PtO

O²⁻
Pt²⁺

PtO crystallizes in tetragonal symmetry with P4/mmc space group

Optical image of PtO sample

Oxygen interacts with Pt surfaces in catalyst devices, which play a crucial role in the formation layers, which can affect the reactivity of Pt-base catalysts. The experimental data for PtO is very limited and contradicted. Doubts remain even for the bulk PtO structures. Ref.: Phys. Rev. B 84, 100101(R) (2011)

PdO

Optical image of PdO sample

PdO crystallizes in tetragonal space group (P42/mmc) a=3.044, c=5.328 Å

PdO is often obtained as a poorly defined material that is generated for applications as a catalyst. Palladium oxide is prepared by heating palladium sponge metal in oxygen at 350 °C. 2 Pd + $O_2 \rightarrow 2$ PdO .The oxide is obtained as a black powder. Ref.: Wikipedia

EuO

Optical image of EuO sample

EuO crystallizes in a NaCl structure

EuO: semiconductor and ferromagnet for spintronics. Ref.: New J Phys 12 (2010) 113041

RuO₂

SEM image of a single crystal RuO₂

For decades, it has been considered as a Pauli paramagnet. Recent neutron study on a bulk crystal of RuO_2 revealed the presence of itinerant, above-room-temperature antiferromagnetism ($T_{Neel} > 300$ K). Useful for potential applications in antiferromagnetic spintronic devices. Ref.: Phys. Rev. Lett. 122, 017202 (2019)

LaCoO₃

Picture of LaCoO₃ crystal The size is about 6 mm

LaCoO $_3$ crystallizes with trigonal crystal structure of rhombohedral symmetry, space group R3c (No. 167). The La cation is surrounded by 12 oxygen atoms. The La, Co and O atoms are depicted as green, cyan and red spheres respectively.

Phys. Stat. Sol. A 216, 6 (2019) 1800736

LaCoO₃ shows a variety of interesting properties that are desirable for environmentally friendly energy solutions, fuel cell technologies, novel diesel engines, and oxyfuel power plants. However, the true spin state of the Co³⁺ ion is an important but still unresolved issue that underlies these applications.

Ref.: PRL 125, 177202 (2020); PRB 100, 054306 (2019)

BaTiO₃

Ti

Crystal structure of BaTiO₃, with emphasis on the coordination polyhedron of oxygen.

Ref.: Wikimedia

Image of small BaTiO₃ crystals

BaTiO₃ is a ferroelectric material that exhibits the photorefractive effect and piezoelectric properties. It is used in capacitors, electromechanical transducers and nonlinear optics. Ref: Wikipedia

Eu₄Bi₂O

Optical image of Eu₄Bi₂O sample.

 Eu_4Bi_2O belongs to the A_4X_2O family of anti-Ruddlesden-Popper materials showing ferroelectric and antiferroelectric bahaviours.

Ref.: PNAS 118 (2021)

 Eu_4Bi_2O is $(La,Ba)CuO_4$ structured and crystallizes in the tetragonal I4/mmm space group.

Ref.: Zeitschrift für Kristallographie 216, 16 (1998).

CaSiO₃

Optical image of Wollastonite – calcium silicate mineral CaSiO₃

The unit cell of triclinic $CaSiO_3$. This formula may also be written as $Ca(Si_3O_9)_{0.33}$ or as $Ca_3(Si_3O_9)$.

Canadian Wollastonite is a little-known a relatively rarely-occuring mineral with a pearly luster on cleavage surfaces and a granular texture. Ref.: Wikipedia.org

LaOCl

Well-developed LaOCl microplates ($\sim 40 \times 40 \times 10 \ \mu m^3$) were grown under high pressure. Space group *P*4/*nmm*, tetragonal $a = b = 4.12 \ \text{Å}$; $c = 6.879 \ \text{Å}$.

Crystal morphology of LaOCl crystal

Crystal structure of LaOCl

LaOCl is an inorganic material with a wide scope of applications ranging from catalysis to luminescent materials, ion conductors, and gas sensors.

BaCuO₂

An illustrative image of powdered sample $BaCuO_2$

 $BaCuO_2 = CuO + BaO$

Sr₂CuO₃

An illustrative image of powdered sample Sr_2CuO_3

 $Sr_2CuO_3 = CuO + 2SrCO_3$, synthesis at 950 °C for 48 h with regrinding

SrCuO₂

An illustrative image of powdered sample SrCuO₂

 $SrCuO_2 = CuO + SrO$ synthesis at 1000 °C for 12 h

Crystal structure of $SrCuO_2$

Ca₂CuO₃

Powder diffraction pattern of Ca₂CuO₃ sample

 Ca_2CuO_3 = CuO + 2CaCO₃, synthesis at 1000 °C for 20 h with regrinding

Ca₂CuO₂Cl₂

Powder diffraction pattern of Ca₂CuO₂Cl₂ sample

 $\text{Ca}_2\text{CuO}_2\text{Cl}_2 = 0.5\text{Ca}_2\text{CuO}_3 + 0.5\text{CuO} + \text{CaCl}_2$, synthesis at 750 °C for 72 h in Ar flow atmosphere. Lattice parameters: a = 3.8687 Å; c = 15.0485 Å

 $Ca_3Cu_2O_4Cl_2 = Ca_2CuO_3 + CuO + CaCl_2$, synthesis at 800 °C for several days in oxygen gas flow atmosphere.

$HgBa_2CuO_{4+x}$

An illustrative image of powdered sample Hg-1201

Crystal structure of Hg-1201

Ba₃NiSb₂O₉

Ba₃NiSb₂O₉ is the spin liquid candidate material

Magnetic moment as a function of temperature showing antiferromagnetic ordering at $T_N = 13.5 \text{ K}$ of Ba₃NiSb₂O₉ sample.

 $Ba_3NiSb_2O_9$ crystallizes in space group $P6_3/mmc$, and consist of corner-shared NiO_6 octahedra and face-sharing Sb_2O_9 bioctahedra. Dotted lines denote the chemical unit cell.

Polycrystalline Ba₃NiSb₂O₉ sample synthesized by nigh pressure method