, a straightforward computation reveals that the 2-variable weighted
shift with weight sequence

w(1)
n = w(2)

n = 1√
2

√
|n| + 2

|n| + 1

is a spherical 2-isometry, which is not essentially spherical unitary.

Remark 5.8 Note that in dimension 1, if T is a finitely cyclic 2-isometry, then T is
essentially unitary [12, Corollary 2.29]. The example discussed in the last paragraph
of Example 5.7 shows that the spherical analog of this result is not true in higher
dimensions.

In the context of Proposition 5.5 and Example 5.7, we cannot resist referring the
reader to the Arveson’s Conjecture as discussed in [6] (refer also to [27] for its current
status).

The next proposition generalizes substantially the fact that if S is direct sum of k
copies of Drury-Arveson m-shift then S is essentially unitary if and only if k is finite.
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Proposition 5.9 Let T denote a spherical expansive m-tuple such that
∑m

i=1 Ti T ∗
i is

an orthogonal projection. Let ker(T ∗) stand for the common null-space
⋂m

i=1 ker(T ∗
i ).

(i) If ker(T ∗) is finite-dimensional then T and T |ker(T ∗)⊥ are essentially spherical
unitary.

(ii) If ker(T ∗) is infinite-dimensional then T ∗ is not essentially spherical isometry.
Moreover, the essential spectrum of T is the entire closed unit ball if in addition
the following holds: Whenever x1, . . . , xm ∈ H with

∑m
i=1 π ◦q(Ti )xi = 0, then

there exists an antisymmetric matrix {yi j }1≤i, j≤m with entries yi j ∈ H such that
xi = ∑m

j=1 π ◦ q(Tj )yi j for i = 1, . . . , m.

Proof (i) Suppose ker(T ∗) is finite-dimensional. One may check that Dπ◦q(T )∗ = π ◦
q(DT ∗) is an orthogonal projection if so is

∑m
i=1 Ti T ∗

i , and that π ◦q(T ) is a spherical
expansion if so is T . Now the assumption

∑m
i=1 Ti T ∗

i is an orthogonal projection
onto ker(T ∗)⊥ implies that T ∗ is essentially spherical isometry. By Lemma 5.4, T is
essentially spherical unitary. Since ker(T ∗) is finite-dimensional, it now follows from
Corollary 5.6 that T |ker(T ∗)⊥ is essentially spherical unitary.

(ii) Suppose ker(T ∗) is infinite-dimensional. The assumption
∑m

i=1 Ti T ∗
i is an

orthogonal projection implies that I −∑m
i=1 Ti T ∗

i is identity on an infinite dimensional
space, and hence cannot be compact. Thus T ∗ is not essentially spherical isometry.

A decomposition theorem of Richter and Sundberg [35] is crucially used in this
part. The additional hypothesis on the Koszul complex for π ◦q(T ) allows us to apply
[35, Corollary 1.5] implying that π ◦ q(T ) is unitarily equivalent to S ⊕ V, where S
is a non-trivial direct sum of the Drury-Arveson m-shifts and V is a spherical unitary.
Recall that the Taylor spectrum of the Drury-Arveson m-shift is the closed unit ball
in C

m (Remark 3.6). One may now conclude from [20, Lemma 4.4] that

σ(π ◦ q(T )) = σ(S ⊕ V ) = σ(S) = B.

It follows that σe(T ) = σ(π ◦ q(T )) = B. 
�

6 Epilogue

A study of multi-variable analog of a special type of operator is a rewarding enter-
prise and has led to interesting constructions and challenging problems. In particu-
lar, the spherical analog of an isometry turned out to be extremely fascinating. The
subnormality of a spherical isometry, a remarkable result by Athavale [8], has made
it possible to apply the theory of commuting subnormals to spherical isometries. The
class of spherical isometries has been extensively studied in the recent past and a wide
range of examples have been constructed with a view to attempt a possible classifi-
cation scheme (see, for instance, [28]). Motivated by the success story of spherical
isometries, one is naturally led to studying the spherical analogs of the other related
classes of operators. Two classes of operators that include isometries as special exam-
ples are of m-isometries [1–3] and complete hyperexpansions [4,10]. While these
operators have been studied in the multi-variable setting [11,23,24,29], the language
of generating tuples [16] provides a unified approach.
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The context, as described above, provides a framework for posing and scrutinizing
a myriad range of problems. In particular, the intricacies of invertibility in higher
dimensions has a vital bearing which deserves a substantial exploration. While the
invertibility can be easily implemented in one variable, the same turns out to be lot
more subtle in higher dimensions, the present paper being a testimony. While we have
exemplified the failure of some rigidity results with Taylor invertibility, it is interesting
to note that the notion of structural invertibility comes in handy to rescue the situation.
However, we would like to draw the attention of the reader to the disparity in the rigidity
results viz. Theorem 1.1 and Proposition 4.2 (resp. Theorem 1.2 and Proposition 4.4),
in one and multi-variable cases respectively. An invertible 2-hyperexpansive operator
is unitary whereas the structural invertibility of a spherical hyperexpansion yields
spherical isometry.

The examples in this paper as well as those in [28] confirm that a Taylor invertible
spherical isometry need not be a spherical unitary. The situation boils down to a few
natural questions :

Question 6.1 If T = (T1, . . . , Tm) is a spherical isometry, what are conditions on
the Taylor spectrum of T which ensure it to be a spherical unitary?

Question 6.2 If T = (T1, . . . , Tm) is a spherical 2-hyperexpansion such that σ(T ) ⊆
∂B, is T a spherical isometry?

With the aid of variety of examples, we have pointed out that the spectral picture in
the multi-variable case is lot more complicated than that in the one variable, where we
have the spectral dichotomy as stated in Theorems 1.1 and 1.2. In the multi-variable
set-up, we observe that if T is a spherical 2-hyperexpansive 2-tuple (resp. spherical
p-isometry) such that T ∗ is a spherical expansion, then

σ(T ) = B or σ(T ) ⊆ ∂B,

where B denotes the open unit ball in C
2. This can be seen as follows:

By Proposition 3.4(i), σap(T ) ⊆ ∂B. Suppose now that T ∗ is a spherical expansive
2-tuple. Since

2∑

i=1

‖T ∗
i x‖2 ≥ 1

for unit vector x, it is easy to see that the approximate-point spectrum σap(T ∗) of
T ∗ is contained in the complement of the open unit B in C

2. Moreover, σ(T ) ⊆ B

(Proposition 3.4(i)). It is known that for 2-tuples, the boundary of the Taylor spectrum
σ(T ) is contained in the union of σap(T ) and the complex conjugate of σap(T ∗) [33].
It follows that ∂σ(T ) ⊆ ∂B. The desired spectral dichotomy is now immediate.

The observation in the preceding paragraph coupled with the spectral picture in one
variable case naturally leads to the following question :

Question 6.3 If T be a spherical 2-hyperexpansive 2-tuple such that T ∗ is a spherical
expansion, then is it true that σ(T ) ⊆ ∂B?
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Let T be a spherical 2-hyperexpansive m-variable weighted shift such that its spher-
ical Cauchy dual T s is commuting. Then, by Lemma 3.1, the shift Tβ : {βkε1}k∈N

associated with T is a 2-hyperexpansion, where

βn =
(

m∑

i=1

(
w(i)

n

)2
) 1

2

(n ∈ N
m).

It is well-known that the weight-sequence of a 2-hyperexpansion converges to 1 [30,
Proposition]. This observation along with the first half of Lemma 3.1 allows us to
conclude that T is essentially spherical isometry.

The general case, where T s is not necessarily commuting, remains unanswered.

Acknowledgments Authors wish to place on record their sincere thanks to the referee for pointing out a
couple of careless assesrtions in the original manuscript and also for a number of valuable suggestions for
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