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experimental efforts over the past years, the interplay between 
superconductivity and magnetism in the LnFeAsO family 
remains an important open issue, which requires further 
exploration.

When studying the SmFeAsO0.8F0.2 superconductor by 
measuring the standard dc magnetic susceptibility using both 
zero-filed-cooling (ZFC) and field-cooling (FC) protocols, we 
observed a significant jump in magnetization at ~4.3 K. Such a 
jump was interpreted as a result of the antiferromagnetic ordering 
of Sm3+ ions in this system,16 which mimics electron-doped 
high-Tc cuprate Sm2–xCexCuO4–δ.17 In our opinion, the situation 
is somewhat more complicated if we take into account that the 
appearance of the magnetization jump depends on the cooling 
history of the sample. The present data suggest a spin-glass-like 
behavior of SmFeAsO0.8F0.2 in the low-temperature region.

A polycrystalline sample with nominal composition 
SmFeAsO0.8F0.2 was prepared by heating a stoichiometric 
mixture of high-purity SmAs, FeAs, Fe2O3, Fe and SmF3 
powders in a boron nitride crucible at a temperature of 1350 °C 
and a pressure of 3 GPa for 4.5 h (for details, see Online 
Supplementary Materials and previously published works18–20). 
X-ray measurements revealed a high homogeneity and single-phase 
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Figure 1 Magnetic structures adopted by the Fe and Sm sublattices in 
SmFeAsO below 5 K (two unit cells are shown). 
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crystalline nature of the sample, as well as the absence of any 
significant amounts of impurities. The stoichiometry of the 
resulting sample was revealed by energy-dispersive X-ray 
spectroscopy analysis and further confirmed by X-ray structure 
refinement (for details, see Online Supplementary Materials). 
The temperature dependence of the magnetic susceptibility of 
the powdered polycrystalline SmFeAsO0.8F0.2 sample was 
measured in an external magnetic field of 10 Oe using both ZFC 
and FC protocols (for details, see Online Supplementary 
Materials). To eliminate the possible influence of non-
uniformities in the device magnet on the measurement results, 
especially at very low fields, efforts were made to minimize the 
remnant field.

Figure 2(a) shows the characteristic change in magnetization 
as a function of temperature. The sample was cooled in a zero 
field from the temperature region of the paramagnetic state to a 
temperature of 1.8 K. After reaching the desired temperature and 
waiting for 1 h, the evolution of magnetization was measured 
under a tiny applied magnetic field of 10 Oe. The measurement 
revealed the bulk nature of superconductivity with a critical 
temperature Tc ≃ 50 K. The reduced low-temperature diamagnetic 
response, equal to ~27% of the ideal superconductivity response, 
is due to the relatively small grain size of the material under 
study, comparable to its penetration depth. The low-temperature 
part of the ZFC curve is shown in Figure 2(b), where a small but 
distinct jump in magnetization is observed at ∼4.3 K (curve 1).

In the published data, this transition is usually assigned to the 
AFM ordering of the Sm3+ ions in this system.16,21 However, the 
present data suggest rather a spin-glass-like behavior, since the 
appearance of the jump depends on the cooling history of the 
sample. It turned out that the magnetization jump can be removed 
by heating the SmFeAsO0.8F0.2 sample above the jump 
temperature and cooling it again. This is illustrated in Figure 
2(b), which shows the results of measurements carried out in a 

magnetic field of 10 Oe upon heating after zero-field cooling 
(curve 1), then upon cooling in a field (curve 2) and further upon 
reheating in a field (curve 3). This behavior suggests a large 
degree of disorder in the Sm3+ magnetic moments and confirms 
the coexistence of spin-glass-like ordering and superconductivity 
in SmFeAsO0.8F0.2. At high temperatures, the Sm subsystem is in 
the paramagnetic phase and all spins fluctuate. In our case, the 
ZFC curve [Figure 2(b), curve 1] indicates a nonequilibrium state 
in the frozen phase, since the field was applied at a low temperature. 
When the sample is cooled to low temperatures in the absence of 
an external field, many competing metastable states appear, 
separated by high-energy barriers, and the system can be tracked 
in any of them. By contrast, if the material is cooled in a non-zero 
external field, i.e., in the FC mode [Figure 2(b), curve 2], the 
magnetization can be considered as equilibrium in the first 
approximation, and the Sm3+ spins align with the magnetic field, 
which leads to the antiferromagnetic order.

In our case, the spin-glass-like feature is rather weak, and its 
possible origin can be ascribed to (i) random magnetic exchange 
interactions between inhomogeneously distributed Sm3+ spins, 
(ii) magnetic exchange coupling between Fe and Sm spins, 
which leads to frustration among the Sm spins, or to both. The 
latter case was actually observed in parent single crystalline 
SmFeAsO.11 An X-ray resonant magnetic scattering experiment 
showed that due to the interconnection between Fe and Sm, the 
induced moments of Sm or the coupled moments of Fe and Sm 
appear at a temperature much higher than the magnetic ordering 
temperature of Sm, TSm ≃ 4.3 K. A similar interplay between two 
magnetic sublattices was also observed in the NdFeAsO 
system.22 Such coupling, however, can be ruled out for 
SmFeAsO0.8F0.2, since F doping suppresses AFM ordering, and 
yet, below T £ 12 K we can see that the ZFC and FC curves 
diverge [Figure 2(b)]. Thus, we can hypothesize that, in addition 
to the randomly distributed spins of Sm, the coupled moments of 
Fe and Sm can also contribute to the spin-glass-like behavior of 
SmFeAsO0.8F0.2.

It is interesting to note that the magnetic structure of the Sm 
subsystem in SmFeAsO and SmFeAs(O,F) is essentially the 
same as that adopted by the Sm moments in Sm2CuO4,17 and that 
all compounds exhibit an unusual insensitivity of TSm to an 
externally applied magnetic field.21,23 It is still unclear why and 
how the Sm ordering coexists with superconductivity in 
SmFeAsO0.8F0.2 and what role it plays in setting the high 
superconducting transition temperatures observed in this series.

In summary, the observed dependence of magnetization at 
low temperature on history provides evidence for the existence 
of a spin-glass-like state in superconducting SmFeAsO0.8F0.2. 
This system exhibits spin-glass-like features when the sample is 
cooled under zero-field conditions. The origin of this behavior is 
probably due to the inhomogeneous distribution of Sm3+ spins in 
the Sm sublattice, which is accompanied by weak interactions 
between the Fe and Sm spins in the Fe and Sm sublattices. 
Further studies are needed to identify the precise magnetic 
structure and understand the complex interplay between the Sm 
and Fe sublattices. Determining its nature is an important attempt 
to understand the magnetism and superconductivity of the 
LnFeAsO family.
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Figure 2 Temperature dependence of the magnetization of SmFeAsO0.8F0.2 
recorded using the standard ZFC and FC protocols. (a) The sample was first 
cooled in a zero field to 1.8 K, and measurements were carried out while 
heating it after applying an external field of 10 Oe. (b) Measurements were 
performed in a magnetic field of 10 Oe (1) upon heating after ZFC, (2) then 
upon cooling in the field and (3) further upon reheating in the field. A small 
but distinct jump in magnetization occurs at ~4.3 K. The onset of 
irreversibility occurs at ~12 K, where the ZFC and FC curves diverge.
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