Unit 1: Energy

Equations to Learn		
$kinetic energy = \frac{1}{2} \times mass \times speed^2$	$E_K = \frac{1}{2} m v^2$	
GPE = mass × gravitational field strength × height	$E_P = mgh$	
$power = \frac{work done}{time taken} = \frac{energy transferred}{time taken}$	$P = \frac{W}{t} = \frac{E}{t}$	
$\begin{array}{l} \text{efficiency} = \frac{\text{useful energy output}}{\text{total energy input}} \\ \text{efficiency} = \frac{\text{useful power output}}{\text{total power input}} \end{array}$		
Equations given in the exam		
elastic potential energy = $0.5 \times \text{spring constant x}$ (extension) ²	$E_e = \frac{1}{2}ke^2$	
change in thermal energy = mass × specific heat capacity × temperature change	$\Delta E = mc\Delta\theta$	

Unit 2: Electricity

Equations to Learn		
charge flow = current × time	Q = I t	
potential difference = current × resistance	V = I R	
total resistance = resistance of component 1 + resistance of component 2	$R_T = R_1 + R_2$	
power = current × potential difference	P = IV	
$power = (current)^2 \times resistance$	$P = I^2 R$	
energy transferred = power × time	E = Pt	
energy transferred = charge flow × potential difference	E = QV	

^{*} Higher tier only

Unit 3: Particle Model of Matter

Equations to Learn		
$density = \frac{mass}{volume}$	$ \rho = \frac{m}{V} $	
Equations given in the exam		
change in thermal energy = mass × specific heat capacity × temperature change	$\Delta E = mc\Delta\theta$	
thermal energy for a change in state = mass × specific latent heat	E = mL	
^ for a gas: pressure × volume = constant	pV = constant	

Unit 6: Waves

Equations to Learn	
wave speed = frequency × wavelength	$v = f \lambda$
Equations given in the exam	
time period = $\frac{1}{\text{frequency}}$	$T = \frac{1}{f}$
$^{\text{nagnification}} = \frac{\text{image height}}{\text{object height}}$	$M = \frac{h_{image}}{h_{object}}$

Unit 7: Magnetism and Electromagnetism

Equations given in the exam	
* Force = magnetic flux density × current × length of conductor in magnetic field	F = BIl
* potential difference across primary coil = * potential difference across secondary coil = number of turns in primary coil number of turns in secondary coil	$\frac{V_P}{V_S} = \frac{N_P}{N_S}$
* ^ p.d across primary × current in primary = p.d. across secondary x current in secondary	$V_P I_P = V_S I_S$

Unit 5: Forces

Equations to Learn		
weight = mass × gravitational field strength	W = m g	
work done = force × distance (moved along the line of action of the force)	W = Fs	
force = spring constant × extension	F = ke	
moment of a force = force × distance (perpendicular to the direction of the force)	M = Fd	
$pressure = \frac{force normal to a surface}{area of that surface}$	$p = \frac{F}{A}$	
distance travelled = speed × time	s = vt	
$acceleration = \frac{\text{change in velocity}}{\text{time taken}}$	$a = \frac{\Delta v}{t}$	
= final velocity-initial velocity time taken	$=\frac{v-u}{t}$	
resultant force = mass × acceleration	F = ma	
* momentum = mass × velocity	p = mv	
Equations given in the exam		
* ^ Pressure = height of column × density of liquid × gravitational field strength	$p = h \rho g$	
^ (final velocity) ² – (initial velocity) ² = $2 \times \text{acceleration} \times \text{distance}$	$v^2 - u^2$ $= 2as$	
* ^ Force = $\frac{\text{change in momentum}}{\text{time taken}}$	$F = \frac{m \Delta v}{t}$	

Unit 4: Atomic Structure & Unit 8: Space

There are no equations in these sections of the course

[^] Separate Physics only