
Operated by the Association of Universities for Research in Astronomy, Inc., for the

National Aeronautics and Space Administration

Technical Instrument Report STIS 2014-XX

Characterization of the STIS NUV

MAMA Vignetting by Optical Element

Kenneth Hart1, K. Azalee Bostroem1

1Space Telescope Science Institute, Baltimore, MD

18 June 2014

ABSTRACT

This document describes the process used to generate a new bad pixel table for the

STIS NUV MAMA that includes the vignetted corners. This bad pixel table differs from

previous tables as it defines bad pixels by optical element in the new OPT_ELEM

column.

Contents

• Introduction (page 2)

• Observations (page 2)

• Pipeline Structure (page 3)

• Deriving the Corner Locations (page 5)

• Database File (page 9)

• Table Creation Programs (page 10)

• Support & Test Programs (page 12)

SPACE
TELESCOPE
SCIENCE
INSTITUTE

Operated for NASA by AURA

Technical Instrument Report STIS 2014-XX Page 2

• Wavelength Dependence Analysis (page 15)

• Future Work (page 15)

• References (page 15)

• Appendix A: Mean vs Median (page 16)

• Appendix B: Alphabetical List of Modules and Functions (page 17)

• Appendix C: E230H Q4 File Names (page 18)

• Appendix D: MIRNUV File Names (page 20)

1. Introduction
The Space Telescope Imaging Spectrograph (STIS) is one of the two spectrographs on-

board the Hubble Space Telescope (HST). STIS was installed on HST in 1997 and

recorded data until an electronics failure in 2004. It was repaired during Servicing

Mission 4 in May 2009. STIS has three detectors which cover a wide range of visible

and ultra-violet wavelengths. One of these detectors, the near-ultraviolet multi-anode

microchannel array (NUV MAMA) detector provides imaging and spectroscopic

observations between 1600 and 3100 Å.

Corners of NUV observations are vignetted by an obstruction in the light path. The

severity of the vignetting is dependent on the optical element used in the observation.

Prior to this analysis, the vignetting was marked in the data quality array (extension 3)

of the NUV pixel to pixel flat field which does not depened on optical element. This

leads to incorrect data quality flags for every optical element except that used to make

the flat field (G230M).

To better mark the bad pixels in the vignetted corners, a new optical element column

(OPT_ELEM) has been added to the bad pixel table. This allows for bad pixels to be

marked differently for each optical element. A pipeline program was written to find the

corners for each optical element and add them to the original bad pixel table1. This bad

pixel table correctly marks the pixels in the vignetted corners of each optical element

with the data quality flag 64.

The following describes the programs used to find the corners, write the corner

information to a database, and use that database to create a new bad pixel table. Also

included is an explanation of the supporting programs, the analysis of central

wavelength dependence, and future work.

1 Throughout the entire document, the bad pixel table used by CALSTIS prior to this analysis (found at

/grp/hst/cdbs/oref/hcm14407o_bpx.fits) is refered to as the original bad pixel table.

Technical Instrument Report STIS 2014-XX Page 3

2. Observations
There are 3 types of NUV MAMA observations which illuminate the entire detector

and can therefore be used to map the vignetted regions. The echelle gratings fill the

detector with multiple spectral orders, long-slit first order grating observations of a

source which fills the slit also span the detector, and some imaging observations with

the MIRNUV optical element illuminate the detector. Figure 1 shows an example of

the detector illuminated with an echelle grating (left) and a first order grating (right).

Figure 1 A comparison of the images produced by the different NUV MAMA

gratings. The image on the left is from the E230M echelle grating and the image on the

right is from the G230L first order grating. The vignetted regions are highlighted in

red.

3. Pipeline Structure

The pipeline.py script is the main program that generates the NUV MAMA bad pixel

table in two major steps. First data is analyzed and a fit to the vignetted region for each

observation is recorded in a text file referred to as the database file. Then the database

file is used to create a new bad pixel table.

3.1 Creating the Database

Information in the database file is found using the process_archive function in the

pipeline.py module. Images from the Mikulski Archive for Space Telescopes (MAST)

(archive.stsci.edu) are downloaded into an archive folder. From these files,

process_archive retrieves header information, determines the optical element, and finds

the best fit equation for the vignetting of each image. It then creates a block of data

which is appended to the end of the database file using addtofile. Once this process is

complete, the file is moved from the archive folder to the processed folder so that

previously processed images are not reprocessed. The percentage of files processed is

also displayed and the total processing time printed at the end. See Figure 2 for the

flow chart of the process_archive function.

Technical Instrument Report STIS 2014-XX Page 4

Figure 2 Flow chart for the process_archive function in pipeline.py. The file’s header

information is used to determine which program will be used to find the corners. The

equations that fit the edge of the corners, along with relevant header information, are

saved to the database file.

3.2 Creating the NUV MAMA Bad Pixel Table

The generate_tables function sorts the information in the database file by optical

element and creates a bad pixel table for each optical element using the opt_elem_bpx

function found in the table_creation.py module (see Section 6.4). The corner regions

for each optical element are appended to the original bad pixel table using the

NUV_MAMA_bpx function (see Section 6.5). Figure 3 shows how the combined bad

pixel table is created from the database file by the generate_tables function.

Technical Instrument Report STIS 2014-XX Page 5

Figure 3 Flow chart for the generate_tables function in the pipeline.py module. The

function first creates the optical element bad pixel tables using the equations found in

the database file and the values in the original bad pixel table. The final NUV MAMA

bad pixel table is created by combining the optical element bad pixel tables and the

original NUV MAMA bad pixel table.

4. Deriving the Corner Locations
The vignetting affects only the some corners of the NUV. Which corners and the

degress of vignetting is dependent on the grating used. Each vignetted region is defined

by a diagonal line forming a right triangle with the corner of the image.

4.1 Echelle Modes

The echelles module, echelle_points.py, contains two functions that are used to

determine the vignetted pixels in the corners of data taken using the E230H and

E230M gratings.

The first function, vertical_points, determines the vertical location of the spectral

orders and returns arrays of their lower and upper y pixel bounds (each order is about

10 pixels thick). The corner lies in the outermost 150 rows x 150 columns. The location

of the orders is found by comparing the mean image count rate to the median count rate

of each row in a box defined near each corner outside of the vignetted region. The

boxes are defined in the first and last 200 rows of an image and from columns 150 –

200 on the left and columns 1848-1898 on the right. A 200 row by 1 column mask is

created where each row in the mask is marked as True if the median value of that row

is above the mean of the entire image and False otherwise. For an explanation of why

the image mean is used instead of median, see Appendix A.

Technical Instrument Report STIS 2014-XX Page 6

The function then looks through the mask two rows at a time, ignoring the first and last

10 rows of the image to exclude edge effects. If the first value is false (value is below

the mean) and the second is true (value is above the mean), then a 1 is inserted in the

ith position of an the order location array, a 200 element 1D array initialized with

zeros, where i is the position of the second value. This marks the beginning of an order.

If the opposite occurs, i.e. the value drops from above the mean to below it and the

values aren’t oscillating between true and false, then a 2 is placed to mark the end of

the order. If the values are oscillating (a true occurs in the next 3 pixels) then nothing

happens and the value in the zero array remains zero. This ensures that if there are

changes occuring within the order, they are ignored

Finally, vertical_points checks to make sure there are the same number of order

beginnings as order endings so that orders that run off the edge of the detector are

excluded. An image is considered too faint to be used if there are less than two orders

found. In this case, all values in the order location array are reset to 0 so that the rest of

the program runs knowing that there is no visible vignetting in this corner. If there are

more order beginnings than order endings, then the last beginning is eliminated, and if

there are more order endings than order beginnings, the first ending is eliminated. The

program also checks that the endpoints of an order are within 15 pixels of each other

and eliminates points appropriately so that an order is not defined to be greater than 15

pixels wide.

The next function, order_points, creates a line one pixel wide which represents the

center of each order. This is done by finding the midpoint between the beginning and

ending pixel of each order for each column. These center lines are considered to be the

line on which the orders lie on. To find where the vignetting begins, the function

order_points scans each order in the dispersion (x) direction and determines the

outermost location on that line where the value is greater than the mean value of the

image. The x and y location of that outer pixel is recorded. If no value is discovered,

then a zero value is recorded for the x location. The function then eliminates values that

are within 15 pixels of the edge of the image, again to aviod confusing the rapid loss in

sensitivity with vignetting for the non-vignetted orders.

Once order_points finds the x and y positions of the ends of the orders it converts these

points to low resolution pixels by dividing by two; these values are stored in lists which

are returned to the module findline.py. This module linearly fits the x and y vignetting

location values for each corner, marking the edge of the vignetted area. The slope and

intercept of this fit for each quadrant2 are stored in the database file.

In the E230H images, very faint vignetting occurs in the bottom right corner. This

corner is only visible in high signal to noise data or in the rare occasion where an order

falls very close to the bottom edge of the detector. Since it is not visible in every

spectrogram, this corner was marked manually using the manual_update.py module

(see Section 7.4). Visible vignetting is marked by hand from images taken at several

2 When the slope and intercept are found for the corners, the origin of the image is at index [0,0] in the

bottom left corner for all quadrants. When referring to the corners in each quadrant, the upper right

corner is called quadrant 1, upper left is quadrant 2, etc. All numbers are defined relative to the origin,

the quadrant terminology is used to more clearly indicate corner locations to the reader.

Technical Instrument Report STIS 2014-XX Page 7

different central wavelengths. Table C1 lists the dataset used to generate the vignetted

edge of the E230H bottom right corner.

4.2 First Order Modes

The module first_order_points.py contains functions for finding the points along the

edge of the vignetted corners for the G230M and G230L gratings. The first function,

g_points, takes the data and the corner quadrant and bins the data from high to low

resolution pixels using imshrink2 (see Section 7.5). It then calls quadrant_points to

find the x and y coordinates of the points that lie on the edge of the vignetting.

The function quadrant_points finds the average count rate of the unvignetted region

near each quadrant by finding the median value of each column in regions defined by

rows 150-200 and rows 824 – 874 and columns 1-200 and 824 – 1024. For each

column in each corner the edge of the vignetting is identified as the first pixel where

the pixel count rate is greater than the average count rate of the unvignetted region

found previously. To avoid columns with low contrast between the data and the

vignetted region, columns where the average count rate of the unvignetted region is

less than 5 for the bottom corners and 3 for the top corners are not used. Additionally,

columns for which the median count rate of the last 50 pixels is less than 1 are not used

as there is not enough contrast.

g_points checks that there are more than 5 points returned by quadrant_points, then

passes the x and y positions as two lists to the line function in the module findline.py3.

This module takes the x and y positions and fits a line, recording the slope and

intercept in the database file.

There are some images with a horizontal shadow from the occulting bar across the

image (see Figure 4). In these images, some points inside the stripe are spuriously

marked as vignetted, biasing the line towards the center of the image.

To eliminate these values, quadrant_points calls the function find_stripe. The

find_stripe function looks for a horizontal stripe in the image that intersects the

vignetted corners. The function takes the data and the quadrant number of the corner as

input and returns the upper and lower bounds of the stripe. These values are determined

by defining a region 200 rows long by 50 columns wide at either the top or bottom of

the image, 150 pixels from the vertical edges. The mean across each row is taken, so

the region becomes a 1D array with 200 elements. This array is binned down to one

fourth of its original length to smooth small scale brightness variations. The greatest

decrease in brightness indicates the bottom of the stripe and the greatest increase in

brightness indicates the top of the stripe. The stripe edge values are scaled by 4 to

preserve the original position of the stripe, then the bar is widened by 5 pixels to ensure

all of the pixels within the stripe are eliminated. If there is no stripe or the contrast

between the stripe and the illiminated part of the detector is too low (no pixels > 0.125

3 The module findline.py can be used to call to any user supplied function that returns a slope and

intercept and add the necessary information to the database file. This step was put into place so that

another user of this pipeline could write their own program for finding corners and use the rest of the

pipeline to make the bad pixel table.

Technical Instrument Report STIS 2014-XX Page 8

in the whole image), then zero (in the no stripe case) and -1 (in the low contrast case) is

returned for the bounds of the stripe.

Figure 4 Bottom right corner showing a horizontal stripe. This image was taken from

dataset o67w07csq.

The output of find_stripe is used by quadrant_points to eliminate points that have y

values within the limits of the occulting bar shadow. The vertical striping, seen in

Figure 4 near column 1990, can flag data points that are not on the edge of the

vignetted region. These points are eliminated before the final set of parameters for the

line of best fit were output in the following manner. If the R2 value of the regression to

the vignetted region is less than 0.98, the point with the greatest residual value is

eliminated from the set and the regression was recalculated. This process is repeated

until the R2 condition is satisfied.

4.3 Mirror

The MIRNUV optical element displays some vignetting. The vignetted corners of the

MIRNUV setting are marked manually using manual_update.py. See Table D1 for a

list of the datasets used.

Technical Instrument Report STIS 2014-XX Page 9

5. Database File

5.1 Structure

The database file is a text file that contains information gathered about each image. The

first entry in the file is the number of blocks of information contained in the file, which

is equal to the number of images that have been processed. Each block of information

contains two major parts: basic header information from the image and the coefficients

used to define the vignetted region for each quadrant. The header information stored

for each block is the file name, optical element, central wavelength, and exposure time.

For quadrants that do not show vignetting, the coefficients are stored as 0. See Table 1

for an example block of information found in the database file.

Line Information

o42f06vdq_raw.fits file name

G230M optical element

2898 central wavelength (angstroms)

1200 exposure time (seconds)

-0.8571 quadrant 1 slope

1830.9940 quadrant 1 y-intercept

0.9405 quadrant 2 slope

915.1531 quadrant 2 y-intercept

-1.0185 quadrant 3 slope

41.9379 quadrant 3 y-intercept

0 quadrant 4 slope

0 quadrant 4 y-intercept

Table 1 This is an example block of information that is stored to the database file. The

first column contains the example block and the second column explains what that

information represents. This example observation shows vignetting in quadrants 1-3.

5.2 Populating the Database

The module database_management.py contains functions that handle data stored in the

database file. The most important function in this module is addtofile which writes

each data block to the database file. In addition to being used for the initial ingest of

data, this function can also be used to add new images to the database. This is done by

passing addtofile an image name. The header information to be stored in the database

file is extracted from the raw file and the exposure time is checked to ensure that it is

greater than 0. The function then reads the database file and checks that the image has

not been previously analyzed. addtofile then finds the slopes and intercepts for each

quadrant using the line function found in the module findline.py (as described in

Section 4). The slopes and intercepts are combined with the header information to

create a database block. This block is written to the database file and the number of

blocks is increased by one.

Another important function contained in the module database_management.py is

called get_info. This function takes several optional parameters: file name, optical

element, central wavelength, and exposure time to get blocks of information from the

database file. This is useful for creating a bad pixel table for a single optical element,

Technical Instrument Report STIS 2014-XX Page 10

and displaying the corners for a specific subset of data (e.g. central wavelength). It was

used in the analysis of the central wavelength dependence of the vignetting.

The final support function is update_entry in the manual_update.py module. This

function takes a file name and new information about that file as input and updates the

database file with the new information (e.g. update_entry(name, opt_elem, cenwave,

exptime, [m1, m2, m3, m4], [b1, b2, b3, b4])). Update_entry is contained within

manual_update.py because it is used most often when marking the corners by hand.

See Section 4.1 for more details on how manual_update.py was used to mark the

lower right corner of the E230H images, and see Section 7.5 for more details about the

manual_update.py module.

6. Bad Pixel Table Creation Programs
The table programs contained in the table_creation.py module read information from

the database file, convert the corner line equations into arrays of bad pixels, and write

these arrays to a binary FITS table. Bad pixel tables are first generated for each optical

element, then these tables are combined into a single bad pixel table for the entire

detector. While the bad pixels in the original bad pixel table are repeated in each

optical element bad pixel table, they are only listed once in the combined table.

Once the columns are added to the file, the headers are updated with the date the table

was generated, the description of who created the file, and a history of how the file was

created. These keywords need to be updated everytime a bad pixel table is made. A file

called history.txt is also created which provides a summary of how the corners were

found and stored, and how the table was created. The text in this files is used to

populate the history keyword of the primary header of the bad pixel table.

6.1 Deriving the Bad Pixel Table

The function NUV_MAMA_bpx passes the final column arrays for the detector bad

pixel table to build_table (see Section 6.2). Through a series of function calls described

below, NUV_MAMA_bpx gets the bad pixel table data from the original bad pixel table

and creates an optical element (OPT_ELEM) column with the value “ANY”.

The function then loops over each optical element for which a bad pixel table exists

(created by opt_elem_bpx (see Section 6.1.1)) and creates an array for each column.

The arrays are then appended to the corresponding arrays from the original bad pixel

table, including the bad pixels which are in both the original bad pixel table and the

optical element bad pixel table only once.

6.1.1 opt_elem_bpx

The function, opt_elem_bpx, takes an optical element as input and creates a bad pixel

table for it. It calls table_arrays (see Section 6.1.2) to get the bad pixel arrays (pix1,

pix2, length, axis, value, opt_elem) for a given optical element. These arrays are passed

to build_table, which writes a FITS binary table file for the optical element.

Technical Instrument Report STIS 2014-XX Page 11

6.1.2 table_arrays

The table_arrays function takes an optical element as input. It first gets the data in the

original bad pixel table creating an OPT_ELEM column with the entries set to “ANY”.

Next, the function creates bad pixel table column arrays (pix1, pix2, length, axis, value,

opt_elem) for each quadrant using EQs_to_arrays (see Section 6.1.3). These arrays are

specific to the input optical element. Each array from EQs_to_array is appended to the

corresponding array from the original bad pixel table. The output of table_arrays, a list

of the arrays representing the columns of the bad pixel table, is passed to the function

opt_elem_bpx.

6.1.3 EQs_to_arrays

The EQs_to_arrays function selects information from the database file that pertains to

a given optical element and quadrant. This information, a list of slopes and intercepts,

is then used to create a list of locations where the lines intersect the edges of the image.

The innermost intersections are then used to create the final equation for the corner

line. Using the absolute extrema ensures that no bad pixel lies outside vignetted region

marked in the image. These extreme intercepts were visually inspected using the

xandy.py module and corrected if necessary (see Section 7.3).

Next the slope and intercept of a corner are converted into the list of bad pixels that can

be understood by CALSTIS. Each vignetted row in a corner of the detector is

represented by a row in the bad pixel table. The bad pixel table defines a starting x and

y pixel and the horizontal length (axis 1) of the bad pixel region. The following

equations show how x, y, and length are calculated for the ith row in the upper left

corner.

xo = xi =1

yi = y0 + i

len = x0 + floor(i ×Dx)

Where x0 and y0 are the pixel location of the beginning of the lowest row in the corner

and x = 1/m where m is the slope of the of the vignetting line. The length is rounded

down to ensure that if a fraction of a pixel lies on the line, then that entire pixel is

considered bad. This technique is applied to the other corners taking into account

coordinate transformations. There are also some safeguards from errors that might

crash CALSTIS. For example, if there’s a length value that is zero it is changed to 1.

All of the data quality flags in the value column for the vignetted corners are set to 64,

which had previously been an unassigned data quality flag. The bad pixel table arrays

are then returned to the function table_arrays. The order of the arrays output by this

function does not reflect their order in the bad pixel table.

6.2 Writing the Bad Pixel Table

The build_table function is a simple function that uses arrays of bad pixels to creates a

binary FITS table. If a file of the same name exists, it is overwritten. The formatting

parameters were copied from the original bad pixel and the parameters for the

OPT_ELEM column are found in Section 5.4.1 of the PyFITS Handbook (see Table 2

for the column parameters).

Technical Instrument Report STIS 2014-XX Page 12

Column Format Unit Null Disp

PIX1 1I pixel -32767 I4

PIX2 1I pixel -32767 I4

LENGTH 1I pixel -32767 I4

AXIS 1I - -32767 I1

VALUE 1I - -32767 I5

OPT_ELEM 5A - n/a I5

Table 2 Parameters for each column in the bad pixel table.

7. Support & Test Programs

7.1 Display Corner Data

The display_corner_data.py module is used to visualize the information stored in the

database file to determine if the vignetting depends on central wavelength. Information

for a single, user specified, optical element is read from the database file. The script

then creates arrays of the non-zero slopes and intercepts for each quadrant and each

central wavelength for the input optical element. By default, the median slope and

intercept for a given central wavelength and quadrant is found, however, there is a

commented section which, if uncommented, allows the user to see the lines for all

datasets. The batch_plot function takes two or three arrays as input and outputs a plot

of the input data. For example, if the inputs are (ms,bs,cs) where ms is a slope array, bs

is a y-intercept array, and cs is a central wavelength array for a specific optical

element, then the function will plot the lines given by the slopes and intercepts, and

color the lines based on central wavelength. If the inputs are (ms,cs) or (bs, cs) then the

function will plot the relationship between slope and central wavelength or y-intercept

and central wavelength, respectively.

The coloring of the lines on the vignetted image are scaled so that the central

wavelength range spans the color wheel. The function cenwave_to_rgb scales the

central wavelength to be on a scale from 0 to 300 degrees of a 360 degrees color wheel.

See Figure 5 for an illustration of how cenwave_to_rgb interprets central wavelength

as a hue of the color wheel.

Technical Instrument Report STIS 2014-XX Page 13

Figure 5 This color wheel shows how a central wavelength is given a color based on

the spectral range of the STIS NUV MAMA.

Coloring the lines based on the central wavelength allows for an initial qualitative

analysis of central wavelength dependency. The script produces two additional figures

to aid in this analysis. The first figure is a plot for each quadrant of slope vs central

wavelength for every dataset used. In each plot, the medain value for all datasets of a

central wavelength is plotted in black. A similar figure is created that shows the

relationship between y-intercept and central wavelength.

7.2 Display Bad Pixel Table

Another helpful program that supports the creation of an accurate bad pixel table is

display_bpx.py. This program displays graphs of the locations of the vignetted corners

as marked in the original flat field file as well as in the new bad pixel table. This

enables a direct comparison of the previous vignetting model and the model described

in this paper. The data quality flags in the previous flat field are used to generate the

visual of the previous vignetting model. The pixels that were appended to the bad pixel

table are used to generate the visual of the new vignetting model. These models are

superimposed on aggregate images of each kind of grating, primarily to verify that the

new model accurately represents the vignetting pattern for each optical element.

The aggregate images are made by taking 10 images at a time and finding the mean for

each pixel and writing the result to a file. Once this process is done, 10 files are read at

a time, their means calculated, then stored to another file. This process is repeated until

there is only one file left. This mean image smoothes over some of the small

differences in the location of the vignetted edge for each dataset making it easier to see

the vignetting location, especially using the flag colormap in matplotlib.

7.3 X and Y

The xandy.py program allows the user to correct line equations that inaccurately mark

the vignetted corner. If left uncorrected, these incorrect equations can be selected by

EQs_to_arrays as the extreme x and y intercept values to create the final line for each

optical element (see discussion in Section 5.5). To make sure the final values used by

2500Å 2800Å

2200Å

1900Å 1600Å

3100Å

Technical Instrument Report STIS 2014-XX Page 14

EQs_to_arrays are accurate based on the images from which they are taken, the lines

for the extreme x and y intercepts are displayed on top of the images from which they

are taken. The program asks the user to validate the lines, and if they invalid the

program calls the update_entry function in manual_update.py (see Section 7.4) to

update the database file with the correct values. This display is performed for each

corner, and can be done multiple times until all of the lines are validated. It should be

run whenever a bad pixel table is created.

7.4 Manual Update

The manual_update.py script allows the users to change the outliers for a given optical

element, central wavelength, and quadrant. Outliers are defined as corners whose slope

or intercept is outside the interquartile range. These outliers were first seen using the

program display_corner_data.py.

For each corner in an image with an outlier slope or intercept, the user manually

redefines the corner by clicking on the points that define the edge of the vignetting

using the pylab function ginput. 4 A linear regression is performed on the manually

selected points and the database is updated with the new values for slope and intercept

in that quadrant.

7.5 Tools

The tools.py module contains scripts that are used by a number of different programs.

append4 takes in four arrays as input and returns an array that has appended the last

three arrays to the first one.

fits_info takes a fits file name and extension number as input and returns either the

image or header for the extension. The default for this function is the data in extension

one.

imshrink takes in a 2048x2048 hi-res image and shrinks it to 1024x1024 lo-res image.

It does this by taking each row and grouping pixels in sets of two and finding their

median. This creates a 1024x2048 image, and the process is repeated for each column.

This is not the same method as LORSCORR in CALSTIS, however, this function is

only used for display purposes and so will not affect the bad pixel locations.

imshrink2 runs through the same process as imshrink, however it finds the sum instead

of the median. This is the same method as LORSCORR and is used in finding the

vignetting for the first order grating images.

8. Wavelength Dependence Analysis

4 The pylab.ginput function takes an integer, n, number of clicks as input and returns an n by 2 array of

(x,y) coordinates.

Technical Instrument Report STIS 2014-XX Page 15

The data were examined for a dependence on central wavelength as detailed in Section

7.2. While variation in slope and intercept exists within a given central wavelength, no

trend was observed.

9. Future Work

9.1 First Order Curved Corners

In the first-order gratings, many of the corners appeared to be curved so the linear

regression included good data within the marked corner. The function polyfit in the

numpy module could be used to fit these corners with a polynomial. If polyfit is used,

the structure of the database file needs to be changed to include the other coefficients

and the method for generating the tables also needs to be modified.

9.2 Default Monthly Offset Position for Central Wavelength Dependence

It is possible that some of the scatter within a central wavelength may be eliminated in

the echelle data by using only data taken after August 2002 (when the monthly

offsetting was turned off). With reduced scatter, a central wavelength dependence may

be visible.

References
Dressel, L., et al. 2007, “STIS Data Handbook”, Version 5.0, (Baltimore: STScI)

Hack, W. and Greenfield, P. 2010, “The PyFITS Handbook”, (Baltimore: STScI)

Technical Instrument Report STIS 2014-XX Page 16

Appendix A

Mean vs Median

The mean pixel value was used as the brightness threshold for the echelles because

many of the pixels (between the orders) were dark so the median yielded a low value,

often between 0 and 1. Figure 6 shows the distribution of pixel values compared to

frequency for an E230H image.

Figure 6 Graph of frequency of pixel values for a sample E230H image.

From this graph the indicator value should be about 10 where the curve flattens. The

median for this image was a value of 1, while the mean was a value of 4.31. While the

mean is not as good an indicator as 10, it is significantly better than the median and

proved sufficient for this project.

Technical Instrument Report STIS 2014-XX Page 17

 Appendix B

Alphabetical List of Modules and Functions

database_management.py

 add_to_seen_file

 addtofile

 get_info

 readfile

display_bpx.py

 determine_subplot

 display_graphs

 prep_files

 run_calstis

display_corner_data.py

 batchplot

 cenwave_to_rgb

 mbplot

echelle_points.py

 order_points

 vertical_endpoints

findline.py

 line

first_order_points.py

 distance_from_linreg

 g_points

 quadrant_points

manual_update.py

 update_entry

pipeline.py

 generate_tables

 process_archive

table_creation.py

 build_table

 EQs_to_arrays

 NUV_MAMA_bpx

opt_elem_bpx

table_arrays

tools.py

 append4

 fits_info

 imshrink

 imshrink2

xandy.py

Technical Instrument Report STIS 2014-XX Page 18

Appendix C

E230H Q4 File Names
Faint vignetting in corner Q4 of the E230H grating is only detected in some files. Table

C1 lists the file names of the data used to characterize the vignetting in this corner.

Dataset Name Central Wavelength Exposure Time

o45930020 2263 1617
o45931010 2263 1618
o45932010 2263 1618
o45933010 2263 1618
o45934010 2263 1618
o4ao12010 2513 1200
o4ao12020 2762 211
o4ao12030 2762 1079
o4dd05020 2013 2040
o4dd05030 1763 2799
o4dd05040 2263 1200
o4dd17020 2013 2040
o4dd17030 1763 2198
o4dd17050 2263 1200
o4g001020 2013 80
o4g002020_ 2013 80
o4o001040 2513 1296
o4o001050 2762 1296
o4qx01040 1763 2220
o4qx02040 1763 4080
o4qx04040 1763 4020
o4w250010 2063 900
o53p02020 2013 2000
o54302020 1763 1466
o54304020 1763 1506
o54359020 1763 1296
o56l02040 1963 1152
o56l04040 1963 1152
o62l02010 2762 1820
o62l02020 2762 2895

o66p03010 1813 1979

o66p03020 1813 8820

o66p06010 2463 1979

o66p06020 2463 8820

o6bg01030 1913 445

o6e608010 2513 1956

o6fg01010 2013 550

o6lt02020 2013 430

o6lv05010 2013 572

o6lv05020 2013 1080

o6lv05030 2013 1260

o6lv05040 2013 1272

o6lv05050 2013 1200

Technical Instrument Report STIS 2014-XX Page 19

o6lv05060 2013 624

o6lv05080 2013 1410

o6lv05090 2013 1410

o6lv050a0 2013 1388

o8ma81060 2513 3000

o8ma81070 2762 3000

o8ma81090 2563 3200

o8ma91030 2513 2600

o8ma91050 3012 2610

o8ma93030 2513 1600

o8ma93050 3012 1600

Table C1: Table of datasets from which the bottom right (Q4) corner of the E230H

grating were derived manually.

Technical Instrument Report STIS 2014-XX Page 20

Appendix D:

MIRNUV File Names

The files in Table D1 demonstrated clear vignetting and were used to mark the corners

of the MIRNUV vignetting.

Dataset Dataset cont. Dataset cont.

o3zka6bhq

o43n02x2q

o43n02x4q

o43n02x6q

o43n02x8q

o43n02xaq

o43n02xcq

o43n02xeq

o43n02xgq

o43n02xiq

o46h01ccq

o46h01ceq

o46h01cgq

o46h01ciq

o46h01ckq

o46h01cmq

o46h02tbq

o46h02tdq

o46h02tfq

o46h02thq

o46h02tjq

o46h03kbs

o46h03kcq

o46h03keq

o46h03kgq

o46h03kiq

o46h03kkq

o46h04f0q

o46h04f1q

o46h04f3q

o46h04f5q

o49y01tsq

o4ia1sgeq

o4iaa6jfq

o4j946xkq

o4rl01vhq

o4xi01wtq

o4xi01x1q

o4xi01x8q

o4xi02efq

o4xi02enq

o4xi02euq

o4xi02f1q

o53c61keq

o56w01jhq

o5bq16010

o5bq17010

o5bq20010

o5bq49010

o5dc01bxq

o5ec01snq

o5ec01sqq

o5ec01ssq

o5in01ssq

o5in01stq

o5in01svq

o5in01sxq

o5in01szq

o5in01t3q

o5in01t6q

o5in02cgq

o5in02chq

o5in02cjq

o5in02clq

o5in02cnq

o5in02crq

o5in02cuq

o60q03i2q

o60q03i4q

o60q03i6q

o60q03i9q

o60q03iaq

o60q03icq

o60q03ieq

o60q03igq

o60q53y5q

o60q53y6q

o60q53y8q

o60q53yaq

o60q53ydq

o60q53ygq

o60q53yiq

o60q53ykq

o66410mtq

o66420fqq

o66y14vuq

o69g01awq

o69g01axq

o69g01azq

o69g01b3q

o69g01b7q

o69g01baq

o6i101ohq

o69g02gxq

o69g02gyq

o69g02h4q

o6a351ewq

o6bz06woq

o6cr01wbq

o6cr01x3q

o6cr03liq

o6cr03lkq

o6i101o6q

o6i101o7q

o6i101obq

o6i101odq

o6i101okq

o6i102g9q

o6i102geq

o6i102giq

o8h901vfq

o8h901vgq

o8h901vmq

o8h901voq

o8h901vqq

o8h901vuq

o8h901vwq

o8os03jfq

o8os03jiq

o8os03jrq

o8q006fgq

o8q006fjq

o8q006flq

o8q006fqq

o8rt02i5q

o8vw01duq

o8vw01dvq

o8vw01dxq

o8vw01dzq

o8vw01e1q

o8vw01e5q

obav01v9q

obav01vaq

obav01vcq

obav01vkq

obav01vmq

Technical Instrument Report STIS 2014-XX Page 21

Table D1 A list of the datasets used to define the MIRNUV vignetting

