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Abstract. Most philosophers take Benacerraf’s (1965) identification argument to suc-

cessfully rebut the reductionist view that numbers are sets. This philosophical consensus

jars with mathematical practice, in which reductionism continues to thrive. In this note,

we develop a new challenge to Benacerraf’s argument by contesting a central premiss

which is almost unanimously accepted in the literature. Namely, we argue that — contra

orthodoxy — there are metaphysically relevant reasons to prefer von Neumann ordinals

over other set-theoretic reductions of arithmetic. In doing so, we provide set-theoretical

facts which, we believe, are crucial for an informed assessment of reductionism.

1. Introduction

In his classic paper, Benacerraf [1965] sought to reject two realist positions regard-

ing arithmetic. The first is object realism about arithmetic, i.e., the view that numbers

are objects. The second is set-theoretic reductionism about arithmetic, i.e., the view that

numbers are sets. While Benacerraf’s argument against object realism is widely taken

to be defective,
1

there is a broad consensus among philosophers that his paper is a suc-

cessful rebuttal of set-theoretic reductionism.
2

Benacerraf [1998] later restated this anti-

reductionist argument as follows:

(1) … indefinitely many accounts satisf[y] all of the conditions [on an account of

number];

(2) … because ‘the number n = the object o’ has the form of a statement of identity,

at most one such account could be correct;

(3) … there [is] no principled way to choose among them, i.e. to decide which sets

the numbers really were;
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(4) … if one of the accounts were the correct one there would be a way to establish

which one it was: ‘the position that this is an unknowable truth is hardly tenable.’

[Benacerraf, 1965, p. 62]

and therefore

(5) … any feature of an account that identifies a number with a set is a superfluous

feature of the account (i.e. not one that is grounded in our concept of number);

consequently

(6) ‘numbers … could not be sets at all.’ [Benacerraf, 1965, p. 62]

[Benacerraf, 1998, pp. 52–53]

In this note, we will attempt to defend set-theoretic reductionism from Benacerraf’s

argument by showing that premise (3) is untenable.
3

That is, we will argue that there

are reasons to prefer one set-theoretic reduction of numbers to another. Prima facie, our

claim seems highly credible, given that all mathematicians who care about these foun-

dational matters (like set theorists and mathematical logicians) unanimously choose one

specific set-theoretic reduction of natural numbers, namely, von Neumann ordinals, over

its competitors.
4

Yet, premiss (3) is one of the few assumptions in the philosophical liter-

ature which is accepted by proponents and opponents of Benacerraf’s claim alike.
5

How

can this glaring discrepancy between mathematicians and philosophers of mathematics

be explained? Do mathematicians have no reasons for this choice? Or, are these reasons

irrelevant to the metaphysical problem under scrutiny? In this paper we argue that — con-

tra orthodoxy — the answer to both questions is negative. Thus, Benacerraf’s argument

is blocked and the reductionist is freed from the multiple-reductions problem.

2. Benacerraf’s Argument Revisited

We start by making Benacerraf’s argument precise. Premise (1) presents us with the

first difficulty. There is no agreement in the literature as to what “all of the conditions on

an account of the natural numbers” precisely amount to. Even Benacerraf himself seems

to have changed his mind and provides different clarifications in his articles of 1965 and

1998 respectively. According to Benacerraf [1965], the conditions on an account of the

natural numbers are exhaustively given as follows:

(I): To give definitions of ‘1’, ‘number’, and ‘successor’, and ‘+’, ‘×’, and so

forth, on the basis of which the laws of arithmetic could be derived;

(II): To explain the “extra-mathematical” uses of numbers, the principal

one being counting - thereby introducing the concept of cardinality

and cardinal number.

More than 30 years later, Benacerraf [1998] reformulates these conditions as follows:

Broadly speaking, having identified the target — arithmetic as the theory

of {0,′ }, or {0,′ ,+,×}, successfully axiomatized by Dedekind, Peano et

al., and its applications — you need only

3
A more common strategy to evade Benacerraf’s argument is to contest premise (4). See, for example, Paseau

[2009] and Mount [2019]. For a rejection of premise (2) see White [1974].

4
Although we appeal here to this fact merely for motivational purposes, we strongly believe that in mathe-

matics such “sociological” facts are always based on mathematical insights and good mathematical reasons. We

shall return to this issue in Section 3.

5
Steinhart [2002] is a notable exception. He attempts to provide a “mathematical demonstration” (p. 343) that

numbers are von Neumann ordinals. We believe that Steinhart’s arguments are unconvincing. Metaphysical

questions cannot be settled by mathematical proof alone. See Ginammi [2019], D’Alessandro [2018] and Ebels-

Duggan [2022] for extensive criticism of Steinhart’s arguments.
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(a) identify the successor function with some set-theoretic function f
and zero with some element e such that the ancestral of f with respect to

e is provably a progression, i.e. an ω-sequence,

(b) the numbers as the ancestral of f with respect to e, and

(c) make explicit provision in the account for the expression of the car-

dinality relation (e.g. by defining the relation C(x, n) between a number

n and a set x of cardinality n in some way such that ’C(x, n)’ holds iff

there exists a 1-1 correspondence between x and the numbers less thann).

[Benacerraf, 1998, emphasis in the original]

There are obvious significant differences between these two formulations.
6

Moreover,

Benacerraf’s formulations are insufficiently precise. For example, he does not specify

whether he has a first- or second-order framework in mind.
7

In fact, Benacerraf [1998]

deliberately dodges this question when he speaks about “arithmetic as the theory of {0,′ },

or {0,′ ,+,×}” (p. 46): the first option makes sense only if one uses second-order logic,

while the second option is necessary only in the first-order case. But then what exactly

are all of the conditions on an account of the natural numbers, i.e., how can premiss (1)

be made precise?

One possible explanation of this lack of precision is that Benacerraf’s argument is suf-

ficiently robust to accommodate several explications of an account of number. We can

thus understand Benacerraf’s argument schematically, i.e., relative to how the conditions

on an account of number are precisely understood. Given any such way of making these

conditions precise, let A denote the class of set-theoretic reductions of arithmetic, which

satisfy all of the conditions on an account of number. For instance, on one plausible read-

ing, A may be taken to be the class Mod(PA2) of set-theoretic models of second-order

Peano Arithmetic PA2.
8

For what follows, it is sufficient to assume that at least the ω-

sequences based on von Neumann and Zermelo ordinals are contained in A. Benacerraf’s

argument can then be reconstructed more precisely as:

(R1) If numbers are sets, then exactly one R ∈ A is a correct set-theoretic reduction

of arithmetic;

(R2) There are multiple set-theoretic reductions of arithmetic, i.e., |A| ≥ 2;

(R3) For no R ∈ A do we have reasons to believe that it is the correct set-theoretic

reduction of arithmetic;

6
These differences include: (1) In Benacerraf [1965], an important part of the first condition is to adequately

define +, ×, exponentiation, “and so forth”. In Benacerraf [1998] the inclusion of + and × is an option, while no

‘so forth’ is demanded, or even mentioned. (2) In Benacerraf [1965] the natural numbers start with 1, while in

Benacerraf [1998] they start with 0. (3) The conditions in Benacerraf [1998] explicitly refer to being a progression
as the most essential feature of the natural numbers. This demand is not included in (I)-(II) of Benacerraf [1965].

Nevertheless, it is repeated in that paper many times. It is also important that the vague notion of “progression”

is explicated in Benacerraf [1998] by the more exact notion of a ω-sequence — a notion which is not mentioned

in Benacerraf [1965]. (4) In Benacerraf [1998] it is demanded to have a proof that a proposed ω-sequence is

indeed an ω-sequence. There is no such condition in Benacerraf [1965]. In contrast, in Benacerraf [1965] the

proposedω-sequence is required to be recursive. Benacerraf [1996, 1998] rejects this requirement. (5) Benacerraf

[1998] makes explicit and significant reference to the crucial notion of ancestral. Benacerraf [1965] does not

even mention it. (6) Benacerraf [1965] does not talk about theories. He only refers to “the laws of arithmetic”. In

contrast, “the theory of {0,′ }, or {0,′ ,+,×}, successfully axiomatized by Dedekind, Peano et al.” has a crucial

role in Benacerraf [1998].

7
This ambiguity regarding “Peano’s axioms” in Benacerraf’s papers was also noted by Ginammi [2019].

8
For example, McLarty [1993] explicitly takes “the theory of N” to be PA2. Rouilhan [2016] refers to ‘PA’

as the theory of N, but he too clearly means PA2.
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(R4) IfR ∈ A is the correct set-theoretic reduction of arithmetic, then we have reasons

to believe that it is the correct set-theoretic reduction of arithmetic;

Therefore:

(R5) No R ∈ A is the correct set-theoretic reduction of arithmetic;

Consequently,

(R6) Numbers are not sets.

Premise (R1) spells out the core tenet of the realist reductionist view, as understood in

this paper (see premise (2) of the original argument). (R2) is true by our assumption on A.

That is, at least the ω-sequences based on von Neumann and Zermelo ordinals are set-

theoretic reductions of arithmetic. (R3) is usually accepted by proponents and opponents

of Benacerraf’s argument alike, given that there are multiple set-theoretic reductions of

arithmetic (see (R2)). (R4) is a contentious assumption which has been disputed in the

literature (cf. footnote 3). Paseau [2009], for example, rejects (R4) by denying that speakers

have transparent knowledge of the referents of their numerals (p. 35). (R5) follows from

(R3) and (R4) and (R6) is an immediate consequence of (R1) and (R5).

3. Breaking the Tie

As noted above, almost all proponents and opponents of Benacerraf’s argument ac-

cept premise (R3). Paseau [2009] compares the inability of a set-theoretic reductionist to

prefer one set-theoretic reduction to another with Buridan’s ass, which “died of inani-

tion as a result of not breaking the tie between a bucket of water to its left and a stack

of hay an equal distance to its right, at a time when it was equally hungry and thirsty.

The two choices were perfectly symmetric, and there was no reason to prefer one to the

other” (p. 38). While Paseau [2009] goes on to argue that rationality requires an arbitrary

choice rather than no choice, we argue that the choice is not arbitrary to begin with. For

simplicity (and following Benacerraf), we focus on the two most canonical and attractive

set-theoretic competitors, namely, the reductions based on von Neumann and Zermelo

numbers. We will argue that these reductions are not on par with each other, since we

have reasons to believe that the von Neumann account is superior to the one by Zermelo.

Hence, by closely examining mathematical properties of set-theoretic reductions, we can

reject premise (R3).

A natural starting point to assess the alleged symmetry of set-theoretic reductions

of arithmetic is mathematical practice. Consider, for example, the related claim that we

do not have any reasons to prefer one arithmetic reduction of finite strings to another.

Drawing on mathematical practice, this claim could be corroborated by the observation

that logicians treat the choice of a Gödel numbering as a highly arbitrary matter [Visser,

2011, 2016]. Indeed, a plethora of different numberings can be found in the literature.

However, the situation is fundamentally different in the case of set-theoretic reductions

of arithmetic. Here, the mathematical community settled on one specific set-theoretic

reduction of numbers, namely, von Neumann ordinals. The advocate of Benacerraf’s ar-

gument is committed to believe that mathematicians have no principled reasons for this

choice. For example, she might hold that the prevalence of von Neumann ordinals is

merely a matter of historical contingency, without reflecting any mathematical or con-

ceptual superiority of von Neumann’s account. This view seems rather unconvincing,

given certain historical facts. Firstly, the preference of von Neumann ordinals clearly

was not determined by historical priority, since Zermelo numbers were introduced first
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in Zermelo [1908]. Several years later von Neumann, Mirimanoff and Zermelo(!) him-

self independently discovered von Neumann ordinals [Hallett, 1986, pp. 276–280].
9

Since

the 1930s, von Neumann ordinals prevail as the standard choice of set-theoretical reduc-

tions of numbers. If Zermelo’s definition, as maintained by Benacerrafians, were on par

with von Neumann’s, there would have been no need for the later introduction of von

Neumann ordinals.
10

In other words, if there are no conceptual reasons to prefer von Neu-

mann to Zermelo ordinals, then how can this collective change in mathematical practice

in the early 1930s be explained? Secondly, if set-theoretic reductions of numbers are as

arbitrary as arithmetic reductions of finite strings, then why did mathematicians settle

on a unique choice with regard to the former, yet since the 1930s continue to use multiple

choices with regard to the latter? We take these considerations from mathematical prac-

tice to strongly suggest that there are reasons to believe that the von Neumann account

is superior to its competitors, like that given by Zermelo. In what follows, we present

several such reasons.

3.1. Relating natural numbers to ordinals. Ordinals have originally been introduced

by Cantor as a generalization of the natural numbers in their role as ordinal numbers

which is applicable to arbitrary sets (or at least those that can be well-ordered). Since

then, one of the basic modern views of the natural numbers construes them as finite
ordinals. And indeed, this is exactly what they are according to von Neumann’s definition.

In contrast, there is no non-artificial way to extend Zermelo’s definition of the natural

numbers to infinite ordinals. In fact, von Neumann’s definition is the only reasonable

set-theoretical definition of the natural numbers that has this crucial property, because

von Neumann’s definition of an ordinal is the only reasonable set-theoretical definition

of this notion.
11

We believe that this alone is a principled reason to single it out from all

the possible set-theoretical candidates for identifying the natural numbers.
12

9
Von Neumann introduced his ordinals in his 1923. Zermelo discovered von Neumann ordinals in unpub-

lished work in 1915 and used them in his 1930. (See also [Bernays, 1941, p. 6] and [von Neumann, 1928, p. 374,

footnote 2].) So Zermelo himself actually preferred “Von Neumann” ordinals to “Zermelo” ordinals…

10
The reader may object that even though von Neumann and Zermelo’s definitions are on par as accounts

of natural numbers, the former might have been preferred over the latter in virtue of features external to the

concept of number. See Section 4 for a response to this objection.

11
Similar observations can be found in Maddy [1990], Clarke-Doane [2008], Mount [2019], D’Alessandro

[2018], Steinhart [2002] and Ebels-Duggan [2022].

12
An anonymous referee raised the worry that requiring numbers to be finite ordinals might be a double-

edged sword, since there are reasons not to identify ordinals with sets, and instead to conceive of ordinals

as order-types of well-ordered classes. However, this pre-theoretic view of the ordinals directly leads to the

Burali-Forti paradox, and is highly problematic [Copi, 1958]. It is precisely the rigorous treatment of the notion

of an ordinal within set theory which has provided us with a coherent concept of infinite ordinals. (Compare

our discussion in Section 3.2 of the different ways “new abstract objects” are defined in mathematics.) What

is more: the multiple reduction argument against reductionism about ordinals is widely taken to be much less

promising than Benacerraf’s argument against reductionism about numbers (see, e.g., Mount [2019]). In fact,

von Neumann’s reduction practically has no competitor.

An additional way to address the referee’s worry is to recall the dialectical stage at which our discussion

takes place. For argument’s sake, Benacerraf has granted that reductionism is correct. Moreover, it has been

observed that there are different set-theoretical reductions of arithmetic. The current stage of the argument

is concerned with the problem of choosing among them. As Benacerraf claims, there are no reasons to prefer

one reduction over another, which leads to his multiple reduction argument against reductionism. Hence, our

rebuttal of premise (R3) takes for granted a provisional acceptance of reductionism about numbers. The addi-

tional assumption that also reductionism about ordinals is correct, to wit, to view ordinals as sets, seems to be

harmless and in accordance with the present dialectal context.



6 BREAKING THE TIE: BENACERRAF’S IDENTIFICATION ARGUMENT REVISITED

Let us add here that Benacerraf [1965] would have failed to come up with a convincing

Johnny-Ernie tale concerning ordinals,
13

had he tried to do so. Moreover, even in his

original tale, the education given to Johnny by his parents would be rather poor (from

the parents’ own militant logicist point of view) if they did not introduce him to the

notion of an ordinal and relate it to the notion of a natural number (cf. Section 4). As for

Ernie - his education would surely follow now one of the modern relevant undergraduate

textbooks, like Devlin [1993] or Kunen [2009]. In such books the general notion of an

ordinal is introduced first, and only then N , the set of natural numbers is defined as a

certain subset of the class On of ordinals. Thus N may be defined as the set of finite

ordinals, or as the minimal initial segment of On which is closed under S (the successor

operation, which is defined on the whole of On), or the maximal initial segment of On
in which the operation + (which is defined on the whole of On too) is commutative.

14

3.2. The identity of finite ordinals and cardinals. The dual role of the natural num-

bers as ordinal and cardinal numbers is one of their most basic features. It is so important

that Benacerraf [1998] himself requires an account of the natural numbers to

make explicit provision in the account for the expression of the cardinal-

ity relation (e.g. by defining the relation C(x, n) between a number n and

a set x of cardinality n in some way such that ‘C(x, n)’ holds iff there ex-

ists a 1-1 correspondence between x and the numbers less than n). (p. 47)

Here, Benacerraf practically identifies the cardinal number n with the set of numbers

less than n. To understand why, we first note that (finite and infinite) cardinal numbers

are abstract objects that are somehow induced by the equipollence relation on sets. This

is just a particular case of a general principle: abstract objects are usually introduced in

mathematics (but not only in mathematics) by turning statements of the form aRb, where

R is an equivalence relation, to equivalent statements of the form F (a) = F (b). (Here

the values of F represent/explicate the corresponding “new abstract objects”.) There are

two standard methods in mathematics of doing this. One is to let F (a) be the equiv-

alence class of a with respect to R. The other is to choose F (a) to be some canonical

representative of that equivalence class. Frege’s (1884) definition of cardinality (which is

mentioned and criticized by Benacerraf) was an attempt to apply the first method. How-

ever, this approach has turned out to be futile.
15

Therefore the second method is now

commonly used for defining cardinal numbers in set theory. As noted above, this method

is also the method implicitly suggested by Benacerraf himself for the finite case: in the

above quoted passage he in fact implicitly takes the set of numbers less than n as the

canonical representative of the class of sets “of cardinality n”. This is indeed an obvious

choice, since we immediately see, for instance, that the set of numbers less than 1010
10

has 1010
10

elements.
16

In other words, cardinal numbers are commonly taken to be initial

13
Benacerraf’s paper opens with a fictitious tale in which two boys, Johnny and Ernie, are taught arithmetic

by their “militant logicist” parents according to the set-theoretic reductions due to Ernst Zermelo and John
von Neumann respectively. This tale occupies about half of the relevant sections I-II of Benacerraf [1965] (See

Footnote 2), and its role is to provide quite persuasive support to the philosophical argument that follows it.

14
The first definition relies on a prior independent notion of “finite set”. The other two do not, and so they

allow us to define a finite set as a set which is equipollent with some natural number.

15
At least, the resulting notion of cardinality cannot be used together with ZFC.

16
The first author of this paper is convinced that the set of numbers less than 1010

10
is the only set we

immediately know to have the cardinality 1010
10

. Note that this knowledge relies on an inductive assumption,

according to which all the numbers less than 1010
10

have already been recognized as cardinalities of some sets!

Thus, ultra-finitists (also called ultra-intuitionists — see e.g. Van Dantzig [1956], Esenin-Volpin [1970]) deny
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segments of the less-than relation < on ordinal numbers. If, moreover, the dual role of

natural numbers is accounted for by identifying finite ordinals with finite cardinals, then

von Neumann’s definition is clearly superior to Zermelo’s approach. What is more, von

Neumann’s account is the only set-theoretical definition of a natural number such that

the (finite) ordinal number n and the (finite) cardinal number n are identical and such

that the cardinal number n is the set of ordinal numbers less than the ordinal number n.

More precisely, the von Neumann reduction of numbers to sets is the unique injective

function f mapping numbers to sets such that f(n) = {a | a <f f(n)} for all n ∈ ω,

where <f is a relation on the image of f given by a <f b ⇔ f−1(a) < f−1(b).17
This

provides another reason to prefer von Neumann ordinals over alternative set-theoretic

reductions.

3.3. Explanatory power. One of the best possible signs that a certain identification of

mathematical objects is correct — or at least more likely to be correct than its competitors

— is if it provides explanations of facts and phenomena that alternative identifications

cannot account for. The two previous items may be viewed as cases in point with respect

to the identification of the natural numbers with finite von Neumann’s ordinals. But there

is an even stronger case. As is well-known, there is a striking similarity between the

standard classifications of the formulæ of the first-order languages of Peano Arithmetic

and set theory. In both arithmetic and set theory, formulæ are classified in exactly the

same way, yielding an infinite hierarchy of classes with practically the same associated

theorems. The most basic class consists of the bounded (or∆0-) formulæ. They are defined

in both cases as the class of formulæ which are recursively obtained from atomic formulæ

using the propositional connectives and bounded quantifiers. The only difference between

the two cases is with respect to the definition of the latter. In set theory the bounded

quantifiers have the form ∀x ∈ y or ∃x ∈ y, while in formal number theory they have the

form ∀x < y or ∃x < y. This strong analogy between the bounded formulæ of set theory

and arithmetic respectively might seem quite mysterious. First, the relation ∈ between

sets and the relation < between natural numbers have very different properties — even

if we focus our attention just on the finitary fragment of the universe of set theory: HF ,

the collection of hereditarily finite sets. For example, < on N is a linear order, while ∈ on

HF is not even a partial order. (Accordingly, the structures HF = ⟨HF ,∈⟩ and ⟨N,<⟩
are not isomorphic.) Second, when we compare the full intended universe V of set theory

and the intended universe N of number theory, we find two universes which are very
different in size and nature. In particular: the set {x | x < y} is finite for every natural

number y, while the set {x | x ∈ y} is infinite for almost every set y. This fact makes

the similarity even more mysterious. However, the mystery almost disappears once we

construe N as a transitive part of V and view the less-than relation < as actually identical

that numbers like 1010
10

exist, i.e. are cardinals of actual sets. There is no point to give them as an example a

set like (say) the numbers between 1010
10

+ 1 and 1010
10

+ 1010
10

, since the existence of that set relies on

the existence of sets of cardinalities greater than 1010
10

…

17
Upon completion of this manuscript, we learned that Ebels-Duggan [2022] independently uses this char-

acterization to uniquely single out the von Neumann reduction. However, Ebels-Duggan’s philosophical as-

sumptions and considerations greatly differ from our presentation. For a more extensive discussion we refer

the interested reader to Ebels-Duggan [2022, section 7].
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to the restriction of the ∈-relation to finite ordinals.
18

This is possible, of course, only if

we identify the natural numbers with the finite von Neumann ordinals.
19 20

To be sure, this mystery can be also explained without identifying numbers with von

Neumann ordinals. Such explanations may resort to the fact that the structures ⟨N,<⟩
and ⟨NZ , <Z⟩ of sui generis numbers and finite Zermelo ordinals respectively are iso-
morphic to a transitive substructure of ⟨V,∈⟩. Note, however, that there is just one such

transitive substructure: the set of finite von Neumann ordinals. Hence, von Neumann or-

dinals play an indispensable role in explanations of this interesting connection between

numbers and sets. Thus, von Neumann’s account provides the most immediate or best

explanation of the mystery described above and so fares better than Zermelo’s definition.

Now in set theory the crucial property of∆0-formulæ is that they are absolute, while in

number theory they induce decidable relations on the natural numbers. Prima facie, the

set-theoretic notion of absoluteness is of very different nature than the computability-

theoretic notion of decidability. Yet, the identification of ∈ and < indicates that there

might be strong connections between these two notions. This is indeed the case. We

present an example of such a connection which is due to Avron [2008]. Here, we assume

that our arithmetical language is purely relational. That is, we replace each n-ary function

symbol by an (n+1)-ary relation symbol. We start by defining a special case of the notion

of absoluteness, which is concerned with transitive substructures of N .

Definition 3.1. We say that an arithmetical formula ϕ is N -absolute, if for any assign-

ment v in N , ϕ gets the same truth value in all initial segments of N (including N itself)

which contain the values assigned by v to its free variables.
21

We then have:

Theorem 3.2.
• If ϕ is N -absolute, then ϕ induces a decidable relation.
• A relation R on N is recursively enumerable iff R is definable by a formula of the

form ∃x1, . . . , xnϕ, where ϕ is N -absolute.

See Avron [2008] for details and for further connections between the notions of absolute-

ness and decidability.

3.4. The logical complexity of the definitions. Next we show that the basic predicate
N of being a natural number, as well as the less-than relation <, can be defined using

∆0-formulæ in case von Neumann’s definition is used. (Recall that ∆0 is the lowest set-

theoretical degree of complexity of formulæ). Let ∅ be a defined constant for the empty

18
In set-theoretical texts they are indeed used synonymously with respect to ordinals.

19
An anonymous referee worries that we might merely shift the mystery, since we did not explain why the

properties of the hierarchy in the universe of hereditarily finite sets is mirrored when we move to the transfinite.

(Note that this complaint applies only to the second part of our description of the mystery.) We do not fully

agree, but it does not matter much even if this is indeed the case, since reducing a problem (in this case the

external relations between number theory and set theory) to another one which might be easier to tackle (here

the internal relations between parts of set theory) is usually considered as a step forward and as shedding new

light on the problem.

20
D’Alessandro [2018] argues that the reduction of arithmetic to set-theory is unexplanatory. The above

examples challenge this view.

21
The notion of an initial segment of N is the arithmetical counterpart of the set-theoretical notion of a

transitive subclass of the set-theoretical universe V .
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set and let ; be the defined binary function symbol from Previale [1994] and Kirby [2009],

where the meaning of x; y is x ∪ {y}.
22

Consider:

• N(x) := ∀y ∈ x;x(y = ∅ ∨ ∃z ∈ x.y = z; z)
• x < y := x ∈ y

As far as we can see, this is impossible with Zermelo’s definition. In any case, the

natural definitions of N and < based on Zermelo’s account are not ∆0, but Π1-formulæ

(in the above-mentioned hierarchy):
23

• NZ(z) := ∀Z((∅ ∈ Z ∧ ∀y ∈ Z.∅; y ∈ Z) → z ∈ Z)
• x <Z z := x ̸= z ∧ ∀Z((x ∈ Z ∧ ∀y ∈ Z.∅; y ∈ Z) → z ∈ Z)

Here it should be admitted that there are ways of using ∆0-formulæ for defining other

notions of “natural numbers” which would satisfy the very weak criteria given by Benac-

erraf.
24

Nevertheless, using von Neumann’s approach, the definitions of N and < are the

simplest and shortest possible.
25

3.5. The strength of the background theory. As noted by Benacerraf [1998] (see also

condition (a) in Section 2), an adequate analysis of the concept of natural number does

not merely consist of some definition of the natural numbers. In addition, one should be

able to prove in some designated background theory that all the basic properties that we

expect of the natural numbers follow from the definition. Here it is crucial to employ

a set theory which is as weak as possible, since the definition (and the proofs) should

be sufficiently robust to be acceptable not only to platonists, but also, e.g., to predica-

tivists and finitists. Thus, the natural definitions given above of “number” and “<” in the

case of Zermelo’s “natural numbers” require the infinity axiom, and are impredicative.

Hence they are inadmissible for finitists or predicativists. Things are different with von

Neumann’s account. It permits the development of number theory in a very weak sub-

theory of ZF, which we call VBS (for Very Basic System
26

). See Appendix A for details.

VBS is equivalent to PRA — which following Tait [1981] is usually taken as the number-

theoretic theory which represents finitism. Therefore VBS is finitistically (and so also

22
This notation was introduced in order to provide a simple, purely functional language and axiomatization

for HF . Accordingly, these formulations are not strictly in the basic language of = and ∈, but only abbreviate

formulæ in that language. However, it is easy to see that what they abbreviate are ∆0-formulæ in the basic

language which are not much longer than their abbreviations. It is interesting to note that in the language

which is used in Previale [1994] and Kirby [2009], the definitions of Zermelo and von Neumann are the simplest

possible ways of defining a successor function with the basic required properties. (The successor of x according

to Zermelo is ∅;x, while it is x;x according to von Neumann.)

23
Using the content of Footnote 24, it is possible to give also a Σ1 definition of these relations, which can

be shown in ZF to be equivalent to the standard ones given below. (Note that the infinity axiom is needed in

order to prove this equivalence.) Hence the notion of being a Zermelo number belongs in ZF to ∆1. (This is

not true in the weaker set theories considered below.)

24
An interesting case in point, which might be the strongest competitor of von Neumann’s definition from

the complexity point of view, is the use of the finite initial segments of the set of Zermelo’s natural numbers

(i.e. what should be taken as Zermelo’s finite cardinals):

• Nc
Z(x) := ∀y ∈ x(y = ∅ ∨ ∃z ∈ x(y = ∅; z)) ∧ ∃z ∈ x.∅; z ̸∈ x

• x <c
Z z := x ⊆ z ∧ x ̸= z

Steinhart [2002] calls these the “van Zermano” numbers (p. 349). For further discussion see also Ginammi [2019,

pp. 285–286] and Ebels-Duggan [2022, p. 238].

25
This is trivial in the case of <. We do not have a mathematical proof of this claim in the case of N , but it

is very difficult to imagine that a simpler possible definition of N exists in the first-order language of {∈,=};

and it seems impossible to find one for which the combined lengths of the definitions of N and < will not be

bigger than that of the definitions given above.

26VBS is a rather weak subtheory of the basic system BS used in Devlin [1984].
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predicatively) acceptable according to the criterion given in Feferman [1974].
27

(Actu-

ally, the predicativity of VBS is practically self-evident according to the very meaning

of this notion, as it was originally introduced in the context of set theory.
28

) The fact that

von Neumann’s definition permits the derivation of basic arithmetic properties within a

very weak set-theoretical background is yet another reason to prefer it over the original

account of Zermelo.
29

4. Objections: Metaphysical Irrelevance

In the previous section we have shown that von Neumann’s account outrivals its most

attractive set-theoretic competitor in the possession of desirable properties. At this point,

the advocate of Benacerraf’s argument might object that these properties are not arith-

metical and thus extraneous to our number concept. Yet, so the objection continues, only

arithmetical reasons are relevant for the metaphysical problem of determining the cor-

rect set-theoretic reduction of arithmetic. Hence, according to this objection the success

of Benacerraf’s argument is not affected by the reasons given in the previous section.
30

This objection employs a specific interpretation of Benacerraf’s argument which can be

made precise by replacing the premises (R3) and (R4) in our presentation of the argument

on page 3 by

(R3
∗
) For no R ∈ A do we have arithmetical reasons to believe that it is the correct

set-theoretic reduction of arithmetic;

(R4
∗
) If R ∈ A is the correct set-theoretic reduction of arithmetic, then we have arith-

metical reasons to believe that it is the correct set-theoretic reduction of arith-

metic.

According to this line of defense, Benacerraf’s argument is not affected by a rejection of

premise (R3), but rather requires a rebuttal of its weaker variant (R3
∗
).

Before we engage closely with this objection, we point to two immediate shortcom-

ings of the resulting interpretation of Benacerraf’s argument. Firstly, it relies on a further

strengthening of its most contested premise, namely, (R4), which has been frequently re-

jected in the literature (see Section 2). Secondly, it is not at all clear how to distinguish

arithmetical from non-arithmetical properties of reductions—let alone how to distinguish

arithmetical from non-arithmetical reasons to prefer one reduction over another. This dif-

ficulty is due to the fact that the properties of our number concept and of set-theoretic

reductions of arithmetic are commonly described in a set-theoretic language. Consider,

for instance, the central claim that the natural numbers are well-ordered. Clearly, this

claim is formulated set-theoretically. In what sense then does it capture an arithmetical
property of the number concept? Even Fermat’s method of infinite descent, a historical

27
In more detail: VBS and PRA are easily seen to be reducible to each other in the sense of Feferman

[1974]. The reductions use the well-known fact that HF and N can be turned into isomorphic structures, in

the following sense: using bounded formulæ, one can define in the first-order order language of N a relation ∈̃
and in the first-order order language of HF operations +̃, ×̃ and S̃ so that the structures ⟨N,S,+,×, ∈̃⟩ and

⟨HF , S̃, +̃, ×̃,∈⟩ are isomorphic to each other. See e.g. Fitting [2007].

28
See e.g. Feferman [2005] for the history of predicativism and Avron [2010] for the principles underlying

predicative (in the sense of Poincaré, Weyl and Feferman) set theory and for several corresponding systems. For

a good survey of what axioms of ZF are usually taken as impredicative we refer the reader to the nLab entry

on predicative mathematics: https://ncatlab.org/nlab/show/predicative+mathematics#illfounded structures

29
We do not know whether there are other reasonable set-theoretical definitions of the natural numbers for

which very weak systems like VBS suffice.

30
We are grateful to an anonymous referee for raising this worry and for helping us to clarify the material

of this section.
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precursor of mathematical induction, involves talk not only about numbers but also about

infinite sequences or chains of numbers. Also Benacerraf [1998] uses set-theoretical vo-

cabulary (“ω-sequence”, “ancestral”, etc.) when he describes the properties any account of

arithmetic ought to satisfy (see the quotation on page 2). Recall that from Ernie’s perspec-

tive, arithmetic is simply the study of those initial segments of On which satisfy certain

set-theoretical conditions (see Section 3.1). Hence, for Ernie the distinction between arith-

metical and set-theoretical properties is highly arbitrary if not outright incomprehensible.

This all goes to say that at least at first glance, the boundary between arithmetical and

set-theoretical properties appears to be rather murky. We now turn to Benacerraf’s writ-

ings and its commentators for cues of how arithmetical and non-arithmetical properties

may be distinguished.

An anticipation of the raised objection can be traced back to Benacerraf himself. For

example, on one plausible reading of Benacerraf’s argument, a property of a set-theoretic

reduction of arithmetic is superfluous if and only if it is not grounded in our concept

of number (see clause (5) on page 2). This position, dubbed the “deferential view” by

Ebels-Duggan [2022], holds that what numbers are is exclusively determined by some

pre-theoretic number concept of the folk, which is captured by the way we use numbers

in our reasoning and practical life. According to Ebels-Duggan’s (2022) reconstruction

of Benacerraf’s position, a set-theoretic reduction of arithmetic captures the folk num-

ber concept if it replicates the folk’s arithmetical reasoning in a lossless, i.e., structure-

preserving way (p. 227). According to the deferential view, everything else is extraneous.

That is, set-theoretic reductions of numbers are metaphysically on par as long as they pre-
serve all relevant features of our number concept. In particular, since von Neumann and

Zermelo’s accounts only “differ at places where there is no connection whatever between

features of the accounts and our uses of the words in questions” [Benacerraf, 1965, p. 62],

they do not differ in any metaphysically relevant sense. Thus, according to this sharpen-

ing of the raised objection, in Section 3 we merely showed that von Neumann’s account

is in some sense more adequate than its competitors. However, we failed to single out von

Neumann’s account in terms of features which are grounded in our concept of number, i.e.,

in any metaphysically relevant way.

We believe that this line of defense on behalf of Benacerraf’s argument is unconvinc-

ing, for three reasons. Firstly, we reject the assumption that deference to the folk number

concept outweighs all other theoretical virtues of a set-theoretic reduction (in doing so,

we follow Paseau [2009]). Surely, the role of a set-theoretic reduction of numbers is to

preserve all features relevant to arithmetic. But contra the deferential view, we belief that

the success of a reduction should be also judged by the way it integrates arithmetic into

our larger theoretical framework. Since currently the most overarching mathematical

theory is provided by set theory, the adequacy of a reduction also depends on the way

it coordinates arithmetical and set-theoretical concepts. Hence, according to our view,

certain set-theoretic features of reductions which relate numbers and sets are metaphys-

ically relevant. For example, von Neumann’s reduction of arithmetic is more adequate

than its alternatives, since it relates the number concept with the ordinal concept in the

most natural way (see Section 3.1). Moreover, recall that we have shown in Section 3.3

that von Neumann’s account explains certain connections between the fundamental no-

tions of absoluteness in set theory and decidability in arithmetic. Since explanatoriness is

an important desideratum for theory choice, this feature renders von Neumann’s account

metaphysically superior over other reductions which lack this explanatory power.
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The advocate on behalf of Benacerraf might rejoin that our reply misconstrues reduc-

tions as mere explications. While von Neumann’s reduction might provide the best way

to mimic number talk in set-theoretic terms, set-theoretic concepts are entirely foreign to

what numbers really are. As suggested by an anonymous referee, consider Fermat, who

successfully referred to the natural numbers when he formulated his arithmetical theo-

rems. Since set theory was only introduced more than 200 years later, the number concept

of Fermat and his contemporaries arguably did not include any set-theoretical features.

Hence, so the objection continues, it is very hard to believe that any set-theoretic facts or

concepts determined the referents of Fermat’s number terms. But then, the deferentialist

concludes, set-theoretical features should be irrelevant to what the numbers are.

To begin with, this rejoinder seems to undermine the structuralist view about arith-

metic, a philosophical position which solves Benacerraf’s (1965) identification problem

and which (to some extent) has been endorsed by Benacerraf himself. According to this

view, numbers are positions in a number structure. Now, it is safe to assume that Fermat

was completely unaware of the notion of a number structure (at least as it is used in the

philosophical literature nowadays). But then, in analogy to the argument given above,

talk about positions in a number structure should be irrelevant to what numbers really

are. Hence, arithmetical structuralism is wrong.

What is more, we believe that this rejoinder disregards a crucial detail, namely, that

the folk might have impoverished knowledge about the properties of their subjects of

discourse. Hence, what numbers are might be determined by facts unknown even to

competent participants of a number-discourse.
31

Fermat not only successfully referred

to numbers without knowing set theory, but presumably he also successfully referred

to water, without knowing that each of its molecules contains one oxygen and two hy-

drogen atoms. Yet, the analogous conclusion that water is not H2O—given that the folk

water concept included the belief that water is a chemical element and Fermat success-

fully referred to it while being completely unaware of the concepts of oxygen theory—is

absurd.

Finally, the folk concept might not only be incomplete, but the folk may even hold false

beliefs about the relevant subject matter. For example, Fermat’s used real numbers with-

out knowing what they are and without any justification of that usage. He certainly did

not think of them in terms of their current rigorous definition(s), and there was no clear

“folk notion” of a real number at his time. (Actually, there is no such “folk notion” today

either.) Even worse, Fermat’s analytic practice made essential reference to infinitesimally

small entities and contained highly dubious derivations [Edwards, 2012]. Therefore there

is no question that from a modern perspective, Fermat’s real number concept was defec-

tive. Yet, Fermat successfully participated in the analytic discourse, correctly calculated

tangent lines of curves, etc. Hence, according to the rejoinder’s approach, what real num-

ber really are is determined by the conceptual resources which were available to Fermat.

But clearly it would be absurd to retain an ontological commitment to infinitesimals on

these grounds. The upshot is that metaphysical accounts of water and arithmetic should

not try to preserve the folk concept at all costs. Rather, the questions of what water and

numbers are should be treated within the context of our comprehensive scientific and

mathematical theories respectively. By rejecting the deferentialist view along these lines,

we are no longer exclusively committed to a faithful interpretation of a potentially mis-

informed or even defective folk number concept. As a result, also theoretical features of

31
Here we follow Paseau [2009] in his response to a related objection due to Field [1974].
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reductions which are not grounded in the folk number concept can provide metaphysi-

cally relevant reasons to single out these reductions as correct.

The second rejoinder to the above objection is dialectical. Recall that according to the

deferential position, set-theoretic reductions of numbers are metaphysically on par as

long as they preserve all relevant features of our number concept. So far, we have not said

what the “relevant features of our number concept” are. A common approach is to take

all relevant features of our number concept to be codified in the consequences of second-

order Peano Arithmetic PA2.
32

Structure-preservation thus amounts to consequence-

preservation (see, e.g., [Ebels-Duggan, 2022, p. 227]). On this view all models of PA2 are

metaphysically on par, thus barring any further escape from Benacerraf’s identification

argument.

While PA2 may be indeed our best arithmetical theory, there is no reason to believe

that its consequences capture all aspects of the folk number concept. For instance, PA2

does not prove that numbers are not chairs and do not contain elements. Yet, we pre-

theoretically believe that numbers are neither chairs nor contain elements and these be-

liefs may inform our use of number words. In the words of Balaguer [1998], “it is built into

our conception of the natural numbers that they do not have members [and] that they

cannot be sat on” (p. 66). Moreover, even though PA2’s consistency statement is not

among its consequences (if PA2 is treated as a formal system), number theorists surely

believe that their number concept is consistent. As we see it, the deferentialist has two

options to respond. The first is to take serious her commitment to a lossless interpreta-

tion of the folk’s number talk. But then no set-theoretic reduction of arithmetic captures

the folk number concept, since the feature of not having members cannot be preserved

by any set-theoretic reduction. Hence, the first option immediately yields the conclusion

that numbers are not sets, even without the need of pressing Benacerraf’s identification

argument. The second option is to relax this commitment by dismissing being a chair
or containing an element as descriptions of the “internal” nature of objects and thus ir-

relevant to arithmetic (see, e.g., Resnik [1981]). But by dismissing “internal” features

of numbers as metaphysically irrelevant, the deferentialist adopts at the outset a struc-

turalist conception of arithmetic. Hence, both options are heavily biased, if not entirely

question-begging, against the target of Benacerraf’s argument, to wit, reductionism. In

particular, there is no reason for a realist to hold a structuralist view about arithmetic.
33

Hence, construed in this way, Benacerraf’s argument against reductionism loses much of

its force.

We now turn to our third and most important rejoinder to the above objection. For

argument’s sake we grant that the deferential position is overall correct, i.e., that set-

theoretic reductions of numbers are metaphysically on par as long as they preserve all

relevant features of our number concept. However, we argue that there are plausible

explications of the “relevant features of our number concept” such that the opponent’s

challenge can be met. That is, von Neumann’s account can be singled out as more ad-

equate than its alternatives in terms of features which are grounded in our concept of

number.

We extract two reasons to reject the claim that all relevant features of our number

concept are codified in the consequences of PA2 from Benacerraf’s own writings. Firstly,

32
Most authors, including Benacerraf, do not specify whether the number concept should be explained in

terms of first-order or second-order Peano arithmetic. Moreover, PA2 can be associated either with standard

or Henkin semantics respectively. However, the subsequent arguments are not affected by these choices.

33
Similar points have been made by Ruffino [2001], Clarke-Doane [2008] and Ebels-Duggan [2022, foot-

note 19].
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Benacerraf [1965] argues that a relevant feature of our number concept is the recursive-

ness of the less-than relation < on numbers, which enables us “to tell in a finite number

of steps which of two numbers is the greater” (p. 52). According to Benacerraf, any set-

theoretic reduction of arithmetic which captures the folk number concept thus has to

preserve this computational feature, i.e., has to result in a model of PA2 whose less-than

relation is recursive [Benacerraf, 1965, p. 53].
34

This shows that even by Benacerraf’s own

standards we can privilege some models of PA2 over others in terms of features which

are grounded in our number concept. The analysis of our number concept can be pursued

further along similar lines. For instance, we may observe that our arithmetical practice

not only relies on the computational simplicity of basic arithmetical notions such as <,

but also relies on the simplicity of our basic arithmetical vocabulary. Hence, in complete

analogy to Benacerraf’s reasoning above, we may require that set-theoretic reductions

of arithmetic which capture the folk number concept also preserve complexity-theoretic

simplicity. As we have shown in Section 3.4, von Neumann’s account fares better in this

respect than its competitors. Once again, this reasoning only involves features which are

grounded in our number concept.

The second reason to reject the claim that all relevant features of our number concept

are codified in the consequences of PA2 is that it does not account for arithmetical appli-

cations. For example, Benacerraf [1965] takes the cardinality relation between numbers

and sets as an essential feature of the number concept: “[t]o count the members of a set

is to determine the cardinality of the set. It is to establish that a particular relation C
obtains between the set and one of the numbers” (p. 50, see also condition (c) on page 2).

Hence, the number concept includes features which relate numbers and sets in specific

ways. Once again, this shows that PA2 is insufficient to capture all relevant features of

our number concept. Rather, an apparatus is required which additionally incorporates a

theory of sets together with certain facts about cross-sortal relations between numbers

and sets. Moreover, we may require that set-theoretic reductions of arithmetic which

capture the number concept also preserve principles which govern the specific ways car-

dinal numbers are correlated to sets. For example, following Wright [1983], Ebels-Duggan

argues that reductions of arithmetic should preserve certain identity criteria specific to

cardinal numbers:

Part of the number concept includes how to distinguish or identify num-

bers as applied in cardinality judgments—identity criteria specific to num-

bers. And we have the same for the application of sets. What is needed to

determine number-set identity … is something that coordinates the indi-

vidual conditions of identity for each kind of object. Identity criteria for

the application of sets which are also numbers must be the same as that

for the application of numbers, full stop. [Ebels-Duggan, 2022, p. 237]

In other words, a set-theoretic reduction of arithmetic only captures our number concept,

if different numbers-as-sets are not equipollent. Using this reasoning we can privilege

some models of PA2 over others in terms of features which are grounded in our number

concept. In particular, von Neumann’s account captures our number concept construed

in this way, while Zermelo’s does not. By drawing on further aspects which are central

to the cardinal number concept, analogous reasoning yields even more narrow classes

of models of PA2. In particular, the reasons we provide in Section 3.2 single out von

34
This condition is slightly problematic, since recursiveness only applies directly to numbers, while domains

of models of PA2 may contain any kind of objects (see Halbach and Horsten [2005]). Benacerraf [1996] later

drops this condition, but for very different reasons.
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Neumann’s account merely in terms of features which are grounded in our concept of

number—suitably construed.

To sum up, the objection contesting the metaphysical significance of our reasons is

blocked. In particular, we have shown that the deferential position is not very stable as

there are different plausible ways to explicate the folk number concept. Moreover, the

view that all relevant features of our number concept are codified in the consequences of

PA2 is not compatible with Benacerraf’s own claims. Finally, there are plausible ways

to construe our number concept such that von Neumann’s account can be singled out

only in virtue of features which are grounded in the concept of number. Note that even if

the reasons in Section 3 do not provide compelling grounds to privilege von Neumann’s

account, they afford at least some grounds to believe it more likely to be correct than its

competitors. This is all that is needed to reject Premiss (R3) and thus to rebut Benacerraf’s

anti-reductionist argument.

Appendix A. Ordinals and Natural Numbers in Minimal Set Theories

A.1. The Very Basic System VBS.
Extensionality (Ex):

∀z(z ∈ x ↔ z ∈ y) → x = y

Empty Set (Em):
∃Z∀x(x ̸∈ Z)

Singleton (Si):
∀y∃Z∀x(x ∈ Z ↔ x = y)

Binary Union (BU):

∀x∀y∃Z∀w(w ∈ Z ↔ w ∈ x ∨ w ∈ y)

Bounded ∈-induction (B− ∈−ind ):

∀x((∀y ∈ xφ{y/x}) → φ) → ∀xφ φ bounded

Note. The first four axioms of VBS provide the minimal set theory which allows to define

every element of HF (the collection of hereditarily finite sets). They also allow to intro-

duce into the language of set theory the constant ∅ (for the empty set), the unary function

symbol {−} (for singletons) and the binary function symbol ∪ (for binary union). The

scheme of B− ∈−ind is the minimal principle which is sufficient for fruitful work within

HF , but is valid in the whole universe of ZF.

Proposition.
(1) ⊢VBS ∀x0∀x1 ∈ x0∀x2 ∈ x1 · · · ∀xn ∈ xn−1.x0 ̸∈ xn (n ≥ 0)

(2) ⊢VBS ∀x(∃y(y ∈ x) → ∃y(y ∈ x ∧ ∀z(z ∈ y → z ̸∈ x)) (Foundation axiom)

A.2. von Neumann’s Ordinals in VBS.
Definition.

• Transitive(x) := ∀y ∈ x∀z ∈ y.z ∈ x
• Linear(x) := ∀y ∈ x∀z ∈ x.y ∈ z ∨ y = z ∨ z ∈ y
• Ordinal(x) := Transitive(x) ∧ Linear(x)
• S(x) = x ∪ {x}. Hence:

– y ∈ S(x) := y = x ∨ y ∈ x
– y = S(z) := ∀u(u ∈ y ↔ u = z ∨ u ∈ z)

• x ≤ y := x ∈ y ∨ x = y

Proposition. The following are provable in VBS:
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(1) Ordinal(x) ∧ y ∈ x → Ordinal(y)
(2) Ordinal(∅)
(3) Ordinal(x) → Ordinal(S(x))
(4) S(x) = S(y) → x = y
(5) Ordinal(x) ∧Ordinal(y) → (x ≤ y ↔ x ⊆ y)
(6) Ordinal(x) ∧Ordinal(y) → (x ≤ y ↔ x ∈ S(y)
(7) Ordinal(x) → x = ∅ ∨ ∅ ∈ x
(8) Ordinal(x) ∧ y ∈ x → x = S(y) ∨ S(y) ∈ x
(9) Ordinal(x) ∧Ordinal(y) → y ∈ x ∨ x = y ∨ x ∈ y

Theorem. The following are provable in VBS:

(1) The class of ordinals is well-ordered by ∈.

(2) Every ordinal is well-ordered by ∈.

Theorem. Given a bounded formula φ, VBS proves that if the class of ordinals that

satisfy φ is not empty, then it has a minimal element.

A.3. von Neumann’s Natural Numbers in VBS.
Definition.

• N(x) := ∀y ∈ S(x)(y = ∅ ∨ ∃z ∈ x.y = S(z))
• N⋆(x) := Ordinal(x) ∧ ∀y ∈ S(x)(y = ∅ ∨ ∃z ∈ y.y = S(z))

Note. N⋆
is the standard definition by a bounded formula of the property of being a

natural number (without an appeal to the axiom of infinity). Its advantage is that it di-

rectly defines the natural numbers as a special sort of ordinals. N , on the other hand, is

the simplest such definition we are aware of. It is obtained by a single small change in

the second conjunct of the definition of N⋆(x). As noted below, the two definitions are

equivalent in VBS.

Proposition. The following axioms of Peano are theorems of VBS:

(1) N(∅)
(2) ∀x.N(x) → N(S(x))
(3) ∀x.S(x) ̸= ∅
(4) ∀x∀y.S(x) = S(y) → x = y
(5) IndN [φ] for every bounded formula φ, where IndN [φ] is the following formula:

φ{∅/x} ∧ ∀x(φ → φ{S(x)/x}) → ∀x(N(x) → φ)

Corollaries.
(1) ⊢VBS ∀x.N(x) → Ordinal(x)
(2) ⊢VBS ∀x∀y.N(x) ∧ y ∈ x → N(y)
(3) ⊢VBS ∀x.N(x) ↔ N⋆(x)
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