
Intermetallic Compounds

An intermetallic (also called an intermetallic compound, intermetallic alloy, ordered intermetallic alloy, and a long-range-ordered alloy) is a type of metallic alloy that forms an ordered solid-state compound between two or more metallic elements. Intermetallics are generally hard and brittle, with good high-temperature mechanical properties. Ref: Wikipedia

The prices on the products are available upon request and depend on various factors such as cost of the production, quality, dimensions, etc.

CRYST™MAT request: <u>nzhigadlo@gmail.com</u>

YbSi InPd

Optical image of YbSi sample

YbSi belongs to the orthorhombic CrB-type structure with a space group *Cmcm*.

YbSi is the heavy-electron antiferromagnet compound. It shows a second-order magnetic ordering transition of the Yb moments below 1.6 K.

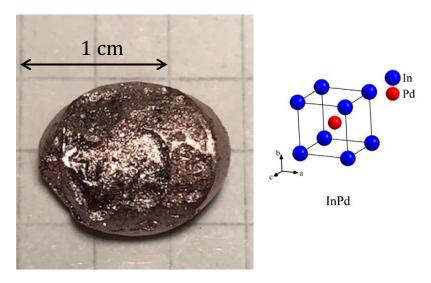
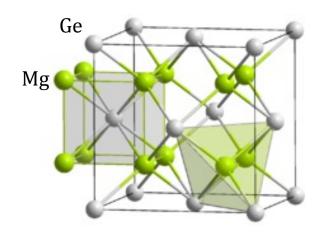


Image of InPd melted sample


InPd crystallizes in a primitive cubic crystal structure of the CsCl (B2) type with a space group Pm-3m (No 221).

InPd is a predominant hole-type conductor. Ref.: Intermetallics 55 (2014) 56-65

Mg₂Ge

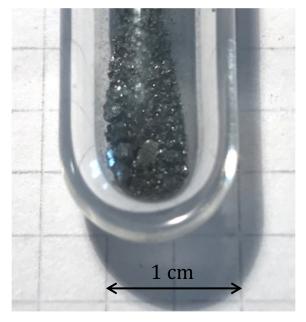
Optical image of Mg₂Ge crystals

Mg₂Ge crystallizes in the cubic structure with a space group *Fm*-3*m*

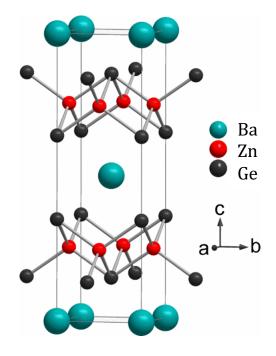
 Mg_2Ge belongs to the class of Zintl phases with a relatively large electronegativity difference of elements. In the case of Mg_2Ge , four valence electrons are transferred from Mg to Ge. This leads to 4+4=8 valence electrons at the Ge atom. Ref.: J. Alloy Comp. 235 (1996) 250.

PtAuSb₄ PtPd

Optical image of PtAuSb₄ sample

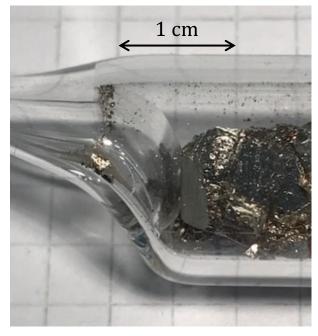


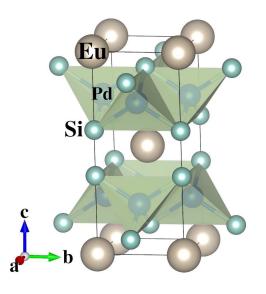
Optical image of PtPd alloy


By employing first-principles calculations it was predicted the existence of type-II Weyl phonons in ZnSe, a well-known II-VI semiconductor.

Ref: Phys. Rev. B 103, 094306 (2021)

BaZn₂Ge₂

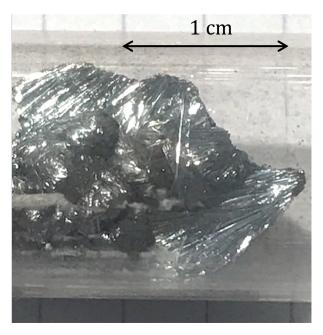

Optical image of BaZn₂Ge₂ sample


BaZn₂Ge₂ crystallizes in the ThCr₂Si₂ structure (tetragonal, I4/mmm; a = 5.53 Å, c = 10.55 Å, Z = 2).

Ref.: Chem. Mater. 9 (1997) 1463-1466

EuPd₂Si₂

Single-crystalline ingot of EuPd₂Si₂



EuPd₂Si₂ crystallizes in a tetragonal body-centered ThCr₂Si₂-type structure with space group *I*4/*mmm* (No. 139). It consists of layers PdSi₄ tetrahedra intercalated between Eu planes.

 $EuPd_2Si_2$ is the mixed-valence compound that exhibits a valence transition from Eu^{2+} to Eu^{3+} around 160 K.

PdIn₂Se₄

$Ce_4(La_{0.76}Y_{0.24})_4B$

Single-crystalline ingot of PdIn₂Se₄

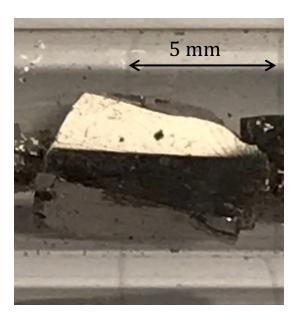
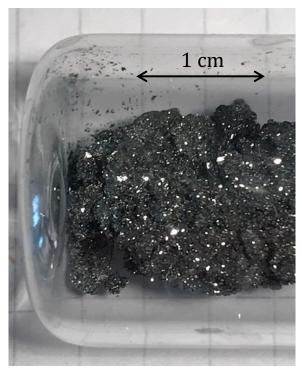
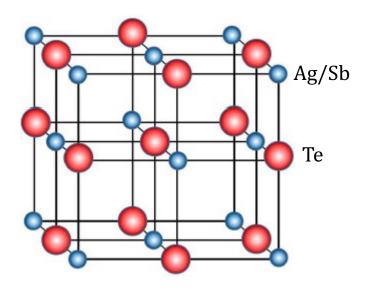
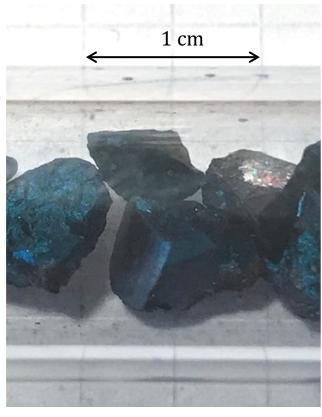



Image of $Ce_4(La_{0.76}Y_{0.24})_4B$ sample

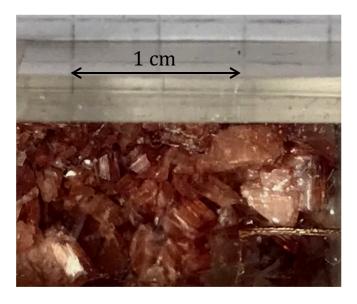

NdAsSe

AgSbTe₂

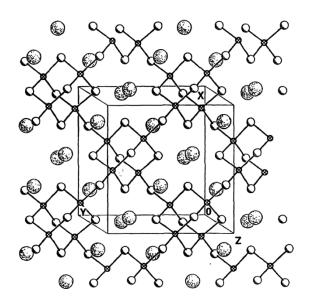
Optical image of NdAsSe sample


NdAsSe crystallizes in the monoclinic CeAsS type structure.

AgSbTe₂ crystallizes in a NaCl-type structure (cubic, Fm-3m, 225), where Ag and Sb randomly occupying the Na site whereas Te is located at the Ce position.


AgSbTe $_2$ is a promising thermoelectric material. The band gap is ~ 0.35 eV at room temperature.

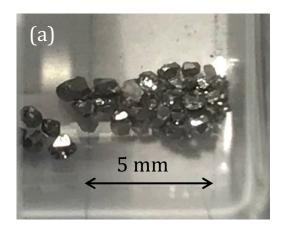
Ce₂SeTe

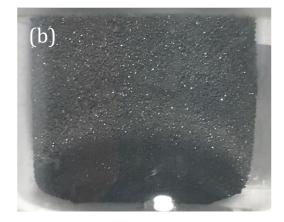


Optical image of Ce₂SeTe samples

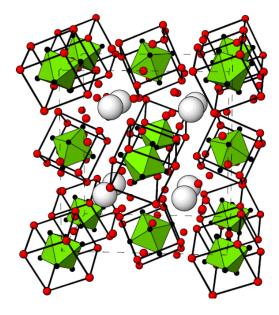
KInS₂

Optical image of KInS₂ samples


KInS₂ crystallizes in the monoclinic space group C2/c. The bonding is highly covalent and exhibits both 2D and 3D features.


Limited information on the physical properties of KInS₂ is available.

It has a band-gap of 3.0 eV.


Ref.: J. Solid State Chem. 92, 2, 520-530 (1991)

Re₂Te₅

Images of Re₂Te₅ samples: (a) crystalline, (b) powder.

Re₂Te₅ crystallizes in the orthorhombic structure with space group *Pbca* (No 61). The Re cluster surrounded by Te atoms. The large spheres represent the atoms that can possibly be inserted in these voids.

Ref.: Proc. XVII Int. Conf. Thermoelec. Japan, May 24-29 (1998) 298

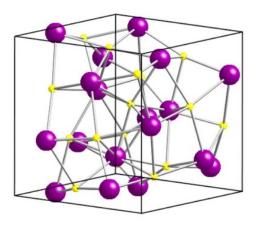
 Re_2Te_5 is a semiconducting compound with an energy gap of ~0.8 eV.

Eu₃Sb₂

Optical image of Eu₃Sb₂ sample

Eu_3P_2

Optical image of Eu₃P₂ sample


Eu₃P₂ is ferromagnetic semiconductor with Curie temperature of 25 K.

¹⁵¹Eu Mössbauer spectra of Eu₃P₂ reveal that the compound contains both Eu²⁺ and Eu³⁺ ions. Above 150 K thermally activated electron hopping between these ions is observed. Ref.: J. Phys. Chem. Solids 55, 2 (1994) 219-227

Nd_3S_4

Optical image of Nd₃S₄ sample

 Nd_3S_4 adopts the cubic symmetry with space group I-43d (No. 220)

Among the many Nd-S compounds only Nd_3S_4 order ferromagnetically with $T_c = 47$ K.