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Introduction

According to Leonhard Euler: “In der Welt geschieht nichts, worin man
nicht den Sinn eines bestimmten Maximums oder Minimums erkennen könnte.”1

In this spirit, I have written my Ph.D., with optimization as the golden thread
that links the four major parts of my thesis.

Mathematical optimization is an umbrella term for the study of maximiz-
ing (resp., minimizing) a quantity of interest subject to constraints. On the
most basic level, mathematical optimization problems have two parts: an ob-
jective function that quantifies improvement due to the choice of input, and a
set of valid inputs. The type of an optimization problem is determined by the
nature of its objective function and feasible region. For example, polynomial
optimization problems optimize a polynomial objective over a domain defined
by polynomial constraints. Often the objective and domain of optimization
are determined by some underlying model or real-world problem of interest.

Matrix factorization ranks

As an example of a mathematical optimization problem, consider the com-
pletely positive rank of a completely positive matrix. A symmetric nonnegative
matrix A ∈ Rn×n

+ is called completely positive (CP) if there exists nonnega-

tive vectors a1, ...,ar ∈ Rn
+ with the property that A =

∑
ℓ∈[r] aℓa

T
ℓ . The

completely positive rank of a CP matrix A, denoted rankcp(A), is the smallest
positive integer r ∈ N for which there exist nonnegative vectors a1, ...,ar ∈ Rn

+

with the property that A =
∑

ℓ∈[r] aℓa
T
ℓ . Formulated as an optimization prob-

lem, the CP rank reads as follows:

rankcp(A) := min
{
r ∈ N : a1, ...,ar ∈ Rn

+, A =
∑
i∈[r]

aℓa
T
ℓ

}
.

If A is not CP, we set rankcp(A) = ∞. The set of all n× n CP matrices form
a convex cone, denoted by CPn.

Building on an earlier result from 1965 by Motzkin and Straus [43], de
Klerk and Pasechnik [43, Theorem 2.2] showed in 2002 that the problem of

1Nothing happens in this world in which one could not recognize the meaning of a
certain maximum or minimum.
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2 INTRODUCTION

computing the stability number α(G) of a graph G := ([n], E) could be recast
as an optimization problem over CPn. Burer [28] expanded on this result
in 2009 by showing that any nonconvex quadratic program with binary and
continuous variables could be reformulated as a linear program over the cone
of CP matrices. This effectively meant that many NP-hard problems could
now be viewed as linear programs with CP membership constraints.

In statistics, CP matrices are linked to the theory of block designs; see
[145]. Block designs are used in many applications where systematic com-
parisons are being made. For example, when a researcher wishes to test the
efficacy of different treatments (like the protection offered by different sun-
screen lotions) on a group of test subjects (like a random sample of the human
population), the researcher could group test subjects by the treatment they
receive (assigning them to a “block”) in such a way that the inherent differ-
ences between the test subjects (like age and ethnicity) do not skew the results
of the different treatments; see [83]. Hence, finding a “minimal” block design
would correspond to one that requires the fewest test subjects.

We have dedicated Part 2 of this thesis to studying the CP rank and several
other matrix factorization ranks, such as the nonnegative rank and separable
rank.

Polynomial optimization

As a sub-topic of optimization, we consider polynomial optimization, where
the objective function is a polynomial, and the set of valid inputs is a semial-
gebraic set characterized by a finite system of polynomial constraints, i.e.,

inf f(x)

s.t. x ∈ K := {x ∈ Rn : gi(x) ≥ 0 (i ∈ [Ng]), hj(x) = 0 (j ∈ [Nh])}.

Here, f, g1, ..., gNg , h1, ..., hNh
∈ R[x] := R[x1, x2, ..., xn] are polynomials.

Polynomial optimization already provides a rich enough framework to cap-
ture many pertinent problems like matrix factorization rank, portfolio selec-
tion, and some optimization problems arising in queueing theory. Another
important industrial application of polynomial optimization is to the optimal
power flow problem; see, e.g., [9] and the references therein. The primary
problems in Parts 3 and 4 of this thesis boil down to dealing with particular
classes of polynomial optimization problems.

Because of its expressive power, polynomial optimization contains many
NP-hard problems. Hence, polynomial optimization problems are often diffi-
cult to solve. A notable exception is when the problem is convex, i.e., when
the objective function is convex, and the domain of integration is convex. In
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POLYNOMIAL OPTIMIZATION 3

this case, provided we have some additional information, like the gradient of
the objective and an efficient means of projecting onto the feasible region, we
can use powerful and well-studied first-order methods to optimize the problem.
We leverage these techniques in Part 3, where the crux of our solution lies in
showing that a multi-objective problem of interest can be partially solved by
solving a collection of (scalar-objective) problems, many of which are convex.
In Part 4, the core result is again showing convexity, though this time requiring
tools from matrix algebra theory.

The mean-variance-skewness-kurtosis problem. As an example of a
polynomial optimization problem, consider the problem

min λ1f1(w) + λ2f2(w) + λ3f3(w) + λ4f4(w)

s.t. w ∈ ∆n := {w ∈ Rn : wi ≥ 0,
∑
i∈[n]

wi = 1}, (0.1)

for some polynomials f1, f2, f3, f4 ∈ R[w] and a fixed parameter λ ∈ R4. This
problem emerges in Part 3, where it is used to recover Pareto optimal so-
lutions to the mean-variance-skewness-kurtosis (MVSK) problem in finance.
The MVSK problem is a particular model for the problem of portfolio op-
timization, where one is tasked with selecting a subset of assets (called a
portfolio) from a pool of available assets in such a way as to maximize the
appreciation of the selection’s value while minimizing the risk of losing the
initial capital investment.

In Part 3, the polynomials f1 and f3 will model the expected returns on
investment, the polynomials f2 and f4 will model the risk of monetary loss, and
the parameter λ ∈ R4 will be chosen to represent the investor’s preferences in
balancing these conflicting objectives. For k ∈ [4] we have deg(fk) = k, hence
(0.1) is a quartic optimization problem over the simplex.

Our core contribution to this topic is the characterization of a large class
of λ ∈ ∆4 for which (0.1) becomes a convex optimization problem. This
seemingly simple result is either not mentioned or assumed not to hold; see,
e.g., [92, 95, 117, 120, 147, 174]. To the best of our knowledge, this
convexity result does not appear to be known in the literature on the MVSK
problem. We also provide peripheral results on finding sparse solutions.

The minimum of a graph-based polynomial from queueing the-
ory. In Part 4, we consider two classes of polynomials that have significance
in queueing theory, in particular, with regard to the asymptotic behavior of a
parallel-server system’s job occupancy with redundancy scheduling. Let

E := {e ⊆ [n] : |e| = L}
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4 INTRODUCTION

be the set of all edges of a complete L-uniform hypergraph on n elements. We
are tasked with proving that the optimal value of

min pd(x) :=
∑

(e1,...,ed)∈Ed

1

|e1 ∪ . . . ∪ ed|
xe1 · · ·xed

s.t. x ∈ ∆m :=
{
x = (xe)e∈E ∈ Rm : x ≥ 0,

∑
e∈E

xe = 1
}
,

(0.2)

is attained at the barycenter x∗ := 1
m(1, . . . , 1) of ∆m for all d ∈ N and L. This

is done by exploiting the symmetry properties of pd(x) and the fact that pd is
convex over the simplex ∆m. We prove that pd is convex by showing that the
Hessian H(pd) is positive semidefinite over ∆m. Proving the PSDness of the
Hessian H(pd) is the main result of Part 4, to which we dedicate Chapter 12.
The proof proceeds with several PSDness preserving reductions of H(pd) into
smaller matrices, which are then shown to belong to the Terwilliger algebra
of the binary Hamming cube. We prove these final matrices are PSD using
classical results from Artin, Wedderburn [166], and Schrijver [144]. For a
more modern treatment of matrix algebras, we refer the reader to the thesis
of Dion Gijswit [73] and the references therein.

The other (more important) class of polynomials fd (which we do not
define here) is then investigated in Chapter 13, where it is observed that fd
also obtains its global optimum at the barycenter provided fd is convex over
∆m. Except for a few special cases, we fail to prove that fd is convex in general.
Still, we show that H(pd) appears in the Hessian H(fd) in some intricate way,
laying the foundation for future research (like that of [131]) into this problem.

Generalized moment problems

A way to circumvent the computational difficulty of NP-hard problems
is to consider related or relaxed problems, which are easier to solve than the
original problem, and whose optimal values approximate that of the original
problem. A prime example is the moment method applied to generalized mo-
ment problems (GMPs). First, we briefly describe moment problems and then
give the moment method’s gist.

Moment problems have been actively studied for at least a century, and
as such, the field is very rich and broad in applications; see, e.g., Akhiezer [4],
Schmüdgen [142], and Lasserre [106]. For a recent survey, see [42].

We focus on generalized moment problems from the perspective of linear
optimization problems over measures, which contains polynomial optimization
as a special case. The study of GMPs should be understood in contradistinc-
tion to “the moment problem”, which is a related classical topic where one
seeks a representing measure for a given (partial) set of moments.
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GENERALIZED MOMENT PROBLEMS 5

Building on the example of the CP rank, we consider the following gener-
alized moment problem, first defined by Fawzi and Parilo in [67]:

τcp(A) := inf
µ∈M (KA)

{∫
KA

1dµ :

∫
KA

xixjdµ = Aij (i, j ∈ [n])
}
. (0.3)

Here, one optimizes over positive Borel measures µ supported on the semi-
algebraic set KA, which is defined as

KA =
{
x ∈ Rn :

√
Aiixi − x2i ≥ 0 (i ∈ [n]),

Aij − xixj ≥ 0 (i < j ∈ [n]),

A− xxT ⪰ 0
}
.

The GMP (0.3) has an optimal value that lower bounds the CP rank of A.
To see this, take any optimal CP factorization A =

∑
ℓ∈[r] aℓa

T
ℓ of matrix A

and define the measure µ :=
∑

ℓ∈[r] δaℓ
, where δaℓ

is the Dirac delta measure

centered at aℓ ∈ KA. Some inspection will show that µ is a feasible solution
to (0.3) with

∫
KA

1dµ = r = rankcp(A). Thus we have

τcp(A) ≤ rankcp(A).

Since GMPs capture polynomial optimization, they are generally hard
to solve. So, we must look at approximate solutions by considering relaxed
problems related to the GMP.

The moment method. The core idea of the moment method is to recast
a GMP (like the one in (0.3)) in terms of a linear functional L and then to
impose positivity conditions on L that are necessary for L to have a represent-
ing measure. The classical result of Putinar (see Theorem 2.8) provides such
necessary conditions. It states that a linear functional L has a representing
measure µ supported on the semialgebraic set

D(H) :=
{
x ∈ Rn : g(x) ≥ 0, for all g ∈ H

}
,

where H ⊆ R[x] is some set of polynomials, provided the associated quadratic
module

M(H) := cone
{
gpp : p ∈ R[x], g ∈ H ∪ {1}

}
is Archimedean (i.e., R−

∑n
i=1 x

2
i ∈ M(H) for some R > 0) and L is positive

on M(H). By relaxing the positivity of L on the quadratic module M(H) to
only positivity on the truncated quadratic module

M2t(H) := cone
{
gpp : p ∈ C[x,x], g ∈ H ∪ {1}, deg(gpp) ≤ 2t

}
,

for some t ∈ N, one obtains lower bounds on the optimal value for the GMP.
These relaxations form a hierarchy of semidefinite programs, with each

level t in the hierarchy corresponding to a different order of truncation. Ap-
plying the moment method, for every t ∈ N ∪ {∞}, to the GMP in (0.3) we
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get the hierarchy of SDPs

ξcpt (A) := min
{
L(1) :L ∈ R[x]∗2t,

L(xxT ) = A,

L([x]t[x]Tt ) ⪰ 0,

L((
√

Aiixi − x2i )[x]t−1[x]Tt−1) ⪰ 0 (i ∈ [n]),

L((Aij − xixj)[x]t−1[x]Tt−1) ⪰ 0 (1 ≤ i < j ≤ n),

L((A− xxT ) ⊗ [x]t−1[x]Tt−1) ⪰ 0
}
.

Using the general results we develop in Sections 3.1.1 and 3.1.2, we show in
Section 6.1.2 that this particular hierarchy satisfies

ξcp1 (A) ≤ ξcp2 (A) ≤ · · · ≤ ξcp∞(A) = τcp(A).

These parameters ξcpt (A) can often be computed for reasonably sized matrices
A and values t. Constructing these hierarchies and exploring the bounds they
provide in the context of matrix factorization ranks is our core contribution
in Part 2.

The Achilles’ heel of the moment method is the exponential growth of
the moment matrices defining the SDPs of the hierarchy. To combat this, we
developed a technique we call ideal sparsity, that exploits a special structure
in the GMP.

Ideal sparsity. Consider a GMP of the particular form

val := inf
µ∈M (K)

{∫
f0dµ :

∫
fidµ = ai (i ∈ [Nf ])

}
,

K =
{
x ∈ Rn : gj(x) ≥ 0 (j ∈ [Ng]),

∏
i∈S

xi = 0 (S ∈ S)
}
,

where M (K) is the set of positive Borel measures supported on K, f0,f1,...,fNf
,

g1, ..., gNg ∈ R[x] are polynomials, a1, ..., aNf
∈ R are scalars, and S ⊆ P([n]).

The distinguishing feature of this GMP is the presence of the particular ideal
constraint requiring supp(µ) ⊆ {x ∈ Rn :

∏
i∈S xi = 0 (S ∈ S)} in the defini-

tion of K.

In Chapter 2, we show that this GMP has an equivalent sparse refor-
mulation, where the single (high-dimensional) measure variable is replaced
by several (lower-dimensional) measure variables. Even though the resulting
ideal sparse GMP is equivalent, its associate ideal sparse hierarchy is both
more economical in terms of the involved matrix sizes and in terms of the
quality of bounds it provides.
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This result stands in contradistinction to other sparsity techniques, where
one often sacrifices the bound strength in exchange for a computational speed-
up. We demonstrate the significant improvement due to ideal sparsity with
applications to the CP rank (Chapter 6) and nonnegative rank (Chapter 5).

Similarly, we consider a “block-diagonal reduction” in Section 7.2 to make
the SDP hierarchy associated with the separable rank (Chapter 7) more effi-
cient.

Societal and scientific relevance

Matrix factorization is a powerful mathematical tool that significantly im-
pacts a wide range of applications in today’s society. From recommendation
systems and data mining to image processing and natural language processing,
matrix factorization techniques play a crucial role in various algorithms. It is
prized for its ability to compress data, reduce dimensionality, and its ease of
interpretation. Interpretability is becoming ever more appreciated as several
prominent machine learning algorithms essentially function as “black boxes,”
obfuscating their inner workings and casting suspicion on their conclusions.
Matrix factorization ranks can be seen as quantifying the complexity of the
data represented as a matrix. However, some of these matrix factorization
ranks are difficult to compute. Hence, there is a need to find accurate lower
bounds that are easier to compute.

Moments problems are an extremely rich field of study with several applica-
tions like global optimization, Markov chains, optimal control, and multivari-
ate integration, to name a few. Generalized moment problems, in particular,
are often used to attack optimization problems in many diverse contexts. One
example that stands out is the estimation of Lipschitz constants for ReLU
networks, thereby gauging the robustness of the network. This has been done
using semialgebraic optimization and could potentially benefit from ideal spar-
sity.

Portfolio selection is at the heart of wealth management, both on the in-
dividual investor’s level and the level of large institutions. To wisely allocate
investments based on the deluge of information available today, it is essen-
tial to have data-driven models that do not rely solely on human judgment.
Portfolio optimization codifies the portfolio selection task as a mathematical
optimization problem, thereby quantifying risks and rewards while balancing
them against each other.

Queueing theory is an imminently practical subtopic of operations research
that studies the allocation of incoming jobs (a queue of jobs) to a collection
of servers (things that complete jobs). The goal is often one of optimization,
where one, for example, wants to maximize the number of jobs completed in
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a fixed time frame or minimize the time a server spends idling. The goals
are often set in accordance with some business decisions. Historically, queue-
ing theory was used in project management and industrial engineering. Due
to the popularity of the Internet, online services and website traffic have be-
come popular use cases. Today, queueing theory also has applications in (but
not limited to) logistics, health care, service operations management, revenue
management, theoretical economics, and pricing.

Organization

This thesis is organized into four parts.

Part 1 contains preliminaries (Chapter 1) followed by an introduction to
generalized moment problems (Chapter 2). Ideal sparsity is a subtopic of
GMPs (Section 2.2.1), which we developed in [100]. The moment method
and associated fundamental results from the literature are provided in Chap-
ter 3, where we adapt them for their use in Part 2 of the thesis, which is
on matrix factorization ranks (MFR). In the moment method, we look, in
particular, at polynomial matrix localizing constraints, which have a natural
application in MFR. Part 1 is mostly written for complex polynomials as this
will be required in Chapter 7 for the separable rank. However, real analogs
are also provided where applicable, and the core results are stated in both
variants for clarity and convenience.

Part 2 is dedicated to MFR. We give a general overview of matrix fac-
torization in Chapter 4, which is based on our book chapter [151]. Special
focus is given to the nonnegative rank (Chapter 5), the completely positive
rank (Chapter 6), and the separable rank (Chapter 7), where we apply the
moment method described in Chapter 3. In particular, we apply ideal sparsity
to the hierarchies associated with nonnegative rank and completely positive
rank, and we apply a block-diagonalization technique to the separable rank.

Part 3 is devoted to the MVSK problem in portfolio optimization. This
part of the thesis stands on its own and is based on our work in [150]. Chap-
ter 8 gives some finance theory background on the MVSK problem and some
preliminaries on multi-objective optimization. We follow up in Chapter 9
with the mathematical formulation of MVSK as a multi-objective optimiza-
tion problem. We attack the MVSK problem by linearly scalarizing it for a
given hyper-parameter λ ∈ ∆4, resulting in a problem that looks similar to
the one in (0.1). These scalarized problems are then shown to be convex for a
large class of λ’s. By grid sampling ∆4, and solving the associated scalarized
problem (for different λ’s) using first-order methods, we partially recover the
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Pareto front of the MVSK problem. Chapter 10 considers the results of nu-
merical experiments on real-world data and visualizes them.

In Part 4, we introduce two hypergraph-based classes of polynomials,
which we denote (but do not define here) as fd and pd, respectively. We give
a brief motivation from queueing theory for our interest in these polynomials
and introduce some necessary preliminaries on the Terwilliger algebra of the
binary Hamming cube (Chapter 11). In Chapter 12, we give the main result of
Part 4; namely, we show that the polynomials pd are convex over the standard
simplex and that this implies that they attain their global minimum at the
barycenter of the simplex. We do this by exploiting symmetry properties of pd
(also present in fd) and showing that its Hessian is PSD using several PSDness
preserving reductions and a classical result by Schrijver. In Chapter 13, we
relate the polynomials pd to the polynomials fd and show some partial results
for fd in the same spirit as that of Chapter 12.

Publications

This thesis is based on the following research papers:

[27] D. Brosch, M. Laurent, and A. Steenkamp.
Optimizing hypergraph-based polynomials modeling
job-occupancy in queueing with redundancy scheduling.
SIAM Journal on Optimization, 31(3):2227–2254, 2021.
https://doi.org/10.1137/20M1369592

[81] S. Gribling, M. Laurent, and A. Steenkamp.
Bounding the separable rank via polynomial optimization.
Linear Algebra and its Applications, 648:1–55, 2022.
https://doi.org/10.1016/j.laa.2022.04.010

[100] M. Korda, M. Laurent, V. Magron, and A. Steenkamp.
Exploiting ideal-sparsity in the generalized moment prob-
lem with application to matrix factorization ranks.
Mathematical Programming, 2023.
https://doi.org/10.1007/s10107-023-01993-x

https://doi.org/10.1137/20M1369592
https://doi.org/10.1016/j.laa.2022.04.010
https://doi.org/10.1007/s10107-023-01993-x
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[151] A. Steenkamp.
Matrix factorization ranks via polynomial optimization.
Chapter of Polynomial Optimisation, Moments, and Applications, to
appear in Springer series “Optimization and Its Applications”, 2023.
http://arxiv.org/abs/2302.09994

[150] A. Steenkamp.
Convex scalarizations of the mean-variance-skewness-kurtosis
problem in portfolio selection.
Submitted to INFORMS Journal on Computing, 2023.
https://arxiv.org/abs/2302.10573

http://arxiv.org/abs/2302.09994
https://arxiv.org/abs/2302.10573
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Part 1

Polynomial optimization techniques
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Part 1 of the thesis contains three chapters. Chapter 1 introduces most
of the notation, basic definitions, and nomenclature for chapters 2, 3, and
the rest of the thesis. Chapter 2 introduces the generalized moment problem
(GMP), which describes a rich class of optimization problems. Our primary
interest and motivation are to solve GMPs. To this end, we dedicate the third
and final chapter, Chapter 3, where we describe the moment method. This is
a classical method and our primary technique for approximating GMPs with
a sequence of semidefinite programs.

We present our new research after stating classical results for contextual-
ization. In particular, our results on ideal sparsity are presented following the
formal definition of a GMP in Chapter 2. Similarly, the ideal-sparse hierarchy
is only introduced once the classical moment method is described and the re-
sulting hierarchy is defined in Chapter 3. Our most significant motivation for
using ideal sparsity comes from its efficacy in bounding matrix factorization
ranks (MFR). However, we only properly introduce MFR in Part 2, where
we dedicate several chapters to the topic. We must stress that ideal sparsity
has applications beyond MFR, and as such, it is treated here in Part 1 in the
abstract setting of GMPs.

The contribution to ideal sparsity is based on our joint work with Milan
Korda, Monique Laurent, and Victor Magron in [100].
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CHAPTER 1

Polynomials

We introduce some fundamental objects, definitions, and results that will
be used throughout the thesis. In particular, we introduce polynomials (Sec-
tion 1.1), their dual, linear functionals (Section 1.2), and moment matrices
(Section 1.3). We explain the fundamental relationships and properties be-
tween these three topics as we introduce them.

These first three sections are all stated for complex variables. This is a
rather technical but necessary requirement for the forthcoming Chapter 7,
where the objects of interest, separable states, are described as matrices with
complex entries. Many classical results are phrased in the real setting; as
such, we need to extend them to the complex setting. We do this in the final
Section 1.4.

For the other topics of this thesis, we will work exclusively in the real
setting. To this end, Section 1.4 contains many useful conversions between
complex objects and their real analogs.

1.1. Basic definitions and objects

1.1.1. Basic notation. We start with some basic mathematical objects
and notation. Let Z denote the set of integers, and let N := {0, 1, 2, 3, ...}
denote the set of nonnegative integers. For any integer n, with n ≥ 1, let
[n] := {1, 2, ..., n}. Similarly, for any two distinct integers k < n define the set
[k, n] := {k, k + 1, . . . , n− 1, n}. For n, k ∈ N with k ≤ n denote by(

n

k

)
:=

n!

(n− k)!k!

the combinatorial parameter representing the number of ways one can choose
k objects from a set of size n. Consider now a vector of nonnegative integers
α ∈ Nn and define its size by |α| :=

∑n
i=1 αi. The set of nonnegative integer

vectors with size at most k ∈ N is denoted Nn
k := {α ∈ Nn : |α| ≤ k}; it has

cardinality
(
n+k
k

)
. For any real number a ∈ R, we denote

• its floor by ⌊a⌋ := max{b ∈ Z : b ≤ a} and,
• its ceiling by ⌈a⌉ := min{b ∈ Z : b ≥ a}.

For any set V we denote by P(V ) := {S : S ⊆ V } the power set of V . We
denote the cardinality or size of a finite set S by |S| ∈ N.

13
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14 1. POLYNOMIALS

Complex objects. For a complex scalar a ∈ C, we denote its conjugate by a
and its modulus by |a| :=

√
aa. For a complex vector a := (a1, a2, ..., an) ∈ Cn

we denote its conjugate transpose by a∗ := (a1, ..., an)T . Similarly, for a
complex matrix X ∈ Cn×m, we denote its transpose by XT and its conjugate
transpose by X∗.

Vectors and matrices. Let the vector space Cn be equipped with the scalar
product ⟨x,y⟩ := x∗y =

∑n
i=1 x

∗
i yj for x,y ∈ Cn. Our convention is to use

bold lower-case Roman letters for vectors, e.g., a,b,x,y, z,u,v,w. This inner
product induces the Euclidean norm: ∥x∥ :=

√
x∗x. Analogously, the vector

space Cn×n is equipped with the trace inner product ⟨X,Y ⟩ = Tr(X∗Y ) =∑n
i,j=1XijYij and the Frobenius norm ∥X∥ :=

√
⟨X,X⟩, where X,Y ∈ Cn×n.

The support of a vector x ∈ Rn is the set of indices

supp(x) := {i ∈ [n] : xi ̸= 0}.
For a set S in a vector space, we let cone(S) and conv(S) denote its conic hull
and its convex hull.

We let In and Jn denote the identity matrix and the all-ones matrix of
size n, which we sometimes also denote as I and J when the dimension is clear
from the context.

A matrix X ∈ Cn×n is called Hermitian if X∗ = X, and we denote the
space of complex Hermitian n× n matrices by Hn. A matrix X ∈ Hn is said
to be (Hermitian) positive semidefinite (PSD), denoted X ⪰ 0, if v∗Xv ≥ 0
for all v ∈ Cn. Let Hn

+ denote the cone of Hermitian positive semidefinite
matrices; it is self-dual in the sense that,

X ∈ Hn
+ ⇐⇒ ⟨X,Y ⟩ ≥ 0 for all Y ∈ Hn

+.

Furthermore, every Hermitian PSD matrix X ∈ Hn
+ has a Cholesky factoriza-

tion, i.e., X = V V ∗ for some V ∈ Cn×r, where r := rank(X).

Semidefinite program. For Hermitian matrices C,A1, ..., Am ∈ Hn, and
real numbers b1, ..., bm ∈ R we call the following optimization problem a semi-
definite program (SDP):

inf
X∈Hn

+

⟨C,X⟩

s.t. ⟨Ai, X⟩ = bi (i ∈ [m]).

SDPs like the above can be solved (up to some ε-accuracy) efficiently by in-
terior point methods (under some technical assumptions like rational data,
knowledge of a feasible point, and well-behavedness of the feasible region);
see, e.g., [125, 45]. As such, a running theme throughout this thesis will be
reformulating various optimization problems as SDPs, and then solving them.
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Restriction notation. Consider a set U ⊆ V := [n]. Given a vector y ∈
R|U |, we let (y, 0V \U ) ∈ Rn denote the vector obtained by padding y with zeros

at the entries indexed by [n] \ U . For an n-variate function f : R|V | → R, we

let f|U : R|U | → R denote the function in the variables x(U) := {xi : i ∈ U},
which is obtained from f by setting to zero all the variables xi indexed by
i ∈ V \ U . That is, f|U (y) = f(y, 0V \U ) for y ∈ R|U |. So, if f is an n-variate
polynomial, then f|U is a |U |-variate polynomial in the variables x(U).

Basic graph theory. Often we use G := (V,E) to denote a graph with set
of vertices V and set of edges E. The set of non-edges of G is defined to be
the set

E =
{
{i, j} : i ∈ V, j ∈ V, i ̸= j, {i, j} ̸∈ E

}
,

and similarly, the complement of G is defined as G := (V,E). For any subset
of vertices S ⊆ V we denote the set of induced edges as

E(S) :=
{
{i, j} ∈ E : {i, j} ⊆ S

}
.

A clique C ⊆ V of G is a set of vertices such that {i, j} ∈ E for all i, j ∈ C
with i ̸= j. An edge covering E ⊆ P(V ) of G is a collection of vertex sets with
the property that every edge e ∈ E is contained in some S ∈ E .

For a symmetric matrix A ∈ Rn×n we define its support graph

GA :=
(

[n], EA :=
{
{i, j} ⊆ [n] : i ̸= j, Ai,j ̸= 0

})
.

For an example of the above, we refer to Fig. 1 in Section 2.2.
A sequence of distinct vertices v1, v2, ..., vk ∈ V with k ≥ 3 is called a

cycle C (of length k) of G if {v1, v2}, {v2, v3}, ..., {vk, v1} ∈ E. Then, an edge
{vi, vj} ∈ E with |i − j| ≥ 2 is called a chord of C. A graph G is said to be
chordal if any cycle C of length 4 or more has a chord.

1.1.2. Polynomials. We consider polynomials in n complex variables
x1, ..., xn and their conjugates x1, ..., xn. For α, β ∈ Nn we use the short-hand
xαxβ to denote the monomial

xαxβ :=
∏
i∈[n]

xαi
i

∏
j∈[n]

xj
βj .

The degree of this monomial is defined to be the following nonnegative integer:

deg(xαxβ) := |α| + |β| =
∑
i∈[n]

αi + βi ∈ N.

It is often convenient to refer to the maximal degree in a set H ⊆ C[x,x]
of polynomials; in such cases, we write dH := maxg∈H{deg(g)}. We collect
the set of all monomials of degree at most t ∈ N ∪ {∞} in the vector [x,x]t
(using some given ordering of the monomials); for ease of notation, we set
[x,x] := [x,x]∞ consisting of all monomials (i.e., with no degree upper bound).
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16 1. POLYNOMIALS

Note that [x,x] = [x,x]. It is often convenient to use [x,x]t as a set, ignoring
its ordering. In such cases, we write xαxβ ∈ [x,x]t. Taking the complex linear
span of all monomials in [x,x]t gives

C[x,x]t := span{m : m ∈ [x,x]t} =
{ ∑

m∈[x,x]t

amm : am ∈ C
}
,

the space of polynomials with complex coefficients and degrees at most t. If
t = ∞ we write C[x,x] for the full polynomial ring in x,x over C. Observe
that any polynomial p ∈ C[x,x] is of the form

p =
∑
α,β

pα,βx
αxβ,

where only finitely many coefficients pα,β are nonzero. The degree of p is the
maximum degree of its constituent monomials, i.e.,

deg(p) := max
pα,β ̸=0

deg(xαxβ).

Let CNn×Nn

0 := {a = (aα,β)(α,β)∈Nn×Nn : ∥a∥0 < ∞} denote the set of vectors

in CNn×Nn
that have only finitely many nonzero entries. Then any polynomial

p can be written as

p = a∗[x,x] for some unique a =
(
pα,β

)
(α,β)∈Nn×Nn

∈ CNn×Nn

0 . (1.1)

Conjugation on complex variables extends linearly to polynomials, for p =∑
α,β pα,βx

αxβ we define its conjugate polynomial p :=
∑

α,β pα,βx
αxβ.

Polynomials equal to their conjugate, i.e., polynomials p such as p = p,
are called Hermitian. Hermitian polynomials are noteworthy partly because
they take only real values, i.e., p(x,x) ∈ R for all x ∈ Cn. We denote the
space of Hermitian polynomials by C[x,x]h. As two examples of Hermitian
polynomials, we present the following univariate polynomials: p = x + x and
q = ix − ix. As an example of a non-Hermitian polynomial, we present r =
x − x; indeed r = −r and r(i) = 2i ̸∈ R. Polynomials of the form qq (for
some q ∈ C[x,x]) are called Hermitian squares and are a particular class of
Hermitian polynomials that take only nonnegative values. For any t ∈ N∪{∞}
we define the cone of sums of Hermitian squares (Hermitian SoS) with degree
at most 2t by

Σ[x,x]2t :=
{∑

i∈[k]

qiqi : k ∈ N, q1, q2, ..., qk ∈ C[x,x]t

}
.

Since each element p of Σ[x,x]2t is a conic combination of Hermitian squares,
we have that p takes only nonnegative values. If the variables are clear from
the context, we write Σ2t, and if additionally t = ∞, we write Σ.
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1.2. DUAL SPACE OF POLYNOMIALS 17

SoS-polynomial matrices. A (complex) polynomial matrix S ∈ C[x,x]m×m

is called an SoS-polynomial matrix if S = UU∗ for some polynomial matrix
U ∈ C[x,x]m×k and some integer k ∈ N, or, equivalently, if

S ∈ cone{p⃗p⃗∗ : p⃗ = (p1, . . . , pm) ∈ C[x,x]m}.

Clearly, an SoS-polynomial matrix S takes only Hermitian PSD values, i.e.,
S(x,x) ∈ Hm

+ for all x ∈ Cn. We have added the arrow notation “p⃗” to
distinguish vectors with polynomial entries from those with scalar entries. At
this point, there may be some confusion on the use of “Hermitian” with regards
to a polynomial matrix S ∈ C[x,x]m×m. Observe that S can be Hermitian as
a matrix, i.e., S = S∗, which means that Si,j = Sj,i for all i, j ∈ [m]. However,

S can also have an entry Si,j that is Hermitian as a polynomial, i.e., Si,j = Si,j .
Whenever we say a polynomial matrix is Hermitian, it should be understood
in the matrix sense unless we specifically say otherwise.

Semi-algebraic sets. It will be useful to work with a special class of sets
in Cn called semi-algebraic sets. A set K ⊆ Cn is called (basic closed)
semi-algebraic if there exist integers Ng, Nh ∈ N, Hermitian polynomials

g1, ..., gNg ∈ C[x,x]h, and polynomials h1, ..., hNh
∈ C[x,x] such that

K =
{
x ∈ Cn : gi(x,x) ≥ 0 (i ∈ [Ng]), hj(x,x) = 0 (j ∈ [Nh])

}
. (1.2)

We have added the equality constraints for exposition purposes. The inequality
constraints alone are sufficient because h = 0 is equivalent to h ≥ 0 and
−h ≥ 0.

1.2. Dual space of polynomials

The algebraic dual space of C[x,x] is the vector space

C[x,x]∗ :=
{
L : C[x,x] ∋ p → L(p) ∈ C | L is linear

}
of all linear functionals L mapping polynomials in C[x,x] to C. Just as we
sometimes work with polynomials of bounded degree, i.e., C[x,x]t for some
t ∈ N∪{∞}, we will work with the space C[x,x]∗t of linear functionals defined
on C[x,x]t. If t = ∞, we omit the subscript and write C[x,x]∗.

Hermitian linear functionals. A linear functional L ∈ C[x,x]∗ is called

Hermitian if L(p) = L(p) for all p ∈ C[x,x]. A (Hermitian) linear functional
L ∈ C[x,x]∗ is called positive, written as L ≥ 0, if it maps Hermitian squares
to nonnegative real numbers, i.e., if L(qq) ≥ 0 for all q ∈ C[x,x].
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Evaluation functionals. As an example of a linear functional, we can de-
fine, for any a ∈ Cn, the evaluation functional La ∈ C[x,x]∗ at a as follows:

La : C[x,x] ∋ p → p(a) ∈ C.

It is easy to see that La is both Hermitian and positive.

Polynomial localizing maps gL. Given a polynomial g ∈ C[x,x] and
a linear functional L ∈ C[x,x]∗ we can construct a new linear functional
gL ∈ C[x,x]∗ defined entry-wise as follows:

gL : C[x,x] ∋ p 7→ L(gp) ∈ C. (1.3)

Via the above construction, we say that g acts on C[x,x]∗ by mapping L to
gL. If g ∈ C[x,x]h and L is Hermitian, then gL is Hermitian.

Matrix-valued linear functionals. The notion of matrix-valued linear
functionals is similar to the above scalar-valued linear functionals. These
functionals act on polynomials p ∈ C[x,x] but take values in some matrix
space Cm×m, where m ∈ N is arbitrary but fixed. Consider the following
matrix-valued linear functional:

L : C[x,x] ∋ p 7→ L(p) :=
(
Lij(p)

)
i,j∈[m]

∈ Cm×m. (1.4)

Here, L = (Lij)
m
i,j=1 with each Lij ∈ C[x,x]∗ being a scalar-valued linear

functional. We write (C[x,x]∗)m×m for the set of all m × m-matrix-valued
linear functionals L acting on polynomials in C[x,x]. We call L Hermitian

if L(p) = L(p)∗, i.e., Lij(p) = Lji(p) for all i, j ∈ [m] and all p ∈ C[x,x].
Furthermore, L is said to be positive, written L ⪰ 0, if it maps positive ele-
ments (i.e., Hermitian squares pp) to positive elements (i.e., Hermitian positive
semidefinite m×m matrices), i.e., if the following holds:

L(pp) = (Lij(pp))mi,j=1 ⪰ 0 for all p ∈ C[x,x]. (1.5)

We define an action of L on a polynomial matrix S = (Sij)
m
i,j=1 ∈ C[x,x]m×m:

⟨L, S⟩ :=
m∑

i,j=1

Lij(Sij). (1.6)

If L and S are both Hermitian, then ⟨L, S⟩ ∈ R. Furthermore, if L is positive
and S ⪰ 0, then ⟨L, S⟩ ≥ 0.

Polynomial matrix localizing maps gL. Similar to what we did with
scalar-valued linear maps in (1.3), we can combine a matrix-valued linear
functional L and a polynomial g ∈ C[x,x] to create a new matrix-valued
linear functional

gL : C[x,x] ∋ p 7→ (gL)(p) = L(gp) =
(
Lij(gp)

)
i,j∈[m]

∈ Cm×m. (1.7)
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1.3. MOMENT MATRICES 19

Suppose g and L are Hermitian (in their respective senses), then gL is Hermit-
ian. Furthermore, if g ∈ Σ is a sum of squares polynomial and L is positive,
then gL is positive.

Polynomial matrix localizing maps G⊗L. We can extend the construc-
tion of gL in (1.3) to the case when g is no longer a polynomial but rather a
polynomial matrix G = (Gij)

m
i,j=1 ∈ C[x,x]m×m (we assume for convenience

that G is square). Given a linear functional L ∈ C[x,x]∗, we can construct
a new matrix-valued linear functional G ⊗ L ∈ C[x,x]∗ defined entry-wise as
follows:

G⊗L : C[x,x] ∋ p 7→ (G⊗L)(p) :=
(
(GijL)(p)

)m
i,j=1

=
(
L(Gijp)

)m
i,j=1

∈ Cm×m.

For our applications in Part 2, we will only consider matrix-valued linear
functionals of the form G ⊗ L. However, for ease of proof and clarity of
exposition, we will continue work in the general setting whenever possible. It
should be noted that the general setting was used in [80] to establish the link
between the moment method and the DPS hierarchy (based on state extension)
for approximating the set of separable states.

1.3. Moment matrices

Functionals on polynomials extend entry-wise to polynomial matrices.
Formally, given a linear functional L ∈ C[x,x]∗ and a polynomial matrix
G = (Gij)

m
i,j=1 ∈ C[x,x]m×m, we define L(G) to be the matrix

L(G) :=
(
L(Gij)

)
i,j∈[m]

∈ Cm×m.

We apply this operation to define the notion of moment matrices.

Moment matrices of scalar-valued linear functionals. Fix t ∈ N ∪
{∞} and consider the result of applying a linear functional L ∈ C[x,x]2t to
the (possibly infinite) polynomial matrix [x,x]t[x,x]∗t to get

Mt(L) := L([x,x]t[x,x]∗t ) =
(
L(xα+γxβ+δ)

)
(α,β),(γ,δ)∈(Nn)2: |α+β|, |γ+δ|≤t

.

(1.8)
The matrix Mt(L) is called the moment matrix of L of order t. It satisfies
what is called the moment property, which means that, for any (α, β), (γ, δ),
(α′, β′), (γ′, δ′) ∈ (Nn)2 with |α + β|, |γ + δ|, |α′ + β′|, |γ′ + δ′| ≤ t and
α + γ = α′ + γ′, β + δ = β′ + δ′, we have

(Mt(L))(α,β),(γ,δ) = (Mt(L))(α′,β′),(γ′,δ′).

When we make no mention of the order t, we imply that t = ∞. It is useful
to note that the moment matrix operation is linear, i.e.,

Mt(aL1 + bL2) = aMt(L1) + bMt(L2) (1.9)
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20 1. POLYNOMIALS

for any two linear functionals L1, L2 ∈ C[x,x]∗ and scalars a, b ∈ C.

Observe that the moment matrix of an evaluation functional La at a ∈ Cn is

Mt(La) = [a,a]t[a,a]∗t ,

which is clearly a rank-one matrix. Hence, if L is a linear combination of
evaluation functionals, its moment matrix Mt(L) has a finite rank, also if
t = ∞.

Lemma 1.1. A linear functional L ∈ C[x,x]∗ is Hermitian if and only if
its moment matrix M(L) is Hermitian.

Proof. If L(p) = L(p) for all p ∈ C[x,x], then

M(L)∗ = L([x,x][x,x]∗)
T

= L([x,x][x,x]∗)T

= L([x,x][x,x]∗)T = L([x,x][x,x]T )T = L([x,x][x,x]∗) = M(L).

Conversely, if M(L) = M(L)∗, then L(xαxβ) = L(xαxβ) = L(xαxβ) for every
α, β ∈ Nn. In particular, for any p ∈ C[x,x], we have

L(p) =
∑
α,β

pα,βL(xαxβ) =
∑
α,β

pα,βL(xαxβ) = L(p). □

The above lemma holds mutatis mutandis when applied to a truncated
functional L ∈ C[x,x]∗t and its associated moment matrix Mt(L).

Lemma 1.2. A linear functional L ∈ C[x,x] is positive if and only if its
moment matrix M(L) is PSD.

Proof. The claim becomes clear once one considers the following fact:
for any polynomial p ∈ C[x,x], written as p = a∗[x,x] with a ∈ CNn×Nn

0 , we
have

L(pp) = L(a∗[x,x][x,x]∗a) = a∗L([x,x][x,x]∗)a = a∗M(L)a. (1.10)

Hence,
L ≥ 0 ⇐⇒ M(L) ⪰ 0.

□

It may be useful to generalize the above fact in (1.10): if p = a∗[x,x] and

q = b∗[x,x] with a,b ∈ CNn×Nn

0 , then L(pq) = a∗M(L)b.

Moment matrices of polynomial localizing maps gL. As stated in
Lemma 1.2, gL is positive if and only if its moment matrix is PSD, i.e.,

gL ≥ 0 ⇐⇒ L(g · [x,x][x,x]∗) = M(gL) ⪰ 0. (1.11)

If g is Hermitian (as a polynomial) and L is Hermitian (as a functional), then
gL is a Hermitian functional, and hence M(gL) is a Hermitian matrix. For
the special case where L is an evaluation functional La and g is a polynomial
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1.3. MOMENT MATRICES 21

that is nonnegative at a, i.e., g(a,a) ≥ 0, we have that gL ≥ 0. This is clear
when considering any p ∈ C[x,x] and observing that

(gL)(pp) = g(a,a)|p(a,a)|2 ≥ 0.

In the literature (see [106]), M(gL) is often called a localizing moment matrix.
In a similar vein to (1.11) we have for any h ∈ C[x,x] the following:

hL = 0 ⇐⇒ L(h · [x,x][x,x]∗) = M(hL) = 0. (1.12)

Equality here is entry-wise but expressed in matrix form for ease of notation.
The implications of (1.11) and (1.12) easily transfer to the truncated setting.
Given a (truncated) linear functional L ∈ C[x,x]∗2t, its (truncated) localizing
matrix is defined as

Mt−dg(gL) = L(g · [x,x]t−dg [x,x]∗t−dg),

where we subtract dg := ⌈deg(g)2 ⌉ from the degree bound to account for the
effect of multiplying the monomials with g. Similarly, a localizing equality
constraint h = 0 will be encoded by

L(h · [x,x]2t−deg(h)) = 0.

Moment matrices of matrix-valued linear functionals L. Analogous
to the scalar-valued linear functional setting, we can, for a matrix-valued linear
functional L =

(
Lij

)m
i,j=1

∈ (C[x,x]∗)m×m, define a moment matrix block-wise

as follows:

M(L) := L([x,x][x,x]∗) =
(
Lij([x,x][x,x]∗)

)m
i,j=1

= (M(Lij))
m
i,j=1. (1.13)

Here, we view M(L) as an m × m block-matrix whose (i, j)th block is the
moment matrix M(Lij) of the scalar-valued linear functional Lij ∈ C[x,x]∗.
It should be clear that M(L) is a Hermitian matrix if L is Hermitian.

Positivity of L and its moment matrix M(L). Similar to the scalar-
valued case, if M(L) ⪰ 0, then L is positive, i.e., L(pp) ⪰ 0 for all p ∈ C[x,x].
However, the reverse implication may not generally hold; we motivate why in
the following two lemmas.

Lemma 1.3. L is positive, i.e., (1.5) holds, if and only if any of the fol-
lowing equivalent conditions holds:

M(v∗Lv) ⪰ 0 for all v ∈ Cm, (1.14)

(v ⊗ a)∗M(L) (v ⊗ a) ≥ 0 for all v ∈ Cm and a ∈ CNn×Nn

0 , (1.15)

v∗L(pp)v = (v∗Lv)(pp) ≥ 0 for all v ∈ Cm and p ∈ C[x,x]. (1.16)

Proof. The equivalence between (1.5) and (1.16) follows from the defi-
nition of PSDness. The equivalence between (1.16) and (1.14) follows from
using (1.10) applied to the (scalar-valued) map v∗Lv for each v ∈ Cm. To see
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22 1. POLYNOMIALS

the equivalence of (1.16) and (1.15), take an arbitrary polynomial p ∈ C[x,x]

and write it as p = a∗[x,x] with a = (aα,β) ∈ CNn×Nn

0 . Use (1.10) and the
definition of M(L) from (1.13) to get the following result for any v ∈ Cm:

v∗L(pp)v = v∗(Lij(pp))mi,j=1v = v∗(a∗M(Lij)a)mi,j=1v = (v⊗a)∗M(L)(v⊗a).

□

Lemma 1.4. M(L) ⪰ 0 if and only if any one of the following equivalent
conditions holds:

w∗M(L)w ≥ 0 for all w ∈ Cm ⊗ CNn×Nn

0 , (1.17)

⟨L, S⟩ ≥ 0 for all SoS-polynomial matrices S ∈ C[x,x]m×m, (1.18)

⟨L, p⃗p⃗∗⟩ =

m∑
i,j=1

Lij(pipj) ≥ 0 for all p⃗ = (p1, ..., pm) ∈ C[x,x]m. (1.19)

Proof. Condition (1.17) is just the definition of PSDness. The equiva-
lence between (1.18) and (1.19) follows from the fact that any SoS-polynomial
matrix S is a conic combination of rank-one SoS-polynomial matrices, i.e.,

S =

k∑
i=1

p⃗ip⃗
∗
i ,

for some k ∈ N and p⃗1, ..., p⃗k ∈ C[x,x]m.
To show that (1.19) and (1.17) are equivalent, start by considering an arbitrary

vector w = (wi,(α,β))i,(α,β) in Cm⊗CNn×Nn

0 . For each i ∈ [m] define the vector

ai = (wi,(α,β))(α,β) ∈ CNn×Nn

0 and its corresponding polynomial pi = a∗i [x,x].
From these m polynomials define the polynomial vector p⃗ = (p1, ..., pm) ∈
C[x,x]m of length m. Then

w∗M(L)w = w∗(M(Lij))
m
i,j=1w =

m∑
i,j=1

(a∗iLij([x,x][x,x]∗)aj)
m
i,j=1

=

m∑
i,j=1

(Lij(a
∗
i [x,x][x,x]∗aj))

m
i,j=1 =

m∑
i,j=1

Lij(pipj) = ⟨L, p⃗p⃗∗⟩. □

We now observe the similarities and disparities between the characterizations
of a positive functional L and the positivity characterizations of its moment
matrix M(L). First, observe that (1.15) is a special case of (1.17), where the
vectors w now must have a tensor product form w = v ⊗ a. Second, (1.16)
is a restriction of (1.19) to the case where p⃗ = (v1p, v2p, ..., vmp) for some
p ∈ C[x,x]. Hence, we have the following result.

Lemma 1.5. If M(L) ⪰ 0 then L is positive.

Note how (1.18) established the duality relationship between m×m SoS-
polynomial matrices and m×m-matrix valued linear maps L with M(L) ⪰ 0.
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1.3. MOMENT MATRICES 23

In the particular case that L = G(x,x)⊗L for some SoS-polynomial matrix
G(x,x) and L is a sum of evaluation functionals, we have that M(L) ⪰ 0.

On the tractability of showing Mt(L) ⪰ 0 vs. showing L ⪰ 0 on Σ2t.
For a fixed t ∈ N and a fixed choice of L ∈ (C[x,x]∗)m×m, it is computationally
tractable to check if Mt(L) ⪰ 0 since this amounts to checking whether a single
(
(
n+t
t

)
·m)-sized matrix is PSD. In contradistinction, it is not clear how to check

if L is positive on all sums of squares polynomials of degree at most 2t, as this
would require checking for every v ∈ Cn if the

(
n+t
t

)
-sized matrix Mt(v

∗Lv) is
PSD. Hence, Mt(L) ⪰ 0 is both a stronger and easier-to-verify condition than
L ⪰ 0 on Σ2t.

Moment matrices of polynomial matrix localizing maps G⊗L. Poly-
nomial matrix localizing maps G ⊗ L are a particular class of matrix-valued
linear maps. As such, all of the above results transfer to this setting. We exam-
ine this particular specialization because the results will be used in Chapter 3
and in Part 2 to construct moment hierarchies especially suited for matrix
factorization ranks. The moment matrix of G⊗ L is

M(G⊗ L) = L(G⊗ [x,x][x,x]∗) = ((GijL)([x,x][x,x]∗))mi,j=1. (1.20)

Given a (truncated) linear functional L ∈ C[x,x]∗2t, its (truncated) localizing
matrix is defined as follows:

Mt(G⊗ L) := L(G⊗ [x,x]t−dG [x,x]∗t−dG
), (1.21)

where we subtract

dG := max
i,j∈[m]

⌈deg(Gij)

2
⌉

from the degree bound to account for the effect of multiplying the monomials
with the entries of G. We collect some observations pertaining to G⊗ L and
its moment matrix M(G⊗ L).

The matrix M(G⊗La) has a tensor product structure. For a (scalar-
valued) evaluation map La and some polynomial matrix G, the moment matrix
of G⊗ La is

M(G⊗ La) = La(G⊗ [x,x][x,x]∗)

= La(G) ⊗ La([x,x][x,x]∗) = G(a,a) ⊗ [a,a][a,a]∗.
(1.22)

Thus, if G(a,a) ⪰ 0, then M(G⊗La) ⪰ 0. Hence, if L is a conic combination
of evaluation maps L =

∑
a∈A La and G(a,a) ⪰ 0 for all a ∈ A, then the

moment matrix M(G⊗ L) is Hermitian PSD.

The following is a corollary of Lemma 1.4 and Lemma 1.5 for the truncated
setting when L is of the form G⊗ L.
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Corollary 1.6. Let t ∈ N∪ {∞}, G ∈ C[x,x]m×m, and L ∈ C[x,x]∗2t. If

Mt−dG(G⊗ L) = L(G⊗ [x,x]t−dG [x,x]∗t−dG
) ⪰ 0,

then G ⊗ L is positive on Σ2(t−dG), i.e., both of the following two conditions
hold:

L(v∗Gv · pp) ≥ 0 for all v ∈ Cm and p ∈ C[x,x]t−dG ,

Mt−dG((v∗Gv)L) ⪰ 0 for all v ∈ Cm.

1.4. The real analogs of complex objects

Thus far, this chapter has been phrased in terms of complex objects. How-
ever, sometimes we work over the reals, in which case things simplify substan-
tially. Indeed, observe that if x ∈ Rn, there is no need for conjugates x; as
such, the vector of monomials becomes [x] := (xα)α∈Nn . The ring of real poly-
nomials in x is R[x], the dual space C[x,x]∗ becomes R[x]∗, and so forth. The
notion of Hermitian is not applicable in the real setting; as such, Hermitian
matrices become just symmetric. The cone of symmetric real n × n matrices
is written as Sn, and the cone of PSD symmetric real n× n matrices is Sn

+.

Some core classical results (like the forthcoming Theorem 2.8 in Chapter 2
and Lemma 3.1 in Chapter 3) are stated with real variables. We will use these
results in Chapter 7 to lower bound the separable rank of a complex-valued
matrix. To this end, we must express complex results in terms of their familiar
real analogs. We give some miscellaneous conversion results for the reader’s
convenience. Readers may postpone a thorough readthrough of this chapter
until they wish to delve into Chapter 7.

Vectors and matrices. Let i :=
√
−1 ∈ C denote the imaginary unit. Any

complex scalar x ∈ C can be written (uniquely) as x = xRe + ixIm, where
xRe := Re(x) and xIm := Im(x) denote, respectively, the real and imaginary
parts of x. This notation extends to vectors and matrices by letting the
maps Re(·) and Im(·) act entry-wise. Any vector x ∈ Cn can be written
x = xRe + ixIm with xRe := Re(x), xIm := Im(x) ∈ Rn. This gives a bijection

ϕ : Cn ∋ x 7→ (xRe,xIm) ∈ Rn × Rn. (1.23)

Similarly, for a complex matrix G ∈ Cm×m′
, set GRe := Re(G), GIm :=

Im(G) ∈ Rm×m′
and define the 2m× 2m′ real matrix

GR :=

[
GRe −GIm

GIm GRe

]
. (1.24)

Then, G ∈ Cm×m is Hermitian, i.e., G = G∗, if and only if GRe = GT
Re and

GT
Im = −GIm. Moreover, for a Hermitian matrix G ∈ Cm×m and a complex
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vector w ∈ Cm we have the identity

w∗Gw = (wRe − iwIm)T (GRe + iGIm)(wRe + iwIm)

=
[
wT

Re wT
Im

] [GRe −GIm

GIm GRe

] [
wRe

wIm

]
,

(1.25)

which implies the well-known equivalence

G ⪰ 0 ⇐⇒ GR =

[
GRe −GIm

GIm GRe

]
⪰ 0.

Polynomials. Polynomials in C[x,x] with complex variables x ∈ Cn can be
transformed into polynomials in R[xRe,xIm] with real variables xRe,xIm ∈ Rn,
via the change of variables x = xRe + ixIm. In this way, any p ∈ C[x,x]
corresponds to a unique pair of real polynomials

pRe(xRe,xIm) :=Re(p(xRe + ixIm,xRe − ixIm)) ∈ R[xRe,xIm],

pIm(xRe,xIm) :=Im(p(xRe + ixIm,xRe − ixIm)) ∈ R[xRe,xIm],

satisfying the following identity:

p(x,x) = p(xRe + ixIm,xRe − ixIm) = pRe(xRe,xIm) + ipIm(xRe,xIm). (1.26)

Note that the degrees are preserved because

degx,x(p) = max{degxRe,xIm
(pRe), degxRe,xIm

(pIm)}.

A polynomial p is Hermitian, i.e., p = p, if and only if its imaginary component
is zero, i.e., pIm = 0. As a consequence, the Re map is injective on Hermitian
polynomials:

Re : C[x,x]h ∋ p(x,x) 7→ pRe(xRe,xIm) ∈ R[xRe,xIm]. (1.27)

The Re map is also surjective. Take any f ∈ R[xRe,xIm] and define the
polynomial p(x,x) := f(x+x

2 , x−x
2i ) ∈ C[x,x], then p is Hermitian and satis-

fies f = pRe. Using this, we can, for any h ∈ C[x,x], recast the constraint
h(x,x) = 0 as hRe(

x+x
2 , x−x

2i ) = 0 and hIm(x+x
2 , x−x

2i ) = 0, which involves only
Hermitian polynomials hRe and hIm. Finally, since any pp is Hermitian, we
have that the Re map preserves sums of squares, i.e.,

Re(pp) = p2Re + p2Im.

By linearity, this means that sums of Hermitian squares in C[x,x] are mapped
to sums of (real) squares in R[xRe,xIm] and vice versa.

Polynomial matrices. For vectors and matrices with polynomial entries
in C[x,x], the maps Re(·) and Im(·) act entry-wise. Additionally, for a poly-

nomial matrix G ∈ C[x,x]m×m′
, we can define the real polynomial matrix
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26 1. POLYNOMIALS

GR ∈ R[xRe,xIm]2m×2m′
using relation (1.24), where GRe, GIm are defined

entry-wise as follows:

if G = (Gij)i,j∈[m] then GRe := ((Gij)Re)i,j∈[m] and GIm := ((Gij)Im)i,j∈[m].

From the above definition, G is Hermitian if and only if GR is symmetric.
Next, observe that this correspondence extends to polynomial matrix sums of
squares.

Lemma 1.7. Let G ∈ C[x,x]m×m be a polynomial matrix and let GR ∈
R[xRe,xIm]2m×2m be the corresponding real polynomial matrix defined via (1.24).
Then, G is a Hermitian SoS-polynomial matrix if and only if GR is a (real)
SoS-polynomial matrix.

Proof. Assume G is a Hermitian SoS-polynomial matrix. Let G = UU∗

with U ∈ C[x,x]m×k. Applying the change of variables from complex to real,
we get

G(x,x) = GRe(xRe,xIm) + iGIm(xRe,xIm)

= U(xRe + ixIm,xRe − ixIm)U∗(xRe + ixIm,xRe − ixIm)

= (URe + iUIm)(UT
Re − iUT

Im)

= UReU
T
Re + UImU

T
Im + i

(
UImU

T
Re − UReU

T
Im

)
.

This implies GRe = UReU
T
Re + UImU

T
Im and GIm = UImU

T
Re − UReU

T
Im. Thus

GR :=

[
GRe −GIm

GIm GRe

]
=

[
UReU

T
Re + UImU

T
Im −(UImU

T
Re − UReU

T
Im)

UImU
T
Re − UReU

T
Im UReU

T
Re + UImU

T
Im

]
=

[
URe −UIm

UIm URe

] [
UT
Re UT

Im

−UT
Im UT

Re

]
= UR(UR)T ,

which shows GR is an SoS-polynomial matrix. The converse result follows
from retracing the above steps. □

Linear functionals. A linear functional L : C[x,x] → C decomposes into
real and imaginary parts L(p) = Re(L(p)) + iIm(L(p)) for all p ∈ C[x,x].

Recall that L is Hermitian if L(p) = L(p). Just as the case of Hermitian
polynomials, Hermitian functionals L map injectively to real linear functionals
LR : R[xRe,xIm] → R by

LR(f) := L
(
f
(x + x

2
,
x− x

2i

))
for any f ∈ R[xRe,xIm]. (1.28)

For a Hermitian polynomial p ∈ C[x,x]h, by (1.27) we have pRe(
x+x
2 , x−x

2i ) =
p(x,x) and thus

L(p) = LR(pRe) for any p ∈ C[x,x]h. (1.29)
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Then, for any p ∈ C[x,x], we have

L(p) = L
(
pRe

(x + x

2
,
x− x

2i

))
+iL

(
pIm
(x + x

2
,
x− x

2i

))
= LR(pRe)+iLR(pIm).

(1.30)
In particular, we have L(pp) = LR(p2Re +p2Im) for any p ∈ C[x,x]. This implies

that L is positive (on sums of Hermitian squares) if and only if LR is positive
(on sums of real squares). Since Re(·) preserves degrees, the restriction of LR

to R[xRe,xIm]t corresponds to the restriction of L to C[x,x]t.

Matrix-valued linear functionals. Consider a complex matrix-valued lin-
ear map, seen before in (1.4):

L : C[x,x] ∋ p 7→ L(p) :=
(
Lij(p)

)
i,j∈[m]

∈ Cm×m,

where each Lij : C[x,x] → C is a scalar-valued linear functional. Recall that
the map L is Hermitian if and only if, for all p ∈ C[x,x], we have L(p) = L(p)∗.
In terms of real and imaginary components, this means that(

Re(Lij(p)) + iIm(Lij(p))
)m
i,j=1

=
(

Re(Lji(p)) − iIm(Lji(p))
)m
i,j=1

.

Equivalently, we have Re(Li,j(p)) = Re(Lj,i(p)) and Im(Li,j(p)) = −Im(Lj,i(p))
for all i, j ∈ [m]. Hence, if L is Hermitian and p is Hermitian, then the com-
plex matrix L(p) is Hermitian. Assume that L is Hermitian. Then, we define
the real analog matrix-valued linear functional

LR : R[xRe,xIm] ∋ f ∈ R[xRe,xIm] 7→ LR(f) ∈ R2m×2m,

LR(f) :=
(
L
(
f
(x + x

2
,
x− x

2i

)))R
=

[
Re(L(f(x+x

2 , x−x
2i ))) −Im(L(f(x+x

2 , x−x
2i )))

Im(L(f(x+x
2 , x−x

2i ))) Re(L(f(x+x
2 , x−x

2i )))

]
.

(1.31)

Since f(x+x
2 , x−x

2i ) is Hermitian, it follows that

−Im(L(f(
x + x

2
,
x− x

2i
))) = Im(L(f(

x + x

2
,
x− x

2i
)))T .

Hence, LR takes its values in the cone S2m of symmetric matrices.

Lemma 1.8. Given a Hermitian linear map L : C[x,x] → Cm×m and the
corresponding map LR from (1.31), g ∈ C[x,x]h and p ∈ C[x,x], we have the
following equivalence

L(gpp) ⪰ 0 ⇐⇒ LR(gRe(p
2
Re + p2Im)) ⪰ 0.

Proof. From (1.24), (1.27), and (1.31) we obtain that

0 ⪯ L(gpp) ⇐⇒ 0 ⪯
[
Re(L(gpp)) −Im(L(gpp))
Im(L(gpp)) Re(L(gpp))

]
= LR(gRe(p

2
Re + p2Im)),

because gpp is Hermitian. □
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CHAPTER 2

The generalized moment problem

We approach generalized moment problems (GMP) from the perspective
of linear optimization problems over measures. This should be understood in
contradistinction to “the moment problem”, which is a classical topic where
one seeks a representing measure for a given (partial) set of moments. Moment
problems have been actively studied for at least a century, and as such, the
field is very rich and broad in applications; see, e.g., Akhiezer [4], Schmüdgen
[142], and Lasserre [106]. We will also follow the recent survey [42].

First, we state some notation and classical results involving measures,
GMPs, and optimization problems (Section 2.1).

Second, we introduce the novel notion of ideal sparsity in GMPs (Sec-
tion 2.2), which we developed in [100]. Ideal sparsity is a new technique
for reformulating a GMP with monomial ideal constraints into an equivalent
GMP without ideal constraints, now involving more measures with smaller
supports than the measure in the original GMP. Though the resulting GMP
is equivalent, its associated moment hierarchy often yields better bounds and
faster computations than the analogous hierarchies for the original GMP.

Third, we establish well-known and fundamental links between linear func-
tionals L ∈ C[x,x]∗ and measures. By doing so, we can recast GMPs as opti-
mization problems over linear functionals (Section 2.3) and thereby open the
way to the moment method, which we will treat in the next chapter.

2.1. Preliminaries

This section introduces a few basic but widely used terms from measure
theory and polynomial optimization. Our goal is not a full exposition but
rather a quick primer to ease the reader into the field before stating our con-
tributions. We leave adequate references to more informative sources.

Measures. Let X ⊆ Cn be a set and S a σ-algebra over X . Recall that
S ⊆ P(X ) is σ-algebra over X if it satisfies:

(i) ∅ ∈ S,
(ii) S ∈ S =⇒ X \ S ∈ S,

(iii) For any S0, S1, S2, ... ∈ S we have
⋃

i∈N Si ∈ S.

29



617919-L-bw-Steenkamp617919-L-bw-Steenkamp617919-L-bw-Steenkamp617919-L-bw-Steenkamp
Processed on: 27-9-2023Processed on: 27-9-2023Processed on: 27-9-2023Processed on: 27-9-2023 PDF page: 38PDF page: 38PDF page: 38PDF page: 38

30 2. THE GENERALIZED MOMENT PROBLEM

The pair (X ,S) is a measurable space. A function µ that maps the elements
of S to the extended real line R ∪ {∞} is called a (nonnegative) measure if it
satisfies the following three properties:

(i) Null empty set : µ(∅) = 0,
(ii) Nonnegativity : µ(S) ≥ 0 for all S ∈ S,

(iii) σ-additivity : For all countable collections
{
Sk

}
k∈N

of pairwise dis-

joint sets in S, we have µ(
⋃

k∈N Sk) =
∑

k∈N µ(Sk).

A measure µ is called finite if it takes values in R. When µ(X ) = 1 we call µ a
probability measure. A measurable function f is a map between two measurable
spaces (X ,S) and (Y, T ) with the property that, for any set T ∈ T , its pre-
image is a set in the σ-algebra S, i.e., f−1(T ) ∈ S. The support supp(µ) of a
measure µ is defined to be the intersection of all measurable sets S ∈ S with
the property that µ(X \ S) = 0, i.e.,

supp(µ) :=
⋂

S∈S:µ(X\S)=0

S.

So as not to derail the topic of this chapter further with measure-theoretic
definitions, we refer the reader to [93] for a proper treatment of measures and
integration. From this point forward, we assume the reader has at least an
intuitive grasp of integration. The support of a measure can also be charac-
terized in terms of measurable functions and integrals as follows: supp(µ) is
contained in a set K ⊆ Rn if∫

fdµ =

∫
K
fdµ for any measurable function f : Rn → R.

Dirac delta measure δx. As an example of a measure, we present the Dirac
delta measure δx supported at the point x ∈ Rn. For any measurable set A
and measurable function f , δx is acts as follows:∫

A
fdδx =

{
f(x) x ∈ A,
0 x ̸∈ A.

A measure µ is called finite atomic if it is a weighted sum of Dirac delta
measures, i.e.,

µ =
∑
ℓ∈[N ]

cℓδx(ℓ) ,

for some points x(1),x(2), ...,x(N) ∈ Rn (called the atoms of µ) and scalars
c1, c2, ..., cN ∈ R+ (called the weights of µ).

Borel measures. When X is a Euclidean space like Cn or Rn, the Euclidean
norm induces a topology, which induces a σ-algebra B(X ). The elements of
B(X ) are generated by the familiar open and closed sets of Cn. We denote the
space of finite positive Borel measures supported on a set K ⊂ X by M (K).
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2.1.1. Optimization problems. We consider the following optimization
problem over (finite positive) Borel measures on Rn:

val := inf
µ∈M (K)

{∫
f0dµ :

∫
fidµ = ai (i ∈ [Nf ])

}
. (2.1)

Here, f0, f1, ..., fNf
∈ R[x] are polynomials, a1, ..., aNf

∈ R are scalars, and

K = {x ∈ Rn : gi(x) ≥ 0 (i ∈ [Ng]), hj(x) = 0 (j ∈ [Nh])} (2.2)

is a basic closed semi-algebraic set defined by polynomials g1, ..., gNg , h1, ..., hNh
.

Problem (2.1) is an instance of what is called a generalized moment problem
(abbreviated as GMP). GMPs are extremely potent modeling tools and have
received much attention recently, partly because measures are extremely rich in
descriptive power. Their uses include polynomial optimization (minimization
of a polynomial or rational function over K), volume computation, control the-
ory, option pricing in finance, and much more. See, e.g., [105, 106, 107, 84]
and further references therein.

As an illustration, we demonstrate how a polynomial optimization problem
can be phrased as a special instance of a GMP.

Global optimization over polynomials. Consider the constrained opti-
mization problem

f∗ := inf f(x) s.t. x ∈ K, (2.3)

where K ⊆ Rn is as in (2.2). Problem (2.3) can be recast in the language of
measures.

Theorem 2.1. Problem (2.3) is equivalent to the GMP (2.4) in the sense
that they have the same optimal values, i.e.,

f∗ = f∗
GMP := inf

µ∈M (K)

∫
fdµ s.t.

∫
dµ = 1. (2.4)

Proof. To simplify the exposition, we assume K is compact so that f is
guaranteed to have a global optimizer over it.

(f∗ ≥ f∗
GMP) For any global minimizer x∗ of (2.3), one can readily observe

that the Dirac measure δx∗ supported at x∗ is a feasible solution to (2.4) with
objective value

∫
fdδx∗ = f(x∗) = f∗.

(f∗ ≤ f∗
GMP) Observe that for any probability measure µ ∈ M (K) we

have ∫
fdµ ≥ f∗ ·

∫
dµ = f∗. □

In the case when an optimizer µ of (2.4) is finite atomic, i.e., of the form

µ =
∑
ℓ∈[N ]

cℓδx(ℓ) ,
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32 2. THE GENERALIZED MOMENT PROBLEM

with positive weights c1, ..., cN > 0, the atoms x(1),x(2), ...,x(N) ∈ Rn are
global optimizers of (2.3).

An interesting (and critical for Part 2 of this thesis) observation is that
one can also have a polynomial matrix constraint defining the semi-algebraic
set. For example, if G ∈ (R[x])m×m is a polynomial matrix, then we can define
its positivity domain in two equivalent ways

{x ∈ Rn : G(x) ⪰ 0} = {x ∈ Rn : vTG(x)v ≥ 0 (v ∈ Rm)}.

The former has only one semi-definite constraint (G(x) ⪰ 0), and the latter has
(uncountably) infinitely many scalar constraints (vTG(x)v ≥ 0). Applications
of these constraints emerge naturally in the setting of matrix factorization
rank, which we briefly discuss next.

Matrix factorization rank. A nonnegative matrix A ∈ Rn×n
+ is called

completely positive (CP) if, for some r ∈ N, there exists a nonnegative matrix
B ∈ Rr×n

+ , with the property that

A = BTB.

The completely positive rank (CP-rank) of a CP matrix A, denoted rankcp(A),
is the smallest positive integer r ∈ N such that this factorization is possible.
In other words,

rankcp(A) := min{r ∈ N : ∃B ∈ Rr×n s.t. A = BTB}.

By convention, if A is not CP, then we set rankcp(A) = ∞. A crucial observa-
tion made by Fawzi and Parilo in [67] is that rankcp(A) can be lower bounded
by the following GMP:

τcp(A) := inf
µ∈M (KA)

{∫
KA

1dµ :

∫
KA

xixjdµ = Aij (i, j ∈ V )
}
, (2.5)

where the semi-algebraic set is given by

KA = {x ∈ Rn :
√
Aiixi − x2i ≥ 0 (i ∈ [n]),

Aij − xixj ≥ 0 ({i, j} ∈ EA),
xixj = 0 ({i, j} ∈ EA),
A− xxT ⪰ 0},

(2.6)

where

EA :=
{
{i, j} : Aij ̸= 0, i, j ∈ V, i ̸= j

}
,

EA :=
{
{i, j} : Aij = 0, i, j ∈ V, i ̸= j

}
.

Note the polynomial matrix constraint A − xxT ⪰ 0 in the definition of KA.
We will look in depth at the CP-rank in Chapter 6, where we will give quick
proof that τcp(A) ≤ rankcp(A) following (6.4). Though other choices for KA
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2.2. IDEAL SPARSITY 33

would suffice to define τcp(A), we motivate this particular definition of KA

later in (6.6).

2.2. Ideal sparsity

Recall the GMP in (2.1). Now, we assume that K is a (basic closed)
semi-algebraic set involving equality constraints of a special form, namely,

K =
{
x ∈ Rn : gj(x) ≥ 0 (j ∈ [Ng]), xS :=

∏
i∈S

xi = 0 (S ∈ S)
}
, (2.7)

where g1, ..., gNg ∈ R[x] are polynomials and S ⊆ P(V ) is a collection of
subsets of V = [n]. Hence, the set K is contained in the set of all x ∈ Rn for
which every polynomial p ∈ IS vanishes, where

IS :=
{∑

S∈S
uSx

S : uS ∈ R[x]
}
⊆ R[x]. (2.8)

2.2.1. Ideal-sparse GMP. One can exploit the fact that p(x) = 0 for
every x ∈ K and p ∈ IS to create a new GMP. Due to the special form
of the ideal IS , many monomials are set to zero, and hence we can omit
these monomials in the GMP formulation. We accomplish this by instead of
optimizing over a single measure µ supported on K ⊆ Rn, we optimize over
several measures µ1, ..., µp that are each supported on a smaller space than the
original µ. Loosely speaking, the supports of the measures µ1, ..., µp will be
as large as possible without supporting any monomial of the form xS , where
S ∈ S. We have that this latter formulation gives an equivalent GMP. We will
later show that its associated moment relaxations give possibly tighter bounds
than those associated with the original GMP involving a single measure.

Covering the support K. To begin, let V1, ..., Vp denote the maximal sub-
sets of V := [n] such that S ̸⊆ Vk for all S ∈ S and k ∈ [p]. Define, for each
k ∈ [p], the following subset of K:

K̂k := {x ∈ K : supp(x) ⊆ Vk} ⊆ K ⊆ Rn. (2.9)

Recall that supp(x) := {i ∈ [n] : xi ̸= 0} denotes the support of vector x ∈ Rn.
Observe that

K = K̂1 ∪ ... ∪ K̂p. (2.10)

This is because for any x ∈ K one must have that S ̸⊆ supp(x) for every
S ∈ S. Thus, for any x ∈ K there exists a k ∈ [p] such that supp(x) ⊆ Vk.

Hence, x ∈ K̂k for some k ∈ [p].

For each k ∈ [p], we define the projection

Kk := {y ∈ R|Vk| : (y, 0V \Vk
) ∈ K̂k} ⊆ R|Vk| (2.11)
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of K̂k onto the subspace indexed by Vk. We can now state the ideal-sparse
formulation of the problem (2.1).

The ideal-sparse GMP formulation. Assume that K is as defined in
(2.7). Then, the ideal-sparse analog of GMP (2.1) is

valisp := inf
µk∈M (Kk)

k∈[p]

{ ∑
k∈[p]

∫
f0|Vk

dµk :
∑
k∈[p]

∫
fi|Vk

dµk = ai (i ∈ [Nf ]). (2.12)

Here, we use the restriction notation fi|Vk
to denote the function in |Vk|-many

variables x(Vk) := {xi : i ∈ Vk} obtained from fi by setting to zero all the
variables xi indexed by i ∈ V \ Vk (recall Section 1.1).

Observe the similar overall structure shared between (2.1) and (2.12). We
note some key differences. While problem (2.1) optimizes over a single measure

µ supported on the space R|V |, problem (2.12) involves p-many measures,

where each µk is on the smaller dimensional space R|Vk|. We now show that
both formulations (2.1) and (2.12) are equivalent, i.e., have equal optimal
values: val = valisp. Here, and throughout the rest of the thesis, we use the
superscript “isp” as a reminder that the formulation exploits ideal sparsity.
Later chapters will use the same notation when defining the corresponding
moment hierarchy and associated parameters.

Proposition 2.2. (Proposition 6 of [100]) Assume that K is as in (2.7).
Then, problems (2.1) and (2.12) are equivalent, i.e., their optimum values are
equal:

val = valisp.

Proof. (val ≤ valisp) Assume (µ1, ..., µp) is feasible for problem (2.12).

Consider the measure µ on R|V |, defined by
∫
fdµ =

∑p
k=1

∫
Kk

f|Vk
dµk for any

measurable function f on R|V |. We have supp(µ) ⊆ K. Indeed,∫
K
fdµ =

∫
fχKdµ =

∑
k∈[p]

∫
Kk

f|Vk
χK
|Vk

dµk =
∑
k∈[p]

∫
Kk

f|Vk
dµk =

∫
fdµ,

since χK
|Vk

(y) = χK(y, 0V \Vk
) = 1 for all y ∈ Kk as (y, 0V \Vk

) ∈ K̂k ⊆ K.

Then, µ is feasible for (2.1), with the same objective value as (µ1, ..., µp),

which shows val ≤ valisp.

(valisp ≤ val) For the reverse inequality, assume µ is feasible for (2.1). We
now define a feasible solution (µ1, ..., µp) to (2.12), with the same objective
value as (2.1). For k ∈ [p], define the set

Λk = {x ∈ K : supp(x) ⊆ Vk, supp(x) ̸⊆ Vh for h ∈ [k − 1]}.
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As each x ∈ K has its support contained in some Vk, it follows that the sets

Λ1, ...,Λp form a partition of K. Note that Λk ⊆ K̂k and thus x(Vk) ∈ Kk for

any x ∈ Λk. Consider the measure µk on R|Vk|, defined, for any measurable
function f on R|Vk|, by

∫
fdµk =

∫
Λk

f(x(Vk))dµ(x). Then, supp(µk) ⊆ Kk,
since ∫

Kk

fdµk =

∫
fχKkdµk =

∫
Λk

f(x(Vk))χKk(x(Vk))dµ(x)

=

∫
Λk

f(x(Vk))dµ(x) =

∫
fdµk,

as χKk(x(Vk)) = 1 for all x ∈ Λk. Next, we show that
∫
pdµ =

∑
k

∫
p|Vk

dµk

for any measurable function p : R|V | → R. Indeed, as the sets Λ1, ...,Λp

partition the set K, we have
∫
pdµ =

∫
K pdµ =

∑
k

∫
Λk

pdµ. Combining with∫
Λk

p(x)dµ(x) =

∫
Λk

p|Vk
(x(Vk))dµ(x) =

∫
Kk

p|Vk
dµk,

gives the desired identity
∫
pdµ =

∑
k

∫
p|Vk

dµk. Therefore, (µ1, ..., µp) is a
feasible solution to (2.12) with the same objective value as µ, which shows the
desired inequality valisp ≤ val. □

A special instance of ideal sparsity. We will consider a special instance
for ideal sparsity, where the collection S corresponds to the set E of nonedges
of some graph G = (V,E). The semi-algebraic set K now takes the form of

K =
{
x ∈ Rn : gj(x) ≥ 0 (j ∈ [Ng]), xixj = 0 ({i, j} ∈ E)

}
.

The sets V1, ..., Vp can now be interpreted as the maximal cliques of the
graph G.

This particular setting is motivated by its application to matrix factoriza-
tion ranks, which we will elaborate on in Part 2 of this thesis. At this point, it
suffices to say that the sparsity (presence of zeros in the matrix) of a symmet-
ric matrix A ∈ Rm×m

+ can be captured by its support graph GA and exploited
to create a hierarchy of lower bounds on its completely positive rank. We leave
the construction of the hierarchy to Chapter 3. Now we provide a concrete
example of a matrix A, its support graph GA, and its associated maximal
cliques.

Example 2.3. Example matrix, support graph, and maximal cliques.
Consider the matrix A and its support graph GA in Fig. 1.

The maximal cliques of GA are all the triangles T ⊆ P(V ) in GA, namely
T := {{1, 3, 5}, {1, 3, 6}, {1, 4, 5}, {2, 3, 6}, {2, 3, 5}, {1, 4, 5}, {1, 4, 5}, {2, 4, 5}}.
By definition, each clique T ∈ T corresponds to a sub-matrix AT,T ∈ R|T |×|T |

with no zero entries. This seemingly innocuous fact will be used extensively
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A =


1 0 3 4 5 6
0 3 4 5 6 7
3 4 5 0 7 8
4 5 0 7 8 9
5 6 7 8 9 0
6 7 8 9 0 11


5

3

1

6

4

2

Figure 1. A matrix A and its support graph GA.

when we work with matrix factorization ranks. Recalling the previous section,
we can now reformulate the GMP (2.5) into an ideal-sparse form like (2.12),
where the Vk’s are the triangles in T . We are purposefully withholding details
here because the topic will be explored in depth in Part 2 of this thesis.

2.3. Measures, linear functionals, and polynomial optimization

Next, we establish the link between measures and linear functionals acting
on polynomials. If not done already the reader is encouraged to peruse the
contents of the preceding chapter. Viewing measures via linear functionals will
be the key to the moment method, which, in a nutshell, attempts to approach
a GMP by a hierarchy of semi-definite programs (SDPs).

Measure-induced linear functional acting on polynomials. For a mea-
sure µ ∈ M (Cn), its moments are defined to be the collection of values

yα,β :=

∫
Cn

xαxβdµ ∈ C for all α, β ∈ Nn. (2.13)

A given sequence of numbers (yα,β)α,β∈Nn is said to have a representing mea-
sure if there exists a measure µ ∈ M (Cn) such that (2.13) holds. Given a
measure µ we can define an associated linear functional L ∈ C[x,x]∗ in terms
of the moments of µ as follows:

L(xαxβ) :=

∫
Cn

xαxβdµ for all α, β ∈ Nn.

So, by linearity,

L(p) =

∫
Cn

pdµ for any polynomial p ∈ C[x,x].

In light of this definition, we are justified in calling M(L) from (1.8) the
moment matrix of L. Since each functional L ∈ C[x,x]∗ is associated with
a sequence of numbers (L(xαxβ))α,β∈Nn we can ask the reverse question: is
there a measure µ that induces L? If there is such a measure µ, we call it a
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2.3. MEASURES, LINEAR FUNCTIONALS, AND POLYNOMIAL OPTIMIZATION 37

representing measure of L.

When looking only at monomials of degree at most t ∈ N, we call the set
of values ∫

Cn

xαxβdµ for all α, β ∈ Nn
t

the moments of µ up to order t. Generally, any proper subset of the full
moment set is called a truncated set of moments.

Positivity domain. Given a set of Hermitian polynomials H ⊆ C[x,x]h we
define the positivity domain of the set H to be the set of vectors

D(H) := {x ∈ Cn : g(x) ≥ 0 for every g ∈ H}. (2.14)

Given a Hermitian polynomial matrix G ∈ C[x,x]m×m we define an (infinite)
set of Hermitian polynomials

HG := {v∗Gv : v ∈ Cd, ∥v∥ = 1} ⊆ C[x,x]h. (2.15)

Thus, it makes sense to refer to the positivity domain of G, denoted by

D(G) := D(HG) = {x ∈ Cn : G(x) ⪰ 0}. (2.16)

Real analog of positivity domains. The complex positivity domain D(H)
has a natural analog, the real positivity domain

DR(HRe) := {(xRe,xIm) ∈ R2n : gRe(xRe,xIm) ≥ 0 ∀ g ∈ H}.

Here, HRe ⊆ R[xRe,xIm] is the real analog of H ⊆ C[x,x]h. In view of (1.27)
and the complex/real bijection map ϕ from (1.23), we have

DR(HRe) = ϕ(D(H)).

Real analog of measures support. Given a measure µR on R2n we define
the complex measure µ on Cn as µ = µR ◦ ϕ, the push-forward of µR by the
map ϕ of (1.23). Hence, we have∫

Cn

p(x)dµ =

∫
R2n

p ◦ ϕ−1(xRe,xIm)dµR

=

∫
R2n

pRe(xRe,xIm)dµR + i

∫
R2n

pIm(xRe,xIm)dµR
(2.17)

for any p ∈ C[x,x] (using (1.26)). If µR is supported by the set DR(HRe) (i.e.,
µR(R2n\DR(HRe)) = 0), then µ is supported by D(H) (i.e., µ(Cn\D(H)) = 0).
This follows from the fact that

ϕ(Cn \ D(H)) = R2n \ DR(HRe).
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Truncated quadratic module. For t ∈ N∪{∞} and H ⊆ C[x,x]h, the set

M2t(H) := cone{gpp : p ∈ C[x,x], g ∈ H ∪ {1}, deg(gpp) ≤ 2t} (2.18)

denotes the quadratic module generated by H, truncated at order 2t when
t ∈ N. If t = ∞ we simply write M(H). Note, the definition only makes sense
if 2t ≥ dH := maxg∈H{deg(g)}. The quadratic module M(H) is said to be
Archimedean if, for some scalar R > 0,

R−
n∑

i=1

xixi ∈ M(H). (2.19)

A polynomial like the one above in (2.19) is called an algebraic certificate of
boundedness for the associated positivity domain D(H). We will frequently
use the condition that a linear functional L ∈ C[x,x]∗ is positive on M(H)
for some H ⊆ C[x,x]h. This is stronger than just saying that L is positive
(i.e., L(pp) ≥ 0 for all p ∈ C[x,x]) as the nonnegativity of L also extends to
terms of the form gpp, i.e. L(gpp) ≥ 0 for all p ∈ C[x,x] and g ∈ H ∪ {1}.

Quadratic modules are vital in modeling positivity constraints in poly-
nomial optimization and for GMPs with supports that involve measures re-
stricted to semi-algebraic domains.

Real analogs of quadratic modules. A set H ⊆ C[x,x]h of Hermitian
polynomials has a real analog obtained via the map Re(·) (from (1.27)). Apply
Re(·) element-wise to the set H to get

HRe := Re(H) = {pRe : p ∈ H} ⊆ R[xRe,xIm]. (2.20)

The corresponding real analog of M2t(H) is denoted by

MR
2t(HRe) := cone{gRef

2 : f ∈ R[xRe,xIm] , g ∈ H, deg(gRef
2) ≤ 2t}.

Observe the following correspondences for p ∈ C[x,x] and g ∈ H:

Re(gpp) = gRe(p
2
Re + p2Im),

gpp ∈ M2t(H) ⇐⇒ gRe(p
2
Re + p2Im) ∈ MR

2t(HRe),

Re(M2t(H)) = MR
2t(HRe).

(2.21)

Applying the above relations to the Archimedean certificate R2−x∗x ∈ M(H)
gives us the next two lemmas.

Lemma 2.4. For H ⊆ C[x,x]h, M(H) is Archimedean if and only if
MR(HRe) is Archimedean.

Lemma 2.5. For any t ∈ N, H ⊆ C[x,x]h2t, and f ∈ C[x,x]h2t we have

f ∈ M2t(H) ⇐⇒ fRe ∈ MR
2t(HRe).

The positivity of linear functionals also holds across complex and real
analogs.
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Lemma 2.6. For a Hermitian map L ∈ C[x,x] → C, a set H ⊆ C[x,x]h,
and an integer t ∈ N ∪ {∞}, we have

L ≥ 0 on M2t(H) ⇐⇒ LR ≥ 0 on MR
2t(HRe).

Proof. By the linearity of L and LR, (2.21), and (1.29) (which says
L(gpp) = LR(gRe(p

2
Re + p2Im))), the result follows. □

Corollary 2.7. Given H ⊆ C[x,x]h, and a Hermitian map
L : C[x,x] → Cm×m, we have

L ⪰ 0 on M(H) ⇐⇒ LR ⪰ 0 on MR(HRe).

Link between complex and real evaluation functionals. The evalu-
ation functional Lw at w ∈ Cd corresponds to the evaluation functional
L(wRe,wIm) at (wRe,wIm) ∈ R2d because

Lw(p) = p(w,w) = pRe(wRe,wIm) + ipIm(wRe,wIm)

= LR
(wRe,wIm)(pRe) + iLR

(wRe,wIm)(pIm),

for every p ∈ C[x,x].

Ideal generated by a set of polynomials. For a set H ⊆ C[x,x] of poly-
nomials and an integer t ∈ N ∪ {∞}, one can define the following (truncated)
ideal (of order t):

It(H) :=
{∑

h∈H
hph : ph ∈ C[x,x], deg(hph) ≤ t

}
.

We consider the graph-induced ideal as a specific example. Given an undirected
graph G = (V := [n], E), and E the associated set of non-edges, we consider
the ideal generated by the monomials indexed by the non-edges of G, i.e.,

IE :=
{ ∑

{i,j}∈E

uijxixj : uij ∈ R[x]
}
⊆ R[x]. (2.22)

Results on measures µ and their induced linear functionals L. We
now state several well-known results with regard to the existence of repre-
senting measures. The classical results (in a real setting) are presented first,
then their complex analogs, followed by the derivation. These results form the
cornerstones of the moment method (more on this in Chapter 3). The reader
may skip the derivation, which is straightforward but technical.

Theorem 2.8. Let H ⊆ R[x] be such that MR(H) is Archimedean, let
L ∈ R[x]∗, and assume L is positive on MR(H). Then the following holds:

(i) (Putinar [132]) There exists a measure µR representing L (i.e.,
L(p) =

∫
pdµR for all p ∈ R[x]) and supported on

DR(H) = {a ∈ Rn : g(a) ≥ 0 for all g ∈ H}.
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(ii) (Tchakaloff [154]) For any k ∈ N, there exists a L̂ ∈ R[x]∗ s.t.

L̂(p) = L(p) (p ∈ R[x]k) and L̂ =
∑
ℓ∈[K]

λℓLa(ℓ)

for 1 ≤ K ∈ N, λ1, ..., λK > 0, and atoms a(1), ...,a(K) ∈ DR(H).

The complex analog of Theorem 2.8 reads as follows.

Theorem 2.9. Let H ⊆ C[x,x]h be such that M(H) is Archimedean, and
let L ∈ C[x,x]∗ be positive on M(H). Then the following holds:

(i) (Based on [132]) The functional L has a representing measure µ sup-
ported on D(H).

(ii) For any k ∈ N, there exists a linear functional L̂ ∈ C[x,x]∗ with finite
atomic representing measure

∑
ℓ∈[K] λℓδv(ℓ) supported by D(H) such

that L̂ coincides with L on C[x,x]k, i.e.,

L̂(p) = L(p) (p ∈ C[x,x]k), (2.23)

L̂ =
∑
ℓ∈[K]

λℓLv(ℓ) , (2.24)

for some integer K ≥ 1, weights λ1, λ2, ..., λK > 0, and atoms v(1),
v(2),...,v(K) ∈ D(H).

In Chapter 7, we will define a moment hierarchy of lower bounds for the
separable rank of a quantum system represented as a complex matrix. We will
require Theorem 2.9 to prove that this hierarchy converges.

Adding constraints of the form (G ⊗ L)(pp) ⪰ 0 to Theorem 2.9.
Consider the positivity constraint (G⊗L)(pp) ⪰ 0 for all p ∈ C[x,x], for some
Hermitian polynomial matrix G ∈ C[x,x]m×m. Theorem 2.9 still applies if
we additionally impose such constraints on L. Indeed, this is equivalent to
replacing H with H ∪ HG, where HG := {vTGv ∈ C[x,x] : v ∈ Cn}. Thus,
the resulting measure µ will be supported on D(H ∪HG) ⊆ {x : G(x,x) ⪰ 0}.

Deriving Theorem 2.9 (i) from Theorem 2.8 (i). Assume the prereq-
uisites of Theorem 2.9. Consider the set HRe ⊆ R[xRe,xIm] (defined in (2.20))
and the linear map LR : R[xRe,xIm] → R (defined in (1.28)). By Lemma 2.4,
the quadratic module MR(HRe) is Archimedean. By Lemma 2.6, LR ≥ 0 on
MR(HRe). Hence, we may apply Theorem 2.8 (i) to HRe and LR to get a
(real) measure µR representing LR and supported on DR(HRe). Consider the
(complex) measure µ supported on D(H) (defined in (2.17)). Observe that
the measure µ is a representing measure for L because we have, via (1.30),
that

L(p) = LR(pRe) + iLR(pIm) =

∫
pRedµ

R + i

∫
pImdµ

R =

∫
pdµ (p ∈ C[x,x]).
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This completes the proof of Theorem 2.9 (i). □

Deriving Theorem 2.9 (ii) from Theorem 2.8 (ii). We continue from
the above and fix an integer k ∈ N. By Theorem 2.8 (ii), there exists a real

functional L̂ =
∑

ℓ∈[K] λℓLa(ℓ) ∈ R[xRe,xIm]∗, with K ∈ N, weights λℓ > 0, and

atoms a(ℓ) ∈ DR(HRe), such that L̂(p) = LR(p) for all p ∈ R[xRe,xIm]k. Define

a complex functional L̃ ∈ C[x,x]∗ by its action on polynomials p ∈ C[x,x] as
follows:

L̃(p) := L̂(pRe) + iL̂(pIm).

Then, L̃(p) = L(p) for every p ∈ C[x,x]k, by virtue of (1.30). For each atom

a(ℓ) (ℓ ∈ [K]) define the complex vector v(ℓ) ∈ Cn such that (v
(ℓ)
Re,v

(ℓ)
Im) = a(ℓ).

Then, each vℓ belongs to D(H) and L̃ =
∑

ℓ λℓLv(ℓ) because

L̃(p) = L̂(pRe) + iL̂(pIm) =
∑
ℓ∈[K]

λℓ(pRe(a
(ℓ)) + ipIm(a(ℓ))) =

∑
ℓ∈[K]

λℓp(v(ℓ)).

Thus, this concludes the derivation of Theorem 2.9 (ii). □

Next, we now state a closely related classical result due to Putinar [132,
Theorem 1.2] (see Theorem 2.10 below) and use it to prove its complex analog
(see Theorem 2.11 below).

Theorem 2.10. Let f ∈ R[x] and H ⊆ R[x] such that MR(H) is Archimedean.
If f > 0 on DR(H), then f ∈ MR(H).

Theorem 2.11. Let f ∈ C[x,x]h and H ⊆ C[x,x]h such that M(H) is
Archimedean. If f > 0 on D(H), then f ∈ M(H).

Proof. By the bijective map in (1.27) we have the real analog polynomial
fRe ∈ R[xRe,xIm] of the complex polynomial f ∈ C[x,x]h, for which it holds
that

f > 0 on D(H) =⇒ fRe > 0 on DR(HRe).

By Lemma 2.4, we have that MR(HRe) is Archimedean. Hence, by Theo-
rem 2.10 we have fRe ∈ MR(HRe), and thus by Lemma 2.5 we have

f ∈ M(H).

□
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CHAPTER 3

Moment hierarchies

We begin this chapter by recalling the classical moment approach that fa-
cilitates the building of hierarchies of semidefinite approximations for GMPs
like (2.1). Using the results of Section 2.3, we can approach the GMP from
the perspective of linear functionals.

The core idea of the moment method is to recast a GMP in terms of a linear
functional L and then to impose positivity conditions on L that are necessary
for L to have a representing measure. We saw in Theorem 2.9 that a linear
functional L has a representing measure µ supported on the semialgebraic set
D(H), provided the associated quadratic module M(H) is Archimedean and
L is positive on M(H). By relaxing the positivity of L on the quadratic mod-
ule M(H) to only positivity on the truncated quadratic module M2t(H), one
obtains lower bounds on the optimal value for the GMP. These relaxations
form a hierarchy of semidefinite programs, with each level t in the hierarchy
corresponding to a different order of truncation.

Natural questions concerning the bounds of the resulting hierarchy are:
how close are the lower bounds to the optimal value of the GMP, under what
conditions does a finite level t hierarchy bound coincide to the GMP opti-
mal value, and when/how can one recover optimizers? We review some of
the classical results addressing the above questions. For details, see, e.g., the
monograph by Lasserre [106], or the survey [42].

After that, we present the ideal-sparse hierarchy obtained from applying
the moment method to the ideal-sparse GMP (2.12). The ideal-sparse hierar-
chy promises better bounds and (possibly) faster computations than its dense
counterpart, assuming sufficient sparsity is present in the GMP.

43
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3.1. The moment method

We now state several widely used definitions and results from polynomial
optimization.

3.1.1. Hierarchy of relaxations. Consider the following general com-
plex GMP and its associated semialgebraic domain:

val := inf
µ∈M (K)

{∫
f0dµ :

∫
fidµ = ai (i ∈ [Nf ])

}
,

K :=
{
x ∈ Cn : gj(x,x) ≥ 0 (j ∈ [Ng]), hk(x,x) = 0 (k ∈ [Nh])

}
,

(3.1)

where f0, f1, ..., fNf
, g1, ..., gNg , h1, ..., hNh

∈ C[x,x], f0, g1, ..., gNg are Hermit-
ian polynomials, and a1, ..., aNf

∈ C. The associated moment relaxation of
level t ∈ N ∪ {∞} is

ξt := inf
{
L(f0) : L ∈ C[x,x]∗2t (Hermitian), (3.2a)

L(fi) = ai (i ∈ [Nf ]), (3.2b)

L ≥ 0 on M2t({gj : j ∈ [Ng]}), (3.2c)

L = 0 on I2t({hk : k ∈ [Nh]})
}
. (3.2d)

We refer to both the sequence of problems and their values (ξt)t∈N as the
moment hierarchy associated with GMP (3.1). Observe that the objective in
(3.2a) and constraints in (3.2b), (3.2c), and (3.2d) only make sense if

max
i∈[0,Nf ], j∈[Ng ], k∈[Nh]

{deg(fi), deg(gj), deg(hk)} ≤ 2t.

We will assume this technical condition implicitly holds whenever dealing with
hierarchies and not mention it again. Clearly, we have

ξt ≤ ξt+1 ≤ ξ∞,

since any feasible solution L to ξ∞ (or ξt+1) induces a feasible solution for ξt
by restricting L to C[x,x]∗2t.

We now relate (3.2) to (3.1) by showing ξ∞ ≤ val. Assume we are given
a measure µ ∈ M(Cn) feasible for (3.1), let L ∈ C[x,x]∗ be its induced
linear functional. Then, L is feasible for (3.2) with t = ∞, and objective
value L(f0) =

∫
f0dµ. We easily verify the three conditions. Firstly, L(fi) =∫

fidµ = ai for all i ∈ [Nf ]. Secondly, L ≥ 0 on M({gj : j ∈ [Ng]}) because
any polynomial in M({gj : j ∈ [Ng]}) is nonnegative on the set K containing
the support of µ. Thirdly, L = 0 on the set I({hk : k ∈ [Nh]}) because every
polynomial in I({hk : k ∈ [Nh]}) vanishes on the support of µ. Thus, ξ∞ lower
bounds val, i.e.,

ξt ≤ ξ∞ ≤ val for all t ∈ N.
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We refer to the above hierarchy of parameters (ξt)t∈N as the “dense” moment
hierarchy. This is the default hierarchy and should be understood in con-
tradistinction to the “ideal-sparse” hierarchy, which we will introduce below
in (3.9).

Moreover, under some mild assumptions (see Theorem 3.3 below), these
bounds converge asymptotically to the optimum value val of (3.1), i.e.,

lim
t→∞

ξt = ξ∞ = val.

Practically, we can never compute the limit of the hierarchy. We often look
for special cases when finite convergence occurs, this is when ξr = ξ∞ for some
positive integer r < ∞ that is hopefully not too large. One such case is when
the moment matrix satisfies a “flatness” condition. To this topic, we dedicate
the next section, Section 3.2. For now, we continue with the general setting.

Boundedness of functionals. Next, we present a classical lemma that
shows that any functional L that is nonnegative on M(H) is bounded, pro-
vided M(H) satisfies an “Archimedean type” condition (recall definition (2.19)).
See, e.g., [80, Lemma 13] for a proof.

Lemma 3.1. Let H ⊆ C[x,x]h be such that R −
∑

i∈[n] xix
∗
i ∈ M2(H)

for some R > 0. For each t ∈ N, assume L(t) ∈ C[x,x]∗2t is nonnegative on
M2t(H). Then

|L(t)(w)| ≤ RtL(t)(1) for all w ∈ [x,x]2t.

Moreover, if

sup
t∈N

L(t)(1) < ∞, (3.3)

then {L(t)}t∈N has a point-wise converging subsequence in C[x,x]∗.

3.1.2. An Archimedean condition for convergent complex hier-
archies. We now state and prove a complex variant of a well-known funda-
mental result (see Theorem 3.3) that characterizes a sufficient condition for
asymptotic convergence of the moment bounds. This result will be applied
in Chapter 7 to show the convergence of a hierarchy of lower bounds for the
separable rank.

Theorem 3.2. Assume the following three conditions hold:

(A) problem (3.1) is feasible,
(B) there is an R > 0 such that R−

∑
i∈[n] xix

∗
i ∈ M2({gi : i ∈ [Ng]})1,

(C) there exists zi ∈ C (i ∈ [Nf ]) and c > 0 such that the polynomial
f := f0 +

∑
i∈[Nf ]

zifi − c is Hermitian and positive on K.

1The asymptotic convergence result of Theorem 3.2 would still hold if we instead as-
sumed that the (untruncated) quadratic module is Archimedean. However, this would require
a more involved proof. The result, as stated, is sufficient for our purposes.
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Then, for each t ∈ N ∪ {∞}, the program (3.2) attains it optimum, and

lim
t→∞

ξt = ξ∞ = val.

Moreover, the GMP (3.1) has an optimal solution µ that is finite atomic and
is supported on K.

Proof. We have shown that ξ∞ ≤ val, so now we show

val ≤ ξ∞ and lim
t→∞

ξt = ξ∞.

(val ≤ ξ∞) By assumption (A), val < ∞, and thus, ξ∞ < ∞. So, assume
L is a feasible solution to ξ∞. Then, L ≥ 0 on M({gj : j ∈ [Ng]}) and L = 0
on M({hl : l ∈ [Nh]}). Since the quadratic module M({gj : j ∈ [Ng]}) is
Archimedean, we may now apply Theorem 2.9 (i) to conclude the existence of
a representing measure µ for L supported on the set K. By Theorem 2.9 (ii)
with

k = max
i∈[0,Nf ], j∈[Ng ], l∈[Nh]

{deg(fi), deg(gj), deg(hl)},

we may assume that there exist some r ∈ N, weights dℓ > 0 (ℓ ∈ [r]), and
atoms bℓ ∈ K (ℓ ∈ [r]) such that

L(p) =
∑
ℓ∈[r]

dℓLbℓ
(p) for all p ∈ C[x,x]k.

Defining the measure µ̃ :=
∑

ℓ∈[r] dℓδbℓ
, we thus have∫

f0dµ̃ = L(f0) and

∫
fidµ̃ = ai (i ∈ [Nf ]).

Hence, µ̃ is a finite atomic measure supported on K that is feasible for the
GMP (3.1). This shows val ≤ ξ∞, and thus we have ξ∞ = val. Moreover, it
shows that the GMP (3.1) has a finite atomic optimal solution supported on
K, namely µ̃.

(Attainment of optimum) To show that problem (3.2) attains its op-
timum, we show that it optimizes a linear objective function over a compact
set. By assumption (B), there is an R > 0 such that

R−
∑
i∈[n]

xix
∗
i ∈ M2

(
{gj : j ∈ [Ng]}

)
.

By assumption (A), ξt ≤ val < ∞, and hence ξt has a feasible solution, for
any t ∈ N. Moreover, we may, without changing the optimal value, restrict
the optimization program (3.2) to linear functionals L(t) satisfying

L(t)(f0) ≤ val.

Let L(t) be feasible for ξt, then L(t) is nonnegative on M2t({gi : i ∈ [Ng]}).
Hence, we can apply Lemma 3.1 and conclude that

|L(t)(w)| ≤ RtL(t)(1) for any w ∈ [x,x]2t. (3.4)
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By assumption (C), there exist scalars zi ∈ C (i ∈ [Nf ]) and c > 0 such that
the polynomial

f := f0 +
∑

i∈[Nf ]

zifi − c ∈ C[x,x]

is Hermitian and f > 0 on K. By Theorem 2.11 we then have that f is in the
(truncated) quadratic module M2r0({gi : i ∈ [Ng]}) for some r0 ∈ N. Thus,
for any integer t ≥ r0, we have

0 ≤ L(t)(f) = L(t)(f0 +
∑

i∈[Nf ]

zifi − c) = L(t)(f0) +
∑

i∈[Nf ]

ziai − cL(t)(1),

and hence L(t)(1) ≤
(
val+

∑
i∈[Nf ]

ziai

)
/c < ∞ because L(t)(f0) ≤ val. Thus,

we obtain that there exists a constant C > 0 such that

sup
t∈N

L(t)(1) ≤ C < ∞.

In combination with (3.4), we concluded, for all t ∈ N, that

|L(t)(w)| ≤ RtC for any w ∈ [x,x]2t.

Thus, we have shown that the feasible region of the problem (3.2) is bounded.
Hence, we are optimizing a linear objective function over a compact set, and
thus the optimum of (3.2) is attained.

(limt→∞ ξt = ξ∞) We now show asymptotic convergence. For each integer

t ≥ 1, let L(t) be an optimum solution of problem (3.2) (which exists by

the above argument). As supt L
(t)(1) ≤ C < ∞, we can use Lemma 3.1 to

conclude that there exists an L ∈ C[x,x]∗ which is the limit of a subsequence

of the sequence (L(t))t∈N. Then, L is feasible for ξ∞, which implies

ξ∞ ≤ L(f0) = lim
t→∞

L(t)(f0) = lim
t→∞

ξt. □

An Archimedean condition for convergent real hierarchies. We now
consider (without proof) the real analog (Theorem 3.3 below) of the preced-
ing result (Theorem 3.2 above). For a detailed exposition on a stronger result,
where one assumes only that the associated quadratic module is Archimedean,
we refer the reader to [42, 106]. Theorem 3.3 will be applied in both Chap-
ter 5 and Chapter 6 to show the convergence of the respective heirarchies.

Consider the general (real) GMP in (2.1) and its associated semialgebraic
domain in (2.2):

val := inf
µ∈M (K)

{∫
f0dµ :

∫
fidµ = ai (i ∈ [Nf ])

}
,

K := {x ∈ Rn : gj(x) ≥ 0 (j ∈ [Ng]), hk(x) = 0 (k ∈ [Nh])},
(3.5)
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where f0, f1, ..., fNf
, g1, ..., gNg , h1, ..., hNh

∈ R[x] and a1, ..., aNf
∈ R. The

associated moment relaxation of level t ∈ N ∪ {∞} is

ξt := inf
{
L(f0) : L ∈ R[x]∗2t, (3.6a)

L(fi) = ai (i ∈ [Nf ]), (3.6b)

L ≥ 0 on M2t({gj : j ∈ [Ng]}), (3.6c)

L = 0 on I2t({hk : k ∈ [Nh]})
}
. (3.6d)

Theorem 3.3. Assume the following three conditions hold:

(A) problem (3.5) is feasible,
(B) there is an R > 0 such that R−

∑
i∈[n] x

2
i ∈ MR

2 ({gi : i ∈ [Ng]}),

(C) there exists zi ∈ R (i ∈ [Nf ]) and c > 0 such that the polynomial
f := f0 +

∑
i∈[Nf ]

zifi − c is positive on K.

Then, for each t ∈ N ∪ {∞}, the program (3.6) attains it optimum, and

lim
t→∞

ξt = ξ∞ = val.

Moreover, the GMP (3.5) has an optimal solution µ that is finite atomic and
is supported on K.

We continue now in the real setting, as most of our applications in Part 2
are in the real setting. Moreover, the forthcoming sections on ideal sparsity
are explained and used in the real setting.

Next, we show that each program (3.6) can be rewritten as an SDP.

3.1.3. SDP formulation of hierarchy.

Writing (3.6c) and (3.6d) as positive semidefinite constraints. The
truncated quadratic module constraint (3.6c) and the truncated ideal con-
straint (3.6d) can both be recast as PSD or linear constraints on related mo-
ment matrices. The result is that (3.6) becomes a semidefinite program. Let
L ∈ R[x]∗2t be a solution to (3.6), and define g0 := 1. Using (1.11) and (1.12)
from Chapter 1 and the linearity of L we get that

L ≥ 0 on M2t({gj : j ∈ [Ng]}) ⇐⇒ Mt−dgj
(gjL) ⪰ 0 (j ∈ [0, Ng]),

L = 0 on I2t({hk : k ∈ [Nh]}) ⇐⇒ L(hk[x]2t−deg(hk)) = 0 (k ∈ [Nh]).
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Hence, the parameter ξt can be expressed as the optimum value of the semi-
definite program

ξt = inf{L(f0) : L ∈ R[x]∗2t, (3.7a)

L(fi) = ai (i ∈ [Nf ]), (3.7b)

Mt−dgj
(gjL) ⪰ 0 (j ∈ [0, Ng]), (3.7c)

L(hi[x]2t−deg(hk)) = 0 (k ∈ [Nh])}. (3.7d)

Recall that dgj = ⌈deg(gj)2 ⌉ for each j ∈ [0, Ng]. Note that efficient algorithms
exist for solving semidefinite programs up to any precision (under some mild
assumptions). See, e.g., [45] and further references therein.

Polynomial matrix localizing constraints in SDPs. In relation (2.6) of
Chapter 2, we saw an example where the semialgebraic set contains a polyno-
mial matrix localizing constraint. To include a general real polynomial matrix
localizing constraint G(x) ⪰ 0 to (3.7), where G(x) ∈ R[x]m×m, we can naively
encode the constraint as follows:

L ≥ 0 on M2t({vTG(x)v : v ∈ Rn}).

However, this would require adding an infinite collection of moment matrices
Mt−dG((vTG(x)v)L) to the SDP (3.7), which is not implementable in practice;

recall dG = maxi,j∈[m]⌈
deg(Gij)

2 ⌉. However, as we saw in Corollary 1.6, the
constraint

Mt−dG(G⊗ L) = L(G⊗ [x]t−dG [x]Tt−dG
) ⪰ 0,

is both stronger and better suited to numerical implementation. This intro-
duces a new PSD constraint involving a matrix of size

(
n+t−dG
t−dG

)
· m, which

costs more memory in terms of hardware, but is computationally feasible for
moderate values of m.

It should be noted that convergence of the moment hierarchy for polyno-
mial matrix inequality optimization problems was first studied by Herion and
Lasserre in 2005 [41]. In terms of software, YALMIP [90] (a MATLAB [89]
add-on) does provide support for these constraints.

Speaking of computational costs brings us to the next topic, the problem
of growing (with the level t) matrix sizes in SDPs coming from the moment
method.

Exponential growth of matrices in SDP hierarchies. The critical weak-
ness of the (dense) hierarchy (3.7) is that it involves the matrices Mt−dgi

(giL)
whose sizes rapidly grow beyond the memory capacity of most computers. In-
deed, consider the moment matrix Mt(g0L) = Mt(L) which is of size

(
n+t
t

)
.

Alternatively, consider Mt−dG(G ⊗ L), which is of size
(
n+t−dG
t−dG

)
· m. Matrix
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size is often the bottleneck in numerical experimentation as most computers
cannot meet the exponentially growing memory demands as the level t of the
hierarchy increases. As a consequence, only modestly sized GMP instances are
solved in practice. However, research into reducing the size of SDPs has been
spurred on by the successful industrial applications of SDPs in recent years
[106]. Ideal sparsity, which we introduced in Section 2.2, and will expand on
shortly, is one such promising research direction. We now discuss some of the
other classical techniques used for reducing the size of moment matrices in the
SDP (3.7).

Existing schemes to improve the scalability of moment relaxations.
Several schemes have been developed to overcome the scalability issue of the
dense hierarchy (3.7). Without compromising the convergence guarantees,
they aim to reduce the involved matrices’ size by exploiting the input poly-
nomials’ specific structure. Usually, the new hierarchy is faster to compute
but with weaker bounds (except in the case of ideal sparsity). We now discuss
three such paradigms.

The first way is to use the properties of the input polynomials to define
hierarchies involving smaller moment matrices. There are three situations
where this is applicable.

• Correlative sparsity occurs when there are few correlations between
the variables of the input polynomials, thereby allowing one to treat
them somewhat independently and ignore interactions [159, 104].
Correlative sparsity has been extended to derive moment relaxations
of polynomial problems in complex variables [91], noncommutative
variables [96] and polynomial matrix inequalities [172]. We discuss
the correlative sparsity approach for GMPs later in Section 3.1.5 and
how it relates to ideal sparsity.

• Term sparsity occurs when there are few (in comparison to all pos-
sible) monomial terms involved in the input polynomials. For un-
constrained polynomial optimization, one well-known solution is to
eliminate the monomial terms which never appear among the support
of sums of squares decompositions [136]. Term sparsity has recently
been the focus of active research with extensions to constrained poly-
nomial optimization [161, 162]. Note that term and correlative spar-
sity can be combined [163]. We refer to the recent surveys [116, 173]
for a general exposition on sparse polynomial optimization.

• Ideal sparsity is our new contribution to the scalability of moment hi-
erarchies, based on our work in [100]. We present the topic in detail
in Sections 2.2.1, 3.1.4, and 3.2.3. The crux of ideal sparsity is that
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one can reduce the size of the moment matrices in an SDP by observ-
ing that many entries are set to zero due to ideal constraints. In a
similar vein, we consider a “ block-diagonal reduction” in Section 7.2.

Secondly, one can sometimes decompose the input polynomials into a spe-
cial structure. One can decompose a polynomial into a sum of nonnegative
circuits by solving a geometric programming relaxation [88], or a second-
order cone programming relaxation [8, 160]. Or, one can decompose it into
a sum of arithmetic-geometric-mean-exponentials [30] with relative entropy
programming relaxations.

The third approach is to exploit symmetries in the moment matrices [138],
provided each input polynomial is invariant under the action of some subgroup
of the general linear group.

3.1.4. Ideal-sparse moment hierarchy of relaxations. For the par-
ticular ideal-sparse GMP in (2.12) with semialgebraic domain K first described
in (2.7), we can define a modified associated hierarchy. For convenience, we
recall the GMP and its associated semialgebraic domain here:

valisp := inf
µk∈M (Kk)

k∈[p]

{ ∑
k∈[p]

∫
f0|Vk

dµk :
∑
k∈[p]

∫
fi|Vk

dµk = ai (i ∈ [Nf ])
}
,

(3.8a)

K := {x ∈ Rn : gj(x) ≥ 0 (j ∈ [Ng]), xS :=
∏
i∈S

xi = 0 (S ∈ S)}, (3.8b)

Kk := {y ∈ R|Vk| : (y, 0V \Vk
) ∈ K} ⊆ R|Vk| (k ∈ [p]). (3.8c)

Here, f0, f1, ..., fNf
, g1, ..., gNg , h1, ..., hNh

∈ R[x], a1, ..., aNf
∈ R, V1, ..., Vp are

⊆-maximal subsets of [n] not containing any S ∈ S ⊆ P([n]). We consider the
following parameters:

ξispt := inf
{∑

k∈[p] Lk(f0|Vk
) :

Lk ∈ R[x(Vk)]∗2t (k ∈ [p]),∑
k∈[p] Lk(fi|Vk

) = ai (i ∈ [Nf ]),

Lk ≥ 0 on M2t({gi|Vk
: i ∈ [Ng]}) (k ∈ [p])

}
,

(3.9)

that we call the ideal-sparse hierarchy of moment approximations for problem
(3.8a). Observe that there are no ideal constraints, as they have been encoded
in the supports V1, ..., Vp. Just as with the dense hierarchy in (3.6), there is
an SDP formulation

ξispt = inf
{∑

k∈[p] Lk(f0|Vk
) :

Lk ∈ R[x(Vk)]∗2t (k ∈ [p]),∑
k∈[p] Lk(fi|Vk

) = ai (i ∈ [Nf ]),

Mt−dgi|Vk
(gi|Vk

Lk) ⪰ 0 (i ∈ [0, Ng], k ∈ [p])
}
.

(3.10)
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If there is a matrix constraint of the form G(x) ⪰ 0 in the definition of K,
then we add the constraints Mt−dG|Vk

(G|Vk
⊗ Lk) ⪰ 0 for all k ∈ [p] to (3.10).

We next show that the ideal-sparse hierarchy (ξispt )t∈N provides bounds for
val that are at least at good as the bounds (ξt)t∈N from (3.6).

Theorem 3.4. For any integer t ≥ 1 we have

ξt ≤ ξispt ≤ val.

If in addition the assumptions of Theorem 3.3 holds, then

lim
t→∞

ξispt = val.

Proof. By construction, ξispt ≤ valisp, which, combined with Proposi-

tion 2.2, gives ξispt ≤ val. We now show ξt ≤ ξispt . For this, assume (L1, ..., Lp)
is feasible for (3.9). Define L ∈ R[x]∗2t by setting L(p) =

∑
k∈[p] Lk(p|Vk

)

for any p ∈ R[x]2t. By construction, L(fi) =
∑

k Lk(fi|Vk
) for i ∈ [0, Nf ],

so that L(fi) = ai for i ∈ [Nf ], and L ≥ 0 on M2t({gi : i ∈ [Ng]}). For
each S ∈ S and k ∈ [p], we have S ̸⊆ Vk (because of how Vk was de-
fined) and thus xS

|Vk
is identically zero; hence, for any u ∈ R[x]2t−2, we

have L(uxS) =
∑

k Lk(u|Vk
xS

|Vk
) = 0. Hence, L is feasible for (3.6) with the

same objective value as (L1, ..., Lp), which shows ξt ≤ ξispt .

The asymptotic convergence of ξispt to val follows from the just proven fact

that ξt ≤ ξispt and from Theorem 3.3, which implies limt→∞ ξt = val under the
above-stated assumptions. □

Ideal sparsity shrinks matrices in SDP hierarchy. The whole appeal
of ideal sparsity rests on the fact that the largest matrix size in (3.10) is now

max
k∈[p]

(
|Vk| + t

t

)
,

or maxk∈[p]
(|Vk|+t−dG

t−dG

)
· m if there are m × m-sized matrix polynomial con-

straints G(x) ⪰ 0. Hence, the hope in applying ideal sparsity is that the
quantity maxk∈[p] |Vk| is much smaller than n. Later in this section, we will
elaborate more on the computational trade-off between a few large matrices
vs. many smaller matrices in SDPs. For now, it suffices to say that most
commercial and academic SDP solvers handle the latter situation better than
the former. However, an excess of smaller matrices (i.e., large p) will still lead
to most computers running out of memory. In anticipation of this shortfall,
we propose to merge some of the sets V1, ..., Vp, which we elaborate on in the
next paragraph.
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Merge maximal sets. Let p̃ ≤ p, and Ṽ1, ..., Ṽp̃ ⊆ [n] denote sets such

that every set Vk is contained in V
k̃

for some k̃ ∈ [p̃]. One can define the

corresponding ideal-sparse moment hierarchy of bounds ξ̃ispt , which involves

p̃ ≤ p measure variables, each supported on a set in Ṽ1, ..., Ṽp̃ (instead of the

sets V1, ..., Vp). However, these sets Ṽk may now contain some of the forbidden
sets S ∈ S (from (2.7)) defining the ideal constraints. Hence, we must reimpose
the ideal constraints to get a comparable hierarchy

ξ̃ispt := inf
{ ∑p̃

h=1 L̃h(f0|Ṽh
) :

L̃h ∈ R[x(Ṽh)]∗2t (h ∈ [p̃]),∑p̃
h=1 L̃h(fi|Ṽh

) = ai (i ∈ [Nf ]),

L̃h ≥ 0 on M2t({gi|Ṽh
: i ∈ [Ng]}) (h ∈ [p̃]),

L̃h(xSxα) = 0 (supp(α) ⊆ Ṽh, S ⊆ Ṽh, S ∈ S)
}
.

(3.11)

Note that this parameter interpolates between the dense and sparse param-

eters: indeed, ξ̃ispt = ξispt if Ṽ1 = V1, ..., Ṽp̃ = Vp, and ξ̃ispt = ξt if p̃ = 1.
Accordingly, we have the following inequalities among the parameters.

Lemma 3.5. Assume that p̃ ≤ p and that the sets Ṽ1, ..., Ṽp̃ contain the sets
V1, ..., Vp (in the sense that, for each k ∈ [p], Vk ⊆ Vh for some h ∈ [p̃]). Then

ξt ≤ ξ̃ispt ≤ ξispt for all t ∈ N ∩ {∞}.

Proof. The proof for the inequality ξt ≤ ξ̃ispt is analogous to the proof

of ξt ≤ ξispt in Theorem 3.4. We now show ξ̃ispt ≤ ξispt . For this, assume

(L1, ..., Lp) is feasible for the parameter ξispt . As each set Vk is contained in

some set Ṽh, there exists a partition [p] = A1 ∪ ... ∪ Ap̃ such that Vk ⊆ Ṽh

for all k ∈ Ah and h ∈ [p̃]. For h ∈ [p̃], we define L̃h ∈ R[x(Ṽh)]∗2t by setting

L̃h(q) =
∑

k∈Ah
Lk(q|Vk

) for q ∈ R[x(Ṽh)]2t. Then, one can easily verify that

(L̃1, ..., L̃p̃) provides a feasible solution for ξ̃ispt , with the same objective value
as (L1, ..., Lp).

Now, we check the ideal constraints. Assume S∪supp(α) ⊆ Ṽh and S ∈ S.
Then, as S is not contained in any maximal set Vk, we have Lk((xSxα)|Vk

) = 0

for all k ∈ [p], which directly implies L̃h(xSxα) = 0. □

3.1.5. Links between ideal sparsity and correlative sparsity. As-
sume K is as defined in (3.8b) with V1, ..., Vp denoting all the ⊆-maximal
subsets of [n] not containing any set S ∈ S ⊆ P([n]). These sets V1, ..., Vp now
induce the graph

G =
(
V = [n], E :=

{
{i, j} : {i, j} ⊆ Vk for some k ∈ [p]

})
.

So, by construction, the maximal cliques of G are the sets V1, .., Vp.
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Consider a chordal extension Ĝ = (V, Ê) of G, i.e., such that E ⊆ Ê. Let

V̂1, ..., V̂p̂ denote the maximal cliques of Ĝ. Notably, chordal graphs have at
most n distinct maximal cliques, so p̂ ≤ n. Furthermore, a graph is chordal
if and only if its maximal cliques satisfy the so-called running intersection

property (RIP). See, e.g., [54] for details. Hence, the maximal cliques V̂1, ..., V̂p̂

satisfy (possibly after reordering) the RIP:

∀ k ∈ {2, ..., p̂} ∃ j ∈ {1, ..., k − 1} s.t. V̂k ∩ (V̂1 ∪ ... ∪ V̂k−1) ⊆ V̂j . (3.12)

We proceed now in two steps.
Step one is to partition the index set Nn

t of the moment matrix L([x]t[x]Tt )
into It and Nn

t \ It (we define It below in (3.14)). The set It is further
partitioned It = ∪k∈[p̂]Ik,t with the special property (see Lemma 3.6) that

L(xαxβ) = 0 ({α, β} ̸⊆ Ik,t for all k ∈ [p̂]).

With respect to these partitions, we show that the moment matrix L([x]t[x]Tt )
has an “overlapping block-diagonal structure”, with the blocks given by the
sets Ik,t (k ∈ [p̂]).

Step two is to show that the support graph of the principal submatrix
L([x]t[x]Tt )[It] is chordal (see Lemma 3.7). This allows us to use a known
result (see Theorem 3.8) for characterizing the PSDness of L([x]t[x]Tt )[It] in
terms of the PSDness of several smaller matrices.

Making the moment matrix “overlapping block-diagonal”. Begin by
recalling the definition of the hierarchy, now with ideal constraints of a special
form:

ξt = inf{L(f0) :L ∈ R[x]∗2t,

L(fi) = ai (i ∈ [Nf ]),

L([x]t[x]Tt ) ⪰ 0,

L(gj [x]t−dj [x]Tt−dj
) ⪰ 0 (j ∈ [Ng]),

L(xS [x]2t−|S|) = 0 (S ∈ S)}. (3.13a)

Fix t ∈ N, and define the sets

It =
⋃
k∈[p̂]

Ik,t ⊆ Nn
t ,

Ik,t :=
{
α ∈ Nn

t : supp(α) ⊆ V̂k

}
(k ∈ [p̂]).

(3.14)

Lemma 3.6. Assume L ∈ R[x]∗2t and L satisfies (3.13a), then

L(xαxβ) = 0 ({α, β} ̸⊆ Ik,t for all k ∈ [p̂]).

Proof. Assume there is no index k ∈ [p̂] such that {α, β} ⊆ Ik,t. Then,

supp(α+β) is not in any set V̂k (k ∈ [p]), else supp(α), supp(β) ⊆ V̂k and thus



617919-L-bw-Steenkamp617919-L-bw-Steenkamp617919-L-bw-Steenkamp617919-L-bw-Steenkamp
Processed on: 27-9-2023Processed on: 27-9-2023Processed on: 27-9-2023Processed on: 27-9-2023 PDF page: 63PDF page: 63PDF page: 63PDF page: 63

3.1. THE MOMENT METHOD 55

α, β ∈ Ik,t, yielding a contradiction. As supp(α + β) is not contained in any

V̂k (k ∈ [p]) it must contain an S ∈ S, and thus L(xαxβ) = 0. □

This result, in particular, implies that one may restrict the matrix L([x]t[x]Tt )
in (3.13) to its principal submatrix L([x]t[x]Tt )[It] indexed by It since any
row/column indexed by α ∈ Nn

t \ It is identically zero.

The support graph of L([x]t[x]Tt )[It] is chordal. We now show that the
support graph of the matrix L([x]t[x]Tt )[It] is chordal by showing that the sets
I1,t, ..., Ip̂,t are its maximal cliques, and that they inherit the RIP property.

The sets I1,t, I2,t, ..., Ip̂,t serve an analogous role to the sets V̂1, ..., V̂p̂.

By Lemma 3.6, L(xαxβ) ̸= 0 implies {α, β} ⊆ Ik,t for some k ∈ [p̂]. In

other words, the support graph of the matrix L([x]t[x]Tt ) is contained in the
graph with vertex set It, whose maximal cliques are the sets I1,t, ..., Ip̂,t.

Lemma 3.7. The sets I1,t, ..., Ip̂,t satisfy the RIP property:

∀q ∈ {2, ..., p̂}∃ k ∈ {1, ..., q − 1} s.t. Iq,t ∩ (I1,t ∪ ... ∪ Iq−1,t) ⊆ Ik,t. (3.15)

Proof. Let q ∈ {2, . . . , p̂} and assume by way of contradiction that there
exists no k ∈ [q − 1] for which Iq,t ∩ (I1,t ∪ . . . ∪ Iq−1,t) ⊆ Ik,t holds. Then,

for each k ∈ [q − 1], there exists αk ∈ Iq,t ∩ (I1,t ∪ ... ∪ Iq−1,t) \ Ik,t and thus

there exists ik ∈ V \ V̂k such that αk
ik

≥ 1. As αk ∈ Iq,t and αk
ik

≥ 1 it follows

that ik ∈ V̂q. In addition, αk ∈ Ij,t for some j ∈ [q − 1]. Again, as αk
ik

≥ 1 it

follows that ik ∈ V̂j . This shows that

ik ∈ V̂q ∩ (V̂1 ∪ ... ∪ V̂q−1) for all k ∈ [q − 1].

By the RIP property (3.12) for V̂1, ..., V̂p, there exists q0 ∈ [q − 1] such that

V̂q ∩ (V̂1 ∪ ... ∪ V̂q−1) ⊆ V̂q0 . Therefore, ik ∈ V̂q0 for all k ∈ [q − 1]. As ik ̸∈ V̂k

this implies that q0 ̸= k for all k ∈ [q − 1], and thus we have contradicted the

RIP of the sets V̂1, ..., V̂p. □

The above extends easily to the localizing matrices L(gj [x]t−dj [x]Tt−dj
) for

j ∈ [Ng]. In the same way, one may restrict the matrix L(gj [x]t−dj [x]Tt−dj
)

to its principal submatrix indexed by It−dj and its support graph is con-
tained in the graph with vertex set It−dj , whose maximal cliques are the sets
I1,t−dj , ..., Ip̂,t−dj . Moreover, there is a correlative sparsity pattern on the

matrix L(gj [x]t−dj [x]Tt−dj
) (0 ≤ j ≤ m), which is inherited from the chordal

structure of Ĝ.

Matrices with chordal support graphs. We can now invoke a classical
result that relates a chordal PSD matrix (matrix with a chordal support graph)
to the PSDness of the sub-matrices induced by the cliques of the support graph.
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Theorem 3.8 ([3]). Consider a positive semidefinite matrix X ∈ Sn
+

whose support graph is contained in a chordal graph Ĝ, with maximal cliques

V̂1, ..., V̂p̂. Then, there exist positive semidefinite matrices Yk ∈ S V̂k
+ (k ∈ [p̂])

such that X =
∑p̂

k=1 Zk, where Zk = Yk ⊕ 0
V \V̂k,V \V̂k

∈ Sn
+ is obtained by

padding Yk with zeros.

Therefore one may apply Theorem 3.8 to get a more economical reformu-
lation of ξt. Indeed, by Theorem 3.8, one may write

L(gj [x]t−dj [x]Tt−dj
) =

∑
k∈[p̂]

Zj,k,

where Zj,k is obtained from a matrix indexed by the set Ik,t−dj by padding it

with zero entries and replace the condition L(gj [x]t−dj [x]Tt−dj
) ⪰ 0 by the con-

ditions Zj,1, ..., Zj,p̂ ⪰ 0. The advantage is that requiring Zj,k ⪰ 0 boils down
to checking positive semidefiniteness of a potentially much smaller matrix,
indexed by Ik,t−dj .

Hence, this allows one to replace a single large positive semidefinite matrix
with several smaller positive semidefinite matrices. While this method offers a
more economical way of computing the dense parameter ξt, it is nevertheless
inferior to the ideal-sparse approach described in the previous section.

As a final observation, another possibility to exploit the above correlative
sparsity structure would be to replace in the definition of ξt in the program
(3.6) each condition L(gj [x]t−dj [x]t−dj ) ⪰ 0 by p̂ smaller matrix conditions

L(gj |V̂k
[x(V̂k)]t−dj [x(V̂k)]t−dj ) ⪰ 0 for k ∈ [p̂]. In other words, if L|Vk

denotes

the restriction of L to the polynomials in variables indexed by V̂k, then we re-
place the condition L ≥ 0 on M2t(g) by the conditions L|V̂k

≥ 0 on M2t(g|V̂k
)

for each k ∈ [p̂]. In this way we obtain another parameter, denoted by ξcspt ,
that is weaker than ξt and thus satisfies

ξcspt ≤ ξt ≤ ξ̃ispt ≤ ξispt .

Recall ξ̃ispt is the parameter from (3.11) obtained when selecting an extension

G̃ of G, including, for instance, selecting a chordal extension G̃ = Ĝ.

3.2. Flatness and extraction of optimal solutions

This section deals with two intertwined topics: identifying if the moment
hierarchy has converged to the optimal value of the original GMP at a finite
level t and recovering optimizers when this occurs.

In Section 3.2.1, we present a classical result, Theorem 3.9, by Curto and
Fialkow [39] that states a sufficient condition (on the ranks of successively big-
ger leading principal submatrices of the moment matrix of the hierarchy (3.5)
at some fixed level) for finite convergence. Assuming that we are in the setting
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3.2. FLATNESS AND EXTRACTION OF OPTIMAL SOLUTIONS 57

of Theorem 3.9, there is an algorithm, first proposed by Henrion and Lasserre
[85], for extracting the optimizers of the GMP (3.5). We present this algo-
rithm in Section 3.2.2. Finally, in Section 3.2.3, we say a few words relating
the preceding two well-known topics to the newer topic of ideal sparsity and
its application to matrix factorization ranks.

3.2.1. The flatness condition. Recall the GMP in (3.5), its associated
semialgebraic set K, and its moment hierarchy of approximating SDPs (3.7).
By Theorem 3.3, if the quadratic module M(g) is Archimedean, then the
bounds ξt converge asymptotically to ξ∞. If, additionally, the conditions of
Theorem 3.3 hold, then ξ∞ = val and problem (3.5) has a finite atomic opti-
mal solution µ. Now we show conditions under which the convergence is finite,
and the resulting optimal (pseudo) measure is finite atomic.

Define the degree of the semialgebraic set K as follows:

dK := max{deg(fi), ⌈
deg(gj)

2
⌉, deg(hk) : i ∈ [0, Nf ], j ∈ [0, Ng], k ∈ [Nh]}.

Theorem 3.9. [39, 40] Let t ∈ N be such that t ≥ dK . Assume L ∈
R[x]∗2t is an optimal solution to program (3.7) and that it satisfies the following
flatness condition:

r := rank L([x]s[x]Ts ) = rank L([x]s−dK [x]Ts−dK
) for some s ∈ [dK , t]. (3.16)

Then, ξt = val, and the GMP (3.5) has a finite atomic optimal solution µ
supported by r points in K, i.e.,

µ =
∑
ℓ∈[r]

cℓδx(ℓ) ,

for some weights c1, c2, ..., cr > 0 and atoms x(1),x(2), ...,x(r) ∈ K.

To paraphrase, Theorem 3.9 says that if the level t is high enough for
(3.7) to capture the “data” of the problem and subsequent leading principal
submatrices of the moment matrix “do not exhibit an increase in information,”
i.e., (3.16) holds, then the hierarchy (ξt)t∈N has converged finitely at level t.
Furthermore, the r atoms of the finite atomic representing measure µ are often
of great interest and have special application-specific interpretations associated
with them.

Note that numerical noise and error can result in an incorrectly computed
rank for the moment matrix L([x]s[x]Ts ). As such, verifying if flatness holds
for a given problem is not always straightforward. However, most software
options we mention later account for this with rigorous checks.

We saw in Section 2.1.1 that a polynomial optimization problem like (2.3)
can be equivalently reformulated as a GMP. In this setting, the recovered
atoms are optimizers of the original polynomial optimization problem. A
proof for Theorem 3.9 can be found in [39] or [110].
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3.2.2. A classical atom extraction algorithm. We now restate an
algorithm to extract the r atoms from a solution L ∈ R[x]∗2t satisfying Theo-
rem 3.9. Henrion and Lasserre first proposed this algorithm in [85]. We only
state the main points as several detailed expositions already exist and can be
found in [85] and [106].

By Theorem 3.9 we have that µ =
∑

ℓ∈[r] cℓδx(ℓ) , for weights c1, c2, ..., cr > 0

and points x(1),x(2), ...,x(r) ∈ K. Hence, by construction

Ms(L) := L([x]s[x]Ts ) = V∗CV T
∗ , where

C := Diag([c1, c2, ..., cr]) ∈ Rr×r, V∗ := [[x(1)]s, [x
(2)]s, ..., [x

(r)]s] ∈ RNn
s×r.

In practice, when we find a Cholesky factorization of the moment matrix, it
is of the form

Ms(L) = V V T , for some V ∈ RNn
s×r.

Note we use the notation V∗ to distinguish the theoretical decomposition of the
moment matrix from the decomposition V that we get in actual computations.
A key insight is that the matrices V and V∗ span the same linear subspace.
The extraction algorithm looks at the column operations that transform V
into V∗. Via Gaussian elimination with pivoting, we convert V into a matrix
U , which is in reduced column echelon form, i.e., of the form

1 0
⋆
0 1
0 0 1

⋆ ⋆ ⋆
...

...
. . .

0 0 0 · · · 1
⋆ ⋆ ⋆ · · · ⋆
...

...
⋆ ⋆ ⋆ · · · ⋆ 0


.

Here ⋆ indicates an unknown entry without assigning a specific variable sym-
bol. Three properties characterize the reduced column echelon form: The first
nonzero (leading) entry in a column is 1; these entries are also called pivot
elements. Every leading entry is to the right of the leading entries above it.
Non-zero rows are all to the left of zero rows.

The reduced column echelon form is unique and can be obtained by Gauss-
ian elimination. Note that Gaussian elimination is not numerically robust [78].
Fortunately, most problems considered in practice are well-conditioned and do
not suffer instability. We refer to Henrion and Lasserre [85] for more on this.

Observe that the rows of V and U are indexed by the monomials [x]s.
Denote by w(x) := [xβ1 ,xβ2 , ...,xβr ]T the vector of monomials corresponding
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3.2. FLATNESS AND EXTRACTION OF OPTIMAL SOLUTIONS 59

to row indices of pivot entries in U . We thus have the following system of
polynomial equations to solve:

[x]s = Uw(x). (3.17)

Solving the above system is where most algorithms start to differ. We mention
two approaches to solving (3.17).

The first is homotopy continuation, where one establishes a map that con-
tinuously deforms an “easy” polynomial system (with known roots) into a
“difficult” polynomial system (with unknown roots). By careful numerical
tracking of the smooth paths from the first system’s roots, one hopes to dis-
cover the roots of the second system. A comprehensive exposition on homo-
topy continuation would exceed the scope of this thesis. We refer to [155] for
a dedicated treatment of the topic and further references therein.

The second approach is to look at the common eigenspaces of the so-called
multiplication matrices. For each i ∈ [n] define the r × r matrix

Mxi :=


Uxixβ1 ,:

Uxixβ2 ,:
...

Uxixβr ,:


consisting of the rows of U indexed by the monomials xix

βℓ (ℓ ∈ [r]) obtained

by multiplying w(x) by xi. Then, the entries of the atoms x(1),x(2), ...,x(r)

are the eigenvalues of the matrices Mx1 ,Mx2 , ...,Mxn ∈ Rr×r, i.e.,

Mxiw(x(ℓ)) = x
(ℓ)
i w(x(ℓ)), for all i ∈ [n] and ℓ ∈ [r].

To recover the common eigenvalues, one considers a random convex combina-
tion of the multiplication matrices

M :=
∑
i∈[n]

λiMxi , λ ∈ ∆n.

With probability 1, M is non-degenerate (i.e., all of its eigenspaces are 1-
dimensional). Find a Schur decomposition of M = QTQT , where Q =

[q(1),q(2), ... ,q(r)] is an orthogonal matrix and T is an upper-triangular matrix
with the same eigenvalues as M sorted in increasing order. Then

x
(ℓ)
i = q(ℓ)Mxiq

(ℓ)

for all i ∈ [n] and ℓ ∈ [r]. For a hands-on example, we recommend the reader
to consult Example 4.1 of [106].

Several open-source software implementations exist for atom extraction.
These algorithms are often included in larger code packages that are used to
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solve optimization problems. For MatLab users, there is GloptiPoly 3 2, which
is written and maintained by Didier Henrion. Julia language [20] users have a
greater selection of packages, though we only mention two: MomentTools.jl3

which Bernard Mourrain maintains, and MultivariateMoments.jl 4, which uses
homotopy continuation and is maintained by Benôıt Legat.

We now indicate how to apply the above-established procedure for the
ideal-sparse setting.

3.2.3. Flatness, atom extraction, and ideal sparsity. Theorem 3.9
and the process described in Section 3.2.2 can be applied to the ideal-sparse
setting. Indeed, it suffices to apply Theorem 3.9 independently to each linear
functional Lk and check whether its moment matrix satisfies the corresponding
flatness criterion (3.16). For each k ∈ [p] define

dKk
:= max{deg(fi|Vk

), ⌈deg((gj)|Vk
)/2⌉ : i ∈ [Nf ], j ∈ [Ng]}.

Corollary 3.10. Assume that max{dKk
: k ∈ [p]} ≤ t ∈ N. Let

(L1, ..., Lp) be an optimal solution to the SDP (3.10) with the property that
for each k ∈ [p] there exists an sk ∈ [dKk

, t] such that

rank Lk([x(Vk)]sk [x(Vk)]Tsk) = rank Lk([x(Vk)]sk−dKk
[x(Vk)]Tsk−dKk

). (3.18)

Then, ξispt = valisp(= val), and problem (3.8a) has an optimal solution (µ1, ..., µp),
where each µk is finite atomic and supported by rk := rank Lk([x(Vk)]sk [x(Vk)]Tsk)
many atoms in Kk.

Analogous to the classical dense setting, atom extraction is carried out
independently on each of the p-many moment matrices Lk([x(Vk)]sk [x(Vk)]Tsk).

2https://homepages.laas.fr/henrion/software/gloptipoly/
3https://gitlab.inria.fr/AlgebraicGeometricModeling/MomentTools.jl
4https://github.com/JuliaAlgebra/MultivariateMoments.jl

https://homepages.laas.fr/henrion/software/gloptipoly/
https://gitlab.inria.fr/AlgebraicGeometricModeling/MomentTools.jl
https://github.com/JuliaAlgebra/MultivariateMoments.jl
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Discussion

We now collect some thoughts on the topics of Part 1.

A note on using multiple measures. The idea of optimizing over mul-
tiple measures (as we do in the ideal-sparse setting) has already appeared in
several other contexts. In fact, it is quite routinely used in most computa-
tional methods, e.g., finite elements. In the context of analyzing dynamical
systems involving polynomial data, a similar trick has been used to perform
optimal control of piecewise-affine systems in [2], then later on to characterize
invariant measures for piecewise polynomial systems (see [115, § 3.5]).

In the context of set estimation, one can also rely on a multi-measure
approach to approximate the moments of Lebesgue measures supported on
unions of basic semialgebraic sets [108].

The common idea consists in using the piecewise structure of the dynamics
and/or the state-space partition to decompose the measure of interest into a
sum of local measures supported on each partition cell. The advantage in our
current setting is that these measures are supported on smaller dimensional
spaces, which leads to potentially substantial computational benefits when
considering the associated semidefinite programming relaxations.

Trade-off between few big matrices and many small matrices. One
could conceive of a situation where computational costs are weighed between
computing the ideal-sparse hierarchy (3.9) and computing a “merged hierar-

chy” (3.11), with Ṽ1, ..., Ṽp̃ somewhere “between” V1, ..., Vp and V := [n]. One
would then endeavor to partially use ideal sparsity and ideal constraints to
fully utilize (but not exceed) the available computational resources, thereby
attaining a best computable (relative to capabilities) bound. However, finding
such an optimal configuration appears to be a rather complicated problem.
Regardless, the problem is susceptible to estimations and heuristics.

We now consider a special case with a natural heuristic for merging the
sets V1, ..., Vp. When S = E is the set of non-edges of some graph G = (V,E),
the sets V1, ..., Vp are interpreted as the maximal cliques of G. In this setting,

one can choose the sets Ṽ1, ..., Ṽp̃ to be the maximal cliques of a chordal ex-

tension G̃ of G. That is to say; we add edges to G until the resulting graph

61
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62 DISCUSSION

G̃ is chordal; note this process is not unique in general, not even for minimal
(in the number of edges) chordal extensions. Finding the minimal chordal
extension of a graph is NP-complete [7], but heuristics exist for certain cases
(see, e.g., [21]). In chordal graphs, the number of maximal cliques is, at most,
the number of nodes, i.e., p̃ ≤ n.

In our forthcoming Chapters 5 and 6 on matrix factorization ranks, we will
consider the set of non-edges S = EA for the support graph GA = ([n], EA)
of some matrix A. However, we will only look at the two extreme cases of

the dense and ideal-sparse parameters ξt and ξispt . For most of the matrices
considered, the number of maximal cliques seems not to play a significant role.
But, in Section 5.3.2, we do consider a case where G = ([2n], E) is a complete
graph with a perfect matching deleted, hence resulting in exponentially (2n-
many) many cliques.
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Matrix factorization ranks
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In light of recent data science trends, new interest has fallen in alternative
matrix factorizations. By this, we mean various ways of factorizing matrices
(of a particular class) so that the factors have special properties and reveal
insights into the original data. We are interested in the specialized ranks as-
sociated with these factorizations. As opposed to the familiar linear algebra
notion of matrix rank, these specialized ranks are often very difficult to com-
pute, raising the need for easier-to-compute bounds.

We begin this part of the thesis with a general introduction to matrix fac-
torization ranks. Chapter 4 aims to motivate the reader for the topic before
defining several different types of factorizations and their associated ranks. It
does not contain any of the author’s original research but significantly overlaps
with a book chapter [151], to which the author had the privilege of contribut-
ing. We elected to superficially present the different factorization definitions
and avoid technical discussions here to facilitate easier comparison among
similar concepts. It is also easier to contextualize with previous research and
literature. Each section of this chapter is punctuated with references for the
erudite reader.

The subsequent three chapters are more technical and can each be read
independently. The focus will be on the nonnegative rank (Chapter 5), com-
pletely positive rank (Chapter 6), and separable rank (Chapter 7). The content
of these chapters is based on: our work with Sander Gribling and Monique
Laurent in [81]; and our work with Milan Korda, Monique Laurent, and Vic-
tor Magron in [100]. In particular, we give two novel contributions to the
field. The first one is the addition of new polynomial-matrix constraints to
the moment hierarchies used to lower bound the completely positive rank and
separable rank. Our second major contribution is the application of ideal
sparsity to finding better lower bounds for the nonnegative rank, and the
completely positive rank.

Each of the considered ranks is given a chapter, and each chapter follows
a similar structure: We first construct a hierarchy of lower bounds via the
moment method of Chapter 3. Then, we invoke a form of sparsity, ideal-
sparsity (see Section 2.2) for nonnegative- and completely positive rank, and
a block-diagonal reduction (see Section 7.2) for separable rank. Having built
a hierarchy of bounds, we try to link the resulting parameters to other com-
binatorial bounds from the literature. Each chapter then ends with numerical
results and examples.
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CHAPTER 4

General theory

4.1. Nonnegative rank

A nonnegative (NN) factorization of an entry-wise nonnegative matrix
M ∈ Rn×m

+ is a pair of nonnegative matrices A ∈ Rn×r
+ and B ∈ Rr×m

+ for
some integer r ∈ N such that:

M = AB. (4.1)

Our interest is in the inner dimension r of the factorization. One can always
take A = M and B = I, where I is the identity matrix, hence getting r = m.
However, the interesting case is when r < nm

n+m . In this case, one has managed

to express the n×m values of M in terms of the (n× r) + (r ×m) values of
A and B, and as a result, using less storage. The smallest integer r for which
this is possible is called the nonnegative rank, and is mathematically defined
as follows:

rank+(M) := min{r ∈ N : M = AB for some A ∈ Rn×r
+ , B ∈ Rr×m

+ }. (4.2)

It is not hard to see that the NN rank is sandwiched between the classical
rank and the size of the matrix, i.e., rank(M) ≤ rank+(M) ≤ min{n,m}.

However, storage space efficiency is only part of the value of NN factor-
ization. The true power of NN factorization comes from the fact that it is an
easy-to-interpret linear dimensionality reduction technique. To understand
what we mean by this, we first re-examine the relationship between the three
matrices M,A, and B in (4.1).

Observe how the jth column of M is given as a conic combination of the
columns of A with weights given by the jth column of B, i.e.,

M:,j =
∑
ℓ∈[r]

Bℓ,jA:,ℓ. (4.3)

Because all terms involved are nonnegative, zero entries in M force the cor-
responding entries of the factors to be zero. Formally, for any i ∈ [n] and
j ∈ [m], Mi,j = 0 if and only if Bℓ,jAi,ℓ = 0 for all ℓ ∈ [r]. Having no cancella-
tion among factors will be useful for interpreting applications of nonnegative
factorization. We will explain more with examples in Section 4.1.1. Further-
more, observe that the nonnegative factorization need not be unique. In fact,

65



617919-L-bw-Steenkamp617919-L-bw-Steenkamp617919-L-bw-Steenkamp617919-L-bw-Steenkamp
Processed on: 27-9-2023Processed on: 27-9-2023Processed on: 27-9-2023Processed on: 27-9-2023 PDF page: 74PDF page: 74PDF page: 74PDF page: 74

66 4. GENERAL THEORY

for any non-singular, nonnegative matrix P ∈ Rr×r
+ with nonnegative inverse

P−1 one can produce another factorization

M = (AP−1)(PB).

An example of such a matrix P would be a permutation matrix.

Example 4.1. Example of a nonnegative factorization. Consider
the following example of a 4 × 4 nonnegative matrix and its nonnegative fac-
torization from which we can deduce that rank+(M) = 2 because rank(M) = 2:

M =


35 38 41 44
79 86 93 100
123 134 145 156
167 182 197 212

 =


1 2
3 4
5 6
7 8

[ 9 10 11 12
13 14 15 16

]
= AB.

4.1.1. Applications of nonnegative factorization. Having introduced
the nonnegative rank, we now justify its importance with three applications.
What we present here is but a small fraction of the whole body of literature on
nonnegative factorization. The interested reader is highly encouraged to read
a recent monograph of Gillis [76] for an in-depth study of the nonnegative
rank with many applications and further references.

Image processing. When analyzing many images, it is natural to ask if the
vast bulk is not just a combination of a few “basic images”. This raises two
questions. First, how does one find or construct a set of basic images? Sec-
ond, given this, hopefully small, set of basic images, how does one reproduce
the original images? Lee and Seung answered both questions in [111], where
they factorized a set of images of human faces into typical facial features and
nonnegative weights. Combining the weights and features, one approximately
recovers the original faces. In this setting, the matrix M has as columns the
vectorized gray-scale images of human faces, hence Mi,j is the ith pixel of the

jth face, with a value between 0 and 1, with 0 corresponding to black and 1
to white.

Recalling the interpretation of (4.3), we can think of the columns of the
matrix A as (vectorized) images of human facial features, like a mouth or
pair of eyes. Hence, the jth image M:,j is a weighted sum of feature-images
A:,ℓ (ℓ ∈ [r]), where the (nonnegative) weight of feature A:,ℓ is given by entry
Bℓ,j of the matrix B.

In contradistinction to techniques like principal component analysis (PCA),
which possibly gives factors with negative entries, NN factorization saves us
from the task of interpreting notions like “negative pixels” or “image cancella-
tions.” By “negative pixels,” we mean negative factor values, i.e., Bℓ,jAi,ℓ < 0.
This means that factor Bℓ,jA:,ℓ does not just add features but also possibly
erases the features added by other factors Bk,jA:,k, where k ̸= ℓ. A fun by-
product of these image factorizations is that one can generate new images by
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4.1. NONNEGATIVE RANK 67

multiplying the matrix A with new weights different from B. However, the
resulting images are not guaranteed to look like faces for a poor choice of
weights.

Topic recovery and document classification. In text analysis, the ma-
trix M is called the word occurrence matrix, and its entries Mi,j are the number

of times the ith word occurs in the jth document. This way of looking at a
corpus of text is often called a “bag of words model,” the sequence is ignored,
and only the quantity is considered. Since word count is always nonnegative,
M is nonnegative and has some NN factors A and B. The columns of matrix
A take the meaning of “topics”, and B gives the correct weights to recover M .
Since there are no cancellations, we observe in the columns of A that certain
words tend to occur together, at least within the original set of documents.
Moreover, we see how the documents (columns of M) are composed of these
base topics (columns of A), with the weight of each topic given by the entries
of B. One can hence use these learned topics to group or classify documents.

Linear extension complexity. This third application is different from the
above two. First, we define the linear extension complexity, then show how it
relates to the nonnegative rank, and finally, we motivate its importance. The
linear extension complexity of a polytope P is the smallest integer r for which
P can be expressed as the linear image of an affine section of Rr

+. Alternatively,
the linear extension complexity can be defined as the smallest number of facets
a higher dimensional polytope Q can have while still having P as a projection.
In 1991 Yannakakis [171] proved that the linear extension complexity of P is
equal to the nonnegative rank of the slack matrix associated with P . For a
polytope P , the slack matrix is

(di − cTi v)v∈V,i∈I ,

where ci ∈ Rm, di ∈ R come from the hyperplane representation of

P = {x ∈ Rm : cTi x ≤ di (i ∈ I)},
and the vectors v ∈ Rm come from the extremal point representation of
P = conv(V). This link between nonnegative rank and linear extension com-
plexity was instrumental in showing why many combinatorial problems, like
the traveling salesman problem, could not be efficiently solved simply by lift-
ing the associated problem polytope to higher dimensions in some clever way,
see [68]. Regarding lifting convex sets, we refer the reader to the survey [66].

4.1.2. On computing the nonnegative rank. Given the utility of
computing nonnegative factorizations, it is natural to ask: is it difficult to
compute the nonnegative rank for a given data matrix M ≥ 0? This was an-
swered in the affirmative in 2009 by Vavasis [157]. Despite being NP-hard to
solve, good approximations are sometimes quite accessible. In Chapter 5, we
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show a general technique for approximating the nonnegative rank from below
using the moment method described in Chapter 3.

An alternative, geometrically-motivated approach is to look for a minimal
rectangle cover for the support of M , see Section 5.2 and [77]. Given a matrix
M ∈ Rn×m, one seeks the smallest set of rectangles, sets of the form

R :=
{
{i, j} : i ∈ I ⊂ [n], j ∈ J ⊂ [m]

}
,

such that for each nonzero entry Mi,j ̸= 0, {i, j} belongs to at least one of
these rectangles. The minimal number of rectangles needed to accomplish this
is a lower bound on the nonnegative rank.

Finding the factorization rank does not necessarily give a factorization.
The GMP method that we use next in Chapter 5 does not generally give a fac-
torization, except in a particular case when flatness holds (recall Section 3.2),
in which case it is possible to recover the factors. For NN factorization, sev-
eral algorithms exist that iteratively compute A and B given a guessed value
r. However, these algorithms only give approximate factorizations, that is,
M ≈ AB, with respect to some norm. A sufficiently good approximate NN
factorization also implies an upper bound on the NN rank. For practical
problems, an approximation is often sufficient. For a detailed account of NN
factorization, we refer the reader again to the book of Gillis [76].

Above, we looked at NN factorization and some of its applications in
data analysis and optimization theory. However, there are many more matrix
factorization ranks, each having intricacies, applications, and interpretations.
Next is the completely positive rank, which can be considered as a symmetric
analog of the NN rank.

4.2. Completely positive rank

This factorization is similar to the nonnegative factorization given in (4.1)
apart from the modification that we now require B = AT . Formally, a nonneg-
ative matrix M ∈ Sm is completely positive (CP) if there exists a nonnegative
matrix A ∈ Rn×r

+ , for some integer r ∈ N, such that:

M = AAT . (4.4)

Clearly, it is necessary for a CP matrix to be doubly nonnegative, i.e., entry-
wise nonnegative and positive semi-definite (PSD). However, these criteria are
not in general sufficient for a matrix to be CP unless n ≤ 4, see [18]. As an
example of a 5× 5 doubly nonnegative matrix that is not CP, we consider the
following example from [18].
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4.2. COMPLETELY POSITIVE RANK 69

Example 4.2. A doubly nonnegative non-CP matrix [18, Exam-
ple 2.9]

M =


1 1 0 0 1
1 2 1 0 0
0 1 2 1 0
0 0 1 2 1
1 0 0 1 6

 .

The nonnegativity is clear; the PSDness is checked via computing all the mi-
nors (or using a computer to check the eigenvalues). Non-CPness is harder to
check; we refer to the explanation in Berman and Shaked-Monderer’s mono-
graph [18].

Deciding if a given matrix is CP is already an NP-hard problem; see [53].
Because the completely positive factors A and AT are the same, up to trans-
position, CP factorization is called a symmetric factorization. We will see
another example shortly at the end of this section. Similar to nonnegative
rank, there is a completely positive rank, mathematically defined as the small-
est inner dimension r ∈ N for which a CP factorization of M exists, i.e.,

rankcp(M) := min{r ∈ N : M = AAT for some A ∈ Rn×r
+ }. (4.5)

Clearly, a matrix M is CP if and only if M has finite CP rank; rankcp(M) < ∞.
Hence, computing the CP rank can’t be any easier than deciding if M is CP.
That being said, the complexity status of computing rankcp(M) for a given
CP matrix M is unknown to the best of our knowledge. Some upper bounds
are known for the CP rank [146]:

• rankcp(M) ≤ n, when n ≤ 4, and

• rankcp(M) ≤
(
n+1
2

)
− 4 if n ≥ 5.

In 1994 it was conjectured by Drew, Johnson, and Loewy [58] that

rankcp(M) ≤ ⌊n
2

4
⌋,

the bound being only attained for CP matrices M that have complete bipartite
support graphs. This conjecture was disproved by Bomze et al. [22, 23] two
decades later, using several specially constructed counter-examples. We show

in (4.6) an example, namely M̃7 from [22], of size n = 7, with

rankcp(M̃7) = 14 > ⌊49

4
⌋ = 12,

M̃7 =



163 108 27 4 4 27 108
108 163 108 27 4 4 27
27 108 163 108 27 4 4
4 27 108 163 108 27 4
4 4 27 108 163 108 27
27 4 4 27 108 163 108
108 27 4 4 27 108 163


. (4.6)
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On the applied side, CP matrices occur in the theory of block designs. We
omit many details here, but essentially, block designs deal with arranging dis-
tinct objects into blocks so that the objects occur with certain regularity within
and among the blocks. There is a direct application of block designs in de-
signing experiments, where researchers wish to prevent the differences between
test subjects from obfuscating the differences in outcome due to treatment;
see [83] for more on block designs and see [145] for the link between block
designs and CP matrices.

From another perspective, CP matrices are of great interest in optimiza-
tion. Indeed, de Klerk and Pasechnik [43, Theorem 2.2] showed that comput-
ing the stability number of a graph could be recast as a linear optimization
problem over the cone of CP matrices. Later, Burer [28] expanded on this
result by showing that any nonconvex quadratic program with binary and con-
tinuous variables could be reformulated as a linear program over the cone of
CP matrices. This effectively meant that many NP-hard problems could now
be viewed as linear programs with CP membership constraints. This reformu-
lation does not make the problems any easier to solve as the difficulty is now
pushed into characterizing the cone of CP matrices. However, it does allow
us to attack a large class of problems by understanding the unifying thread,
complete positivity.

For a thorough account of completely positive and copositive matrices
(the natural dual cone to CP matrices), we refer the inquisitive reader to the
monograph by Berman and Shaked-Monderer [145].

4.3. Separable rank

In the quantum information theory setting, the state of a physical sys-
tem is often characterized by a Hermitian PSD matrix M ∈ Hn ⊗ Hn. A
state M is said to be separable if there exists an integer r ≥ 1 and vectors
a1, ...,ar,b1, ...,br ∈ Cn for which

M =
∑
ℓ∈[r]

aℓa
∗
ℓ ⊗ bℓb

∗
ℓ . (4.7)

We will not go into the quantum physics details. Instead, we refer the reader
to [129, 165] and the references therein. It suffices to think of separable states
as fully explained by classical physics, in contradistinction to non-separable
states, a.k.a. entangled states, that have special non-classical properties of
interest in quantum physics. For a rank-one state (a.k.a a pure state), i.e.,
if rank(M) = 1, one can obtain a separable factorization by using singular
value decomposition (SVD). Non-rank-one states are called mixed states, and
deciding whether a mixed state M is separable is generally NP-hard, see [82,
72].
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Example 4.3. Example of an entangled state [35] Consider the fol-
lowing mixed state of size 9 × 9, hence n = 3. We have omitted to show zeros
for readability and drawn grid lines to highlight the block structure.

M =



1 1 1
2 1

1
2 1

1 1
2

1 1 1
2 1

1 2
1 1

2
1 1 1


.

See [35] for a proof that M is entangled.

Analogously to matrix ranks we considered thus far, there is also an asso-
ciated notion of rank, namely, the separable rank [46] (a.k.a optimal ensemble
cardinality [55]). For a separable matrix M , we define its SEP rank as

ranksep(M) := min
{
r ∈ N : ∃ aℓ,bℓ ∈ Cn s.t. M =

∑
ℓ∈[r]

aℓa
∗
ℓ ⊗ bℓb

∗
ℓ

}
. (4.8)

A possible interpretation of the separable rank is that it gives a sense of how
complex a classical system is, with the convention being that an entangled state
has infinite separable rank. To the best of our knowledge, the complexity of
computing the separable rank is still unknown. There are some crude bounds
on the separable rank, namely:

rank(M) ≤ ranksep(M) ≤ rank(M)2.

The left-most inequality can be strict (see [55]), and the right-most inequality
follows from Caratheodory’s theorem [156].

In addition to the above definition, there are several other variations on
this notion of separability. One variation is to look for factorizations of the
form M =

∑
ℓ∈[r]Aℓ ⊗ Bℓ, where Aℓ, Bℓ ∈ Hn are Hermitian PSD matrices

(as opposed to rank-one Hermitian PSD matrices). From this, it is easy to
define the associated mixed separable rank as the smallest r for which such a
factorization is possible, i.e.,

rankmixsep(M) := min
{
r ∈ N : ∃ A(ℓ), B(ℓ) ∈ Hn

+ s.t. M =
∑
ℓ∈[r]

A(ℓ) ⊗B(ℓ)
}
.

When M is diagonal, its mixed separable rank equals the nonnegative rank of
an associated n × n matrix consisting of the diagonal entries of M , see [47].
This shows that the mixed separable rank is hard to compute.
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4.4. Tensor ranks

Tensors, or multi-way arrays, are natural generalizations of matrices that
are commonly encountered in applied fields such as engineering, computer vi-
sion, and data science. It is to be expected, then, that matrix factorization
generalizes to tensor factorization. A comprehensive introduction to tensor
factorization ranks falls beyond the scope of this thesis. However, the sepa-
rable factorization we considered prior is a good example. We build on the
similarities with some remarks and references to further material.

Consider, for example, a three-way array T ∈ Rn×m×p. Its tensor rank is
the smallest number r ∈ N of rank-one tensors (tensors of the form a⊗ b⊗ c
for some a ∈ Rn, b ∈ Rm, and c ∈ Rp) necessary to describe T , i.e.,

ranktensor(T ) = min{r ∈ N : T =
∑
ℓ∈[r]

aℓ⊗bℓ⊗cℓ, aℓ ∈ Rn, bℓ ∈ Rm, cℓ ∈ Rp}.

Similarly, one can define the nonnegative tensor rank by requiring the factors
aℓ,bℓ, and cℓ to be nonnegative. Moreover, one can define the symmetric
tensor rank by requiring n = m = p and forcing the factors to be equal, i.e.,
aℓ = bℓ = cℓ for all ℓ ∈ [r]. An interesting effect of going to tensors is that
some decompositions become unique [148]. See [36] for an applications-centric
monograph on tensor factorization. For a mathematical survey, see Kolda and
Bader [97].

4.5. Non-commutative matrix ranks

This section examines two non-commutative analogs of NN factorization
and CP factorization.

A positive semidefinite (PSD) factorization is when, for a nonnegative
matrix M ∈ Rn×m

+ we look for an r ∈ N, and PSD matrices

A1, ..., An, B1, ..., Bm ∈ Sr
+

such that the matrix M is described entry-wise as follows:

Mi,j = ⟨Ai, Bj⟩, for i ∈ [n] and j ∈ [m].

If the matrices Ai (i ∈ [n]) and Bj (j ∈ [m]) are diagonal, then we recover
a nonnegative factorization. Similar to nonnegative factorization, there is a
substantial research interest in PSD factorization, largely due to its many
appealing geometric interpretations, including semidefinite representations of
polyhedra. We refer the reader to the survey by Fawzi et al. [65] for further
study of PSD-factorizations.

A completely positive semidefinite factorization is the symmetric analog
of PSD factorization and the non-commutative analog of CP factorization.
Completely PSD factorization differs from PSD factorization only in that it
requires n = m and Bi = Ai for all i ∈ [n].
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We refer the reader to [80] for a deeper treatment of these two non-
commutative ranks and their commutative analogs.
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CHAPTER 5

Nonnegative rank

This chapter focuses on the nonnegative rank of a nonnegative matrix. We
begin with a quick recap of definitions. Then, we apply the results of Chapter 3
to build a hierarchy of lower bounds for the nonnegative rank (Section 5.1).

Our new contribution to this field is the exploitation of ideal sparsity (re-
call Section 2.2) to build a possibly stronger and easier-to-compute hierarchy
(Section 5.1.2).

Having defined two hierarchies, we compare them to each other and other
known combinatorial bounds from the literature in Section 5.2. Lastly, we
present our numerical results comparing the dense and ideal-spare hierarchies
in Section 5.3.

5.1. Hierarchies of lower bounds for the nonnegative rank

For a nonnegative matrix M ∈ Rn×m
+ , its nonnegative rank is defined in

two equivalent ways

rank+(M) := min{r ∈ N : M = AB, A ∈ Rn×r
+ , B ∈ Rr×m

+ },

= min{r ∈ N : M =
∑
ℓ∈[r]

aℓb
T
ℓ , aℓ ∈ Rn

+, bℓ ∈ Rm
+}. (5.1)

Here we used A = (a1|...|ar) and B = (b1|...|br)
T .

The nonnegative rank is a combinatorial parameter and it is NP-hard to
compute in general [157]. To find good approximations for the nonnegative
rank, one can consider parameters obtained via somehow relaxing the defini-
tion in (5.1). The following is a “natural convexification” of the parameter
rank+(M) proposed by Fang and Parrilo [67]:

τ+(M) = inf
{
λ :

1

λ
M ∈ conv{xyT : x ∈ Rn

+, y ∈ Rm
+ , M ≥ xyT }

}
. (5.2)

Observe that this new parameter lower bounds the nonnegative rank, i.e.,

τ+(M) ≤ rank+(M) for all M ∈ Rn×m
+ . (5.3)

Indeed, any nonnegative factorization M =
∑

ℓ∈[r] aℓb
T
ℓ induces a solution

λ = 1
r to (5.2) because

1

r
M =

∑
ℓ∈[r]

1

r
aℓb

T
ℓ ∈ conv{xyT : x ∈ Rn

+, y ∈ Rm
+ , M ≥ xyT }.

75
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76 5. NONNEGATIVE RANK

The optimization problem (5.2) may seem more challenging to solve than
(5.1), but it has the advantage that it admits a GMP formulation.

GMP formulation of the parameter τ+(M). Before formulating the
GMP, we need two technicalities. We need to define a semialgebraic set,
which requires specifying the support graph of a nonnegative matrix M , and
we assume a particular scaling on the negative factors.

Let V := [n + m] = U ∪W , with

• U := [n] = {1, . . . , n} corresponding to the row indices of M , and
• W := {n+1, . . . , n+m} corresponding (up to shifting) to the column

indices of M .

Define two sets of pairs of indices

EM :=
{
{i, j} ∈ U ×W : Mi,j−n ̸= 0

}
,

E
M

:=
{
{i, j} ∈ U ×W : Mi,j−n = 0

}
.

(5.4)

The set EM is the edge set of the (bipartite) support graph GM := (V,EM )

of the matrix M . The set of non-edges of GM is E
M

.

As observed in [80], one may assume without loss of generality (after
rescaling) that the nonnegative factors aℓ, bℓ (ℓ ∈ [r]) in (5.1) satisfy

∥aℓ∥∞, ∥bℓ∥∞ ≤
√

Mmax.

Here, Mmax := maxi∈[n], j∈[m]Mi,j denotes the largest entry of M .

Because it is convenient to think of the indices (i ∈ [n] and j ∈ [m]) of
the matrix M as corresponding to vertices in a graph, we henceforth use the
following renaming of variables:

y1, ..., ym → xn+1, ..., xn+m.

Now, we have all the prerequisites to define the following semialgebraic do-
main:

KM :=
{
x ∈ Rm+n :

√
Mmaxxi − x2i ≥ 0 (i ∈ [m + n]), (5.5a)

Mi,j−n − xixj ≥ 0 ({i, j} ∈ EM ), (5.5b)

xixj = 0 ({i, j} ∈ EM )
}
. (5.5c)

Lemma 5.1. The parameter τ+(M) is equal to the optimal value of the
following generalized moment problem:

val+(M) := inf
µ∈M (KM )

{∫
1dµ :

∫
xixjdµ = Mi,j−n (i ∈ U, j ∈ W )

}
. (5.6)
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5.1. HIERARCHIES OF LOWER BOUNDS FOR THE NONNEGATIVE RANK 77

Proof. (val+(M) ≤ τ+(M)) Any feasible solution to τ+(M), i.e., a de-
composition of the form M = λ

∑
ℓ∈[s] cℓaℓb

T
ℓ , with λ > 0,

∑
ℓ∈[s] cℓ = 1,

cℓ > 0, (aℓ,bℓ) ≥ 0, and M ≥ aℓb
T
ℓ , corresponds to a finite atomic measure

µ := λ
∑
ℓ∈[s]

cℓδ(aℓ,bℓ)

that is feasible for val+(M) with objective value λ. Hence, val+(M) ≤ τ+(M).
(val+(M) ≥ τ+(M)) Assume the GMP (5.6) is feasible, else val+(M) =

∞, and we have nothing to prove. Let µ ∈ M (KM ) be a feasible solution to
(5.6). In view of Theorem 2.8 (ii), we may assume that µ is a finite atomic
measure, i.e.,

µ := λ
∑
ℓ∈[r]

cℓδ(aℓ,bℓ),

with λ > 0,
∑

ℓ∈[r] cℓ = 1, cℓ > 0, and (aℓ,bℓ) ∈ KM . This measure then

induces a decomposition

M = λ
∑
ℓ∈[r]

cℓaℓb
T
ℓ

corresponding to a solution to (6.3), with value λ. Hence, val+(M) ≥ τ+(M).
If val+ is infeasible, then both parameters τ+(M) and val+(M) are infeasible
and thus equal to ∞. □

The quadratic module is Archimedean. Consider the quadratic module
M(H) generated by the positivity constraints (5.5a) defining KM ,

H :=
{√

Mmaxxi − x2i (i ∈ [m + n])
}
.

Observe that

(n + m)Mmax −
∑

i∈[n+m]

x2i =
∑

i∈[n+m]

(
Mmax − x2i

)
=

∑
i∈[n+m]

(
(
√

Mmax − xi)
2 + 2(

√
Mmaxxi − x2i )

)
∈ M2(H).

(5.7)

Here, the last line of the equation is clearly in the quadratic module M(H),
and the first line contains the Archimedean certificate of M(H). Our argument
here is paraphrased from Section 2 of [80].

5.1.1. A (dense) hierarchy of lower bounds for τ+(M). We now
build a hierarchy of semidefinite programs using the moment method described
in Section 3.1. For each t ∈ N ∪ {∞} define the following parameter that
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78 5. NONNEGATIVE RANK

provides a lower bound for τ+(M):

ξ+t (M) := min
{
L(1) :

L ∈ R[x1, ..., xm+n]∗2t,

L(xixj) = Mi,j−n (i ∈ U, j ∈ W ), (5.8a)

L([x]t[x]Tt ) ⪰ 0, (5.8b)

L((
√

Mmaxxi − x2i )[x]t−1[x]Tt−1) ⪰ 0 (i ∈ V ), (5.8c)

L((Mi,j−n − xixj)[x]t−1[x]Tt−1) ⪰ 0 ({i, j} ∈ EM ), (5.8d)

L(xixj [x]2t−2) = 0 for {i, j} ∈ E
M
}
. (5.8e)

If we omit the (ideal) constraint (5.8e) and require the constraint (5.8d) to

hold also for pairs {i, j} ∈ E
M

, then we obtain a (possibly weaker) parameter,
first introduced in [80]. In [80], this parameter was also denoted by ξ+t (M);

to not conflict with our current notation, we now denote it by ξ+t
(2019)

(M).
Hence, we have

ξ+t
(2019)

(M) ≤ ξ+t (M) ≤ τ+(M) ≤ rank+(M).

Moreover, asymptotic convergence of ξ+t
(2019)

(M) to τ+(M), i.e.,

lim
t→∞

ξ+t
(2019)

(M) = ξ+∞
(2019)

(M) = τ+(M),

was already shown in [80]. Thus we can conclude

lim
t→∞

ξ+t (M) = ξ+∞(M) = τ+(M). (5.9)

The core tool underlying these convergence results is Theorem 3.3, where
assumption (A) is satisfied because of (5.3), assumption (B) because of (5.7),
and assumption (C) holds by taking zi,j = 0 (i ∈ U, j ∈ W ) and c = 1

2 .
For completeness, we state the conclusion of Theorem 3.3 for the hierarchy

ξ+t (M) and parameter τ+(M). For each t ∈ N∪{∞}, the program (5.8) attains
it optimum, and

lim
t→∞

ξ+t (M) = ξ+∞(M) = τ+(M).

Moreover, the GMP (5.6) has an optimal solution µ that is finite atomic and
is supported on KM .

5.1.2. An ideal-sparse hierarchy of lower bounds for τ+(M). Ob-
serve how the sparsity pattern of M naturally gives rise to the ideal constraints
in (5.5c). Given the special form of these ideal constraints, we may apply ideal
sparsity from Section 3.1.4 to construct an ideal-sparse hierarchy that we de-

note by ξ+,isp
t (M).

Because the support graph GM is bipartite, the maximal subsets V1, ..., Vp

of V = [n + m] that do not contain any pair {i, j} ∈ E
M

(recall the general
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5.1. HIERARCHIES OF LOWER BOUNDS FOR THE NONNEGATIVE RANK 79

definition in Section 2.2.1) can now be interpreted as the vertex sets of all
the maximal bicliques of GM . A biclique in GM corresponds to a complete
bipartite subgraph, and it is thus given by a pair (A,B) with A ⊆ U and
B ⊆ W such that {i, j} ∈ EM for all (i, j) ∈ A × B; it is called maximal if
A ∪ B is maximal in the vertex-set inclusion sense. For any t ∈ N ∪ {∞},
define the parameter

ξ+,isp
t (M) = min

{ ∑
k∈[p]

Lk(1) :

Lk ∈ R[x(Vk)]∗2t (k ∈ [p]),∑
k∈[p]:{i,j}⊆Vk

Lk(xixj) = Mi,j−n (i ∈ U, j ∈ W ), (5.10a)

Lk([x(Vk)]t[x(Vk)]Tt ) ⪰ 0 (k ∈ [p]), (5.10b)

Lk((
√

Mmaxxi − x2i )[x(Vk)]t−1[x(Vk)]Tt−1) ⪰ 0 (i ∈ Vk, k ∈ [p]), (5.10c)

Lk((Mi,j−n − xixj)[x(Vk)]t−1[x(Vk)]Tt−1) ⪰ 0 ({i, j} ⊆ Vk, k ∈ [p])
}
. (5.10d)

Though the definition of ξ+,isp
t (M) looks much more cumbersome than its

dense counterpart ξ+t (M), they both largely follow the same structure. As
noted in Section 2.2.1, the ideal constraints from (5.8e) are captured in the
supports V1, .., Vp.

By direct application of Theorem 3.4 we have, for any t ∈ N ∪ {∞}, the
following inequalities among the above parameters:

ξ+t (M) ≤ ξ+t+1(M) ≤ ξ+,isp
t+1 (M) ≤ τ+(M) ≤ rank+(M).

Moreover, we have asymptotic convergence of ξ+,isp
t (M) to τ+(M), which fol-

lows from the convergence of the dense hierarchy ξ+t (M).

Adding scalar localizing constraints based on nonnegativity. More
constraints may be added to the above programs to strengthen the bounds.
In [80], the authors propose to exploit the nonnegativity of the variables and
add the linear constraints

L((Mi,j−n − xixj)[x]2t−2) ≥ 0 ((i, j) ∈ U ×W ), (5.11)

L((
√

Mmaxxi − x2i )[x]2t−2) ≥ 0 (i ∈ V ), (5.12)

L([x]2t) ≥ 0. (5.13)

Adding constraint (5.11) to the parameter ξ+t (M) results in a possibly stronger
parameter we denote by ξ+t,†(M). If we add all the constraints (5.11), (5.12),

and (5.13) to ξ+t (M), then we get a possibly even stronger parameter ξ+t,‡(M).
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80 5. NONNEGATIVE RANK

We can mutatis mutandis define ideal-sparse parameters ξ+,isp
t,† (M) and

ξ+,isp
t,‡ (M) by using the following ideal-sparse analogs of the constraints (5.11),

(5.12), and (5.13):

Lk((Mi,j−n − xixj)[x]2t−2) ≥ 0 ({i, j} ⊆ Vk, k ∈ [p]),

Lk((
√

Mmaxxi − x2i )[x(Vk)]2t−2) ≥ 0 (i ∈ Vk, k ∈ [p]),

L([x(Vk)]2t) ≥ 0 (k ∈ [p]).

Thus, we have

ξ+,isp
t (M) ≤ ξ+,isp

t,† (M) ≤ ξ+,isp
t,‡ (M)

≤ ≤ ≤

ξ+t (M) ≤ ξ+t,†(M) ≤ ξ+t,‡(M).

Observe that the constraints are all linear. Hence, they are not as costly to
implement as PSD constraints, which are often the computational bottleneck
in SDP hierarchies.

5.2. Links to other lower bounds on the nonnegative rank

We now recall two lower bounds on the nonnegative rank from existing
literature. The first is due to Fawzi and Parrilo, who proposed an SoS-based
relaxation τ sos+ (M) of the parameter τ+(M). The second is a more classical

result that looks at minimal edge covers for the support graph GM of M . At
the end of this section, we relate and summarize all the parameters we have
introduced thus far in the chapter.

The bound τ sos+ (M). Fawzi and Parrilo [67] introduced a semidefinite bound
τ sos+ (M) and showed that it satisfies τ sos+ (M) ≤ τ+(M). In [80] it is shown

that the parameter ξ+2,†(M) possibly improves on this bound 1

τ sos+ (M) ≤ ξ+2,†(M) ≤ τ+(M).

Edge biclique-cover bound. We now define a well-known combinatorial
lower bound on the nonnegative rank, called the edge biclique-cover number.
Recall that the support graph GM = (U ∪W,EM ) of M ∈ Rm×n

+ is a bipartite

graph. Define the edge biclique-cover number of GM , denoted bc(GM ), as the
smallest number of bicliques whose union covers every edge in EM . Observe

1This follows from the proof of [80, Proposition 15], since it only uses the relation
L((Mi,j−n − xixj)xixj) ≥ 0 for any (i, j) ∈ U × W in addition to the constraints defining
the basic parameter ξ+2 (M).
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5.2. LINKS TO OTHER LOWER BOUNDS ON THE NONNEGATIVE RANK 81

that a nonnegative factorization M =
∑

ℓ∈[r] aℓb
T
ℓ induces an edge biclique-

cover {Aℓ ∪ Bℓ}ℓ∈[r] of GM , where the sets are given by Aℓ := supp(aℓ) and

Bℓ := supp(bℓ). Hence we have

bc(GM ) ≤ rank+(M).

Any biclique in GM corresponds to a pair (A,B) ⊆ U ×W for which the
rectangle A×B is entirely contained in the support of M . Because of the bi-
jective correspondence between bicliques of GM and rectangles supported on
supp(M), the parameter bc(GM ) is also known as the rectangle covering num-
ber of M (see, e.g., [67, 77]). Relaxing the integrality constraint in bc(GM ), we
can define a fractional analog, called the fractional rectangle covering number
as follows:

bcfrac(G
M ) := min

{ ∑
k∈[p]

λk : λ ∈ Rp
+,

∑
k:{i,j}⊆Vk

λk ≥ 1 ({i, j} ∈ EM )
}
. (5.14)

If we require that λ be integer valued, then (5.14) becomes bc(GM ). Hence
we have

bcfrac(G
M ) ≤ bc(GM ).

We now show that the first level of the ideal-sparse hierarchy is at least as
good as the fractional rectangle covering number.

Lemma 5.2. For any M ∈ Rn×m
+ we have

ξ+,isp
1 (M) ≥ bcfrac(G

M ).

Proof. Let (L1, ..., Lp) be an optimal solution for the program (5.10)

defining ξ+,isp
1 (M). Observe that by (5.10d) we have Lk(Mi,j−n−xixj) ≥ 0 and

hence Mi,j−n · Lk(1) ≥ Lk(xixj) ≥ 0 for all {i, j} ∈ EM , {i, j} ⊆ Vk, k ∈ [p].
Hence, by condition (5.10a) we have, for every fixed {i, j} ∈ EM , that

Mi,j−n

∑
k∈[p]:{i,j}⊆Vk

Lk(1) ≥
∑

k∈[p]:{i,j}⊆Vk

Lk(xixj) = Mi,j−n.

Because Mi,j−n ̸= 0 for all {i, j} ∈ EM , it follows that
∑

k∈[p]:{i,j}⊆Vk
Lk(1) ≥ 1

for each edge {i, j} ∈ EM . Hence, the vector λ := (Lk(1))k∈[p] provides a
feasible solution to program (5.14), implying that

ξ+,isp
1 (M) =

∑
k∈[p]

Lk(1) ≥ bcfrac(G
M ). □

Separation between ideal-sparse and dense bounds. The ideal-sparse
bounds can be arbitrarily better than the dense bounds, even at level t = 1.
To demonstrate this claim, we consider the matrix M = In.
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Example 5.3. Identity matrices separate ideal-sparse and dense
bounds. Consider the identity matrix M = In ∈ Sn. Clearly, we have
rank+(In) = rank(In) = n. As the support graph GM is the disjoint union
of n edges, its fractional edge biclique-cover number is equal to n, and thus,

in view of Lemma 5.2, we have the equalities ξ+,isp
1 (In) = n = rank+(In). We

now show that for the dense bound, we have ξ+1 (In) < 8 for any n ≥ 4. For
this, recall that ξ+1 (In) is given by

ξ+1 (In) = min
{
L(1) : L ∈ R[x]∗2,

L(xi) ≥ L(x2i ) (i ∈ [2n]),

L(xixn+j) = δi,j (i, j ∈ [n]),

L([x]1[x]T1 ) ⪰ 0
}
,

(5.15)

where x = (x1, ..., x2n). Consider the linear functional L ∈ R[x]∗2 defined by
L(1) = 8n−2

n , L(xi) = L(x2i ) = 2n−2
n for i ∈ [2n], L(xixj) = L(xn+ixn+j) =

n−4
n for i ̸= j ∈ [n], and L(xixn+j) = δi,j for i, j ∈ [n]. Then, one can check

that

L([x]1[x]T1 ) =

 8n−2
n 2n−2

n eT 2n−2
n eT

2n−2
n e In + n−4

n Jn In
2n−2

n e In In + n−4
n Jn

 ⪰ 0.

Hence, L is feasible for the program defining ξ+1 (In), which shows the upper
bound ξ+1 (In) ≤ L(1) = 8n−2

n < 8.

Summary of lower bounds on the nonnegative rank. For the reader’s
convenience, we summarize the parameters of this chapter and their relations
to each other. For any t ∈ {2, 3, ...} ∪ {∞} we have the following:

bcfrac(G
M ) ≤ ξ+,isp

1 (M) ≤ ξ+,isp
t (M) ≤ ξ+,isp

t,† (M) ≤ ξ+,isp
t,‡ (M) ≤ τ+(M) ≤ rank+(M)

≥ ≤ ≤ ≤

bc(GM ) ξ+1 (M) ≤ ξ+2 (M) ≤ ξ+2,†(M)

≥ ≤

rank+(M) τ sos+ (M).

5.3. Numerical results and examples

In this section, we test the ideal-sparse and dense hierarchies on two classes of
nonnegative matrices. The first class consists of size 4 × 4 matrices that depend
continuously on a single variable. The second class we consider is the Euclidean
distance matrices (EDMs).
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5.3.1. Matrices related to the nested rectangles problem. The nonnega-
tive matrices we will consider have an interesting link between their nonnegative rank
and the geometric nested rectangles problem (see [25]). Bounds for their nonnegative
rank were investigated by Fawzi and Parrilo [67] and Gribling et al. [80]. Consider
the matrices

S(a, b) :=


1 − a 1 + a 1 − b 1 + b
1 + a 1 − a 1 − b 1 + b
1 + a 1 − a 1 + b 1 − b
1 − a 1 + a 1 + b 1 − b

 for 0 ≤ a, b ≤ 1.

If a, b < 1 then S(a, b) is fully dense and no improvement can be expected from our
new bounds. Thus we consider the case b = 1 and 0 ≤ a ≤ 1. We have computed the
bounds ξ+t,‡(M) and ξ+,isp

t,‡ (M) at level t = 1, 2, 3 for M = S(a, 1) with a ranging from
0 to 1 in increments of 0.01. The results are displayed in Figure 1 below. We can
make the following two observations about Figure 1. First, the ideal-sparse hierarchy
is much stronger at level t = 1, but at level t = 2 the dense and ideal-sparse hierarchies
give comparable bounds. Second, for a = 1, all bounds (except the dense bound of
level 1) are equal to 4 = rank+(S(1, 1)) (as is expected for the ideal-sparse hierarchy
given Lemma 5.2).

Bounds ξ+t,‡(M) and ξ+,isp
t,‡ (M) for M = S(a, 1) and t = 1, 2, 3 vs. 0 ≤ a ≤ 1

Figure 1. This figure shows ξ+t,†(S(a, 1)) and ξ+,isp
t,† (S(a, 1))

computed at levels t = 1, 2, 3 with a ranging from 0 to 1 in
increments of 0.01. The color indicates a lower bound on the
obtained numerical value: yellow, red, and purple show the
bound is at least 2, 3, and 4, respectively. So a red square at

a = 0.35 and “sp t=2” means ξ+,isp
2,† (M) ≥ 3.

5.3.2. Euclidean distance matrices. The second class of examples we con-
sider are the Euclidean distance matrices Mn = ((i − i)2)ni,j=1 ∈ Rn×n

+ , known to
have a large separation between their rank (in the linear algebra sense) and their
nonnegative rank. Indeed, rank(Mn) = 3, see [14], and their bipartite support
graph GMn is Kn,n with a deleted perfect matching (known as a crown graph),
whose edge biclique-cover number satisfies bc(GMn) = Θ(log n) [52]. So we have
rank(Mn) = 3 and rank+(Mn) ≥ bc(GMn) = Θ(log n). In addition, it is known that
rank+(Mn) ≤ 2 + ⌈n

2 ⌉, see [77, Theorem 9]. The numerical results are shown in
Table 1. In these examples, the ideal-sparse bound of level t = 2 is more difficult
to compute since the support graph GMn has 2n−1 maximal bicliques, each with n
vertices. For this reason, we could compute ξ+,isp

2,† only until n = 7 before running out
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of memory. So this example illustrates the limitations of the ideal sparsity approach
when the number of maximal cliques is too large. Note that this difficulty (of large
numbers of maximal bicliques) remains even if we would replace the support graph

GMn with a supergraph G̃, obtained by adding to GMn (say) s edges from the missing

perfect matching. Indeed, such G̃ still has 2n−s−1 maximal bicliques, each with n+ s
vertices.

Table 1. Bounds for the matrices Mn = ((i− j)2)ni,j=1.

n bc ξ+1,† ξ+2,† ξ+,isp
1,† ξ+,isp

2,† 2 + ⌈n
2 ⌉

4 4 2 3.46 3 3.63 4
5 4 2 3.73 3.35 4.19 5
6 4 2 3.96 3.41 4.53 5
7 5 2 4.17 3.55 4.85 6
8 5 2 4.35 3.59 - 6
9 5 2 4.51 3.66 - 7



617919-L-bw-Steenkamp617919-L-bw-Steenkamp617919-L-bw-Steenkamp617919-L-bw-Steenkamp
Processed on: 27-9-2023Processed on: 27-9-2023Processed on: 27-9-2023Processed on: 27-9-2023 PDF page: 93PDF page: 93PDF page: 93PDF page: 93

CHAPTER 6

Completely positive rank

This chapter focuses on the completely positive rank of a matrix. We begin with
a quick recap of definitions. Then, we apply the results of Chapter 3 to build a
hierarchy of lower bounds for the completely positive rank (Section 6.1). We explore
the progressive improvements over time that were made in order to create stronger
hierarchies.

Our two new contributions to this field are the strengthening of the hierarchy
by adding a polynomial matrix localizing constraint (recall Section 1.3), and the
exploitation of ideal sparsity (recall Section 2.2) to build a possibly stronger and
easier-to-compute ideal-sparse hierarchy (Section 6.1.3). We also explore a weak-ideal-
sparse hierarchy that sacrifices some bound strength for even faster computation.

Having defined several hierarchies, we compare them to each other and other
known combinatorial bounds from the literature in Section 6.2. Lastly, we present
our numerical results comparing the different hierarchies in Section 6.3.

The cone of completely positive matrices. Recall that, for a given integer
n ∈ N, the cone of completely positive n× n matrices is defined as

CPn := cone{xxT : x ∈ Rn
+}.

The cone of completely positive matrices and its dual, the cone of copositive matrices,
are well-known for their expressive power in modeling optimization problems. For ex-
ample, many NP-hard problems can be formulated as linear optimization problems
over these cones [43, 28]. Checking whether a given matrix A is completely positive
is itself a computational hard problem (see [53]). The reader may be tempted to
think that CPn is characterized by entrywise nonnegativity and PSDness. This has
been shown to hold for the particular setting of n ∈ {1, 2, 3, 4} (see [18]), but this is
not the case in general, as was shown in Example 4.2.

The moment approach has been applied to test whether A ∈ CPn and to find a
CP factorization (see (6.1)), in particular, by Nie [126], who formulates it as testing
the existence of a representing measure (over the standard simplex) for the sequence
of entries of A.

We refer to the monograph [18] for a deeper insight into the structural properties
of the cone CPn.

85
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86 6. COMPLETELY POSITIVE RANK

The completely positive rank. Given a matrix A ∈ CPn, one can ask what is
the smallest integer r ∈ N such that A admits a decomposition of the form

A =
∑
ℓ∈[r]

aℓa
T
ℓ , aℓ ∈ Rn

+. (6.1)

The smallest such r is called the completely positive rank of A and is defined as

rankcp(A) := min
{
r ∈ N : A =

∑
ℓ∈[r]

aℓa
T
ℓ , aℓ ∈ Rn

+

}
. (6.2)

Because this definition only holds for completely positive matrices, we assign to all
other matrices a CP rank of ∞. No efficient algorithms are known for exactly finding
the CP rank. Thus we are motivated to search for efficient methods of approximating
the CP rank. In particular, there is an interest in finding lower bounds on the CP
rank, as, e.g., in [67, 80, 81].

The lower bound τcp(A). In [67], Fawzi and Parrilo defined the parameter

τcp(A) := inf
{
λ > 0 :

1

λ
A ∈ conv{xxT : x ∈ Rn

+, xxT ≤ A, xxT ⪯ A}
}
. (6.3)

This parameter can be seen as a natural “convexification” of the completely positive
rank, and it satisfies

τcp(A) ≤ rankcp(A). (6.4)

As a quick argument, observe that any given CP factorization like A =
∑

ℓ∈[r] aℓa
T
ℓ

induces a solution λ = r to (6.3). This is because we can write 1
rA as the following

convex combination:
1

r
A =

∑
ℓ∈[r]

1

r
aℓa

T
ℓ ,

with aℓ ∈ Rn
+, aℓa

T
ℓ ⪯ A, and aℓa

T
ℓ ≤ A for each ℓ ∈ [r].

As presented here, the parameter τcp(A) does not immediately seem easy to
compute. Hence, we look to lower bound τcp(A). Fawzi and Parrilo also introduced
in [67] the SDP-based lower bound τ soscp (A) ≤ τcp(A). We do not elaborate further
on τ soscp (A) here, but we will relate it to forthcoming parameters when appropriate.

The parameter τcp(A) can be reformulated as an instance of a GMP of the form
(2.1) from Chapter 2. To state the GMP in question, we must first establish some
preliminaries. Then we give the result in Lemma 6.2.

To avoid trivialities, assume there are no zeros on the diagonal, i.e., Aii > 0 for
all i ∈ [n]. Indeed, if A is a CP matrix with Aii = 0, then its ith row/column is
identically zero, and thus it can be removed without altering the CP rank.

We define the support graph GA := (V := [n], EA) of A, with edge set and non-
edge set respectively given by

EA :=
{
{i, j} : Aij ̸= 0, i, j ∈ V, i ̸= j

}
,

EA :=
{
{i, j} : Aij = 0, i, j ∈ V, i ̸= j

}
.

(6.5)
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6. COMPLETELY POSITIVE RANK 87

Defining a semi-algebraic set. Using the edges and non-edges, we can define
the following semialgebraic set

KA :=
{
x ∈ Rn :

√
Aiixi − x2

i ≥ 0 (i ∈ [n]), (6.6a)

Aij − xixj ≥ 0 ({i, j} ∈ EA), (6.6b)

xixj = 0 ({i, j} ∈ EA), (6.6c)

A− xxT ⪰ 0
}
. (6.6d)

Alternatively, following [80], we could have defined the set KA as

KA =
{
x ∈ Rn : xi ≥ 0 (i ∈ [n]),

Aij − xixj ≥ 0 (i, j ∈ [n]),

A− xxT ⪰ 0
}
,

which is more closely modeled on the definition of τcp(A) in (6.3). We now explain
why we will adopt the particular algebraic description (6.6a) - (6.6d) for the set KA.

As was observed in [80], the constraints A ≥ xxT and x ≥ 0 are equivalent to√
Aiixi − x2

i ≥ 0 (i ∈ [n]), Aij − xixj ≥ 0 ({i, j} ∈ EA) , and xixj = 0 ({i, j} ∈ EA).
However, the associated truncated quadratic modules (defined in (2.18)) are not.
Indeed, for each t ∈ N, we have

M2t(H̃) ⊆ M2t(H),

where

H̃ :=
{
xi (i ∈ [n]), Aij − xixj (i, j ∈ [n])

}
,

H :=
{√

Aiixi − x2
i (i ∈ [n]), Aij − xixj ({i, j} ∈ EA), ±xixj ({i, j} ∈ EA)

}
.

The inclusion follows from the following two polynomial identities:

Aii − x2
i = (

√
Aii − xi)

2 + 2(
√
Aiixi − x2

i ) (i ∈ [n]), (6.8)

xi = ((
√
Aiixi − x2

i ) + x2
i )/
√
Aii (i ∈ [n]).

Remark 6.1. Observe that (6.8) implies that

Tr(A) −
∑
i∈[n]

x2
i ∈ M2(H).

In particular, we conclude that any quadratic module that contains H in its generators
is Archimedean.

Observe how the ideal constraints (6.6c) are of a form that ideal sparsity can be
exploited (see Section 2.2). The ideal-sparse structure is thusly inherited from the
sparsity of the matrix A. Later, in equation (6.20), we will use this fact to define a
stronger and possibly faster hierarchy of lower bounds.
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88 6. COMPLETELY POSITIVE RANK

GMP formulation of the parameter τcp(A). We now show that the pa-
rameter τcp(A) is the optimal value of a GMP of the form (3.5).

Lemma 6.2. The parameter τcp(A) is equal to the optimal value of the following
generalized moment problem:

valcp(A) := inf
µ∈M (KA)

{∫
1dµ :

∫
xixjdµ = Aij (i, j ∈ V )

}
. (6.9)

Proof. (valcp(A) ≤ τcp(A)) Any feasible solution to τcp(A), i.e., any decompo-
sition of the form A = λ

∑
ℓ∈[r] cℓaℓa

T
ℓ , with λ > 0,

∑
ℓ∈[r] cℓ = 1, cℓ > 0, aℓ ≥ 0,

A ≥ aℓa
T
ℓ , and A ⪰ aℓa

T
ℓ , corresponds to a finite atomic measure

µ = λ
∑
ℓ∈[r]

cℓδaℓ

that is feasible for valcp(A), with objective value λ. Hence, valcp(A) ≤ τcp(A).
(valcp(A) ≥ τcp(A)) Assume the GMP (6.9) is feasible, else valcp(A) = ∞ and

we have nothing to prove. Let µ ∈ M (KA) be a feasible solution to (6.9). In view of
Theorem 2.8 (ii), we may assume that µ is a finite atomic measure, i.e.,

µ = λ
∑
ℓ∈[r]

cℓδaℓ
,

with λ > 0,
∑

ℓ∈[r] cℓ = 1, cℓ > 0, and aℓ ∈ KA. This measure then induces a

decomposition

A = λ
∑
ℓ∈[r]

cℓaℓa
T
ℓ

corresponding to a solution to (6.3), with value λ. Hence, valcp(A) ≥ τcp(A). □

6.1. Hierarchies of lower bounds for the completely positive rank

With τcp(A) recast as a GMP instance (6.9), we now apply the tools from Chap-
ter 3 to create a hierarchy of SDP programs, each lower bounding τcp(A), and with
asymptotic convergence to τcp(A). Over time, several hierarchies have been developed,
each improving on the last in some way. We first present an initial hierarchy from [80]
and then three subsequent improved hierarchies based on our work [81, 100]. The
running theme is that each improvement is attained by encoding another property of
CP factorizations into the hierarchy.

6.1.1. The first hierarchy of lower bounds for τcp(A). In [80], the authors
derived a hierarchy of SDP bounds for the CP rank of a CP matrix A ∈ Rn×n

+ , which
we denote here, for any t ∈ N ∪ {∞}, as
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ξ
cp,(2019)
t (A) := inf

{
L(1) :

L ∈ R[x]∗2t,

L(xxT ) = A, (6.10a)

L([x]t[x]Tt ) ⪰ 0, (6.10b)

L((
√
Aiixi − x2

i )[x]t−1[x]Tt−1) ⪰ 0 (i ∈ V ), (6.10c)

L((Aij − xixj)[x]t−1[x]Tt−1) ⪰ 0 ({i, j} ∈ EA ∪ EA), (6.10d)

L((xxT )⊗ℓ) ⪯ A⊗ℓ (ℓ ∈ [t])
}
. (6.10e)

These constraints warrant some explanation. The constraint (6.10a) comes directly
from the GMP (6.9), and the matrix (localizing) constraints (6.10b), (6.10c), and
(6.10d) come from the definition of the semialgebraic domain KA in (6.6). Note that
this hierarchy does not take the zero entries in the matrix A into special consider-
ation. As a result, there are no explicit ideal constraints. This will be important
later when we use the sparsity in the matrix A to create an improved hierarchy. The

last constraint (6.10e) is the defining feature of ξ
cp,(2019)
t (A), and is motivated by the

following argument.

If xxT ⪯ A (as is imposed by the constraint (6.6d) in the definition of KA), then
it must follow that (xxT )⊗ℓ ⪯ A⊗ℓ for all ℓ ∈ N. Via an argument in the proof of
[80, Proposition 6] it can be shown that

L((xxT )⊗ℓ) ⪯ A⊗ℓ (ℓ ∈ N) (6.11)

is valid for all linear functionals arising from an atomic decomposition as in the
definition (6.3) of τcp(A). Gribling et al. [80] showed asymptotic convergence, i.e,

lim
t→∞

ξ
cp,(2019)
t (A) = τcp(A).

In [80], the authors showed that the same convergence result holds if we replace
constraint (6.10e) with

L(vT (A− xxT )v[x]t−1[x]Tt−1) ⪰ 0 (v ∈ Rn). (6.12)

The core tool underlying these convergence results is Theorem 3.3, where assumption
(A) is satisfied because of (6.4), assumption (B) because of Remark 6.1, and assump-
tion (C) holds by taking zi,j = 0 (i, j ∈ [n]) and c = 1

2 . We restate the conclusion of
Theorem 3.3 in the completely positive rank setting for completeness.

For each t ∈ N ∪ {∞}, the program (6.10) attains it optimum, and

lim
t→∞

ξ
cp,(2019)
t (A) = ξcp,(2019)∞ (A) = τcp(A).

Moreover, the GMP (6.2) has an optimal solution µ that is finite atomic and is
supported on KA.

Note that this result holds analogously for the subsequently improved hierarchies
(e.g., (6.13) and (6.15)) that we consider later in this chapter. When we consider
flatness in Section 6.3.3, the existence of optimal solutions for the hierarchies will be
necessary.
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Unfortunately, we could find no results comparing the constraints (6.10e) and
(6.12). As such, we cannot make any claims about which is better regarding the
bounds of their associated hierarchies. However, there are clear distinctions between
(6.10e) and (6.12) when it comes to the number of constraints and the sizes of the
involved matrices. The constraint (6.10e) requires t-many PSD constraints, the largest
of which contains a matrix of size nt. On the other hand, the constraint (6.12) involves
matrices of size

(
n+t−1
t−1

)
, but there are infinitely many of them because v ranges over

all of Rn. By invariance to scaling, one can take v ∈ Sn−1 (the unit sphere in Rn). The
authors of [80] considered using (6.12) with the vectors v restricted to some finite set
T ⊂ Sn−1. Doing so, one can partially involve the constraints (6.12) in computations.
Next, we define a new hierarchy that replaces (6.10e) with a constraint stronger than
(6.12), which involves only one PSD matrix of size

(
n+t−1
t−1

)
· n.

6.1.2. A polynomial matrix localizing constraint hierarchy for τcp(A).
Consider, for any t ∈ N ∪ {∞}, the parameter

ξ
cp,(2022)
t (A) := inf

{
L(1) :

L ∈ R[x]∗2t,

L(xxT ) = A,

L([x]t[x]Tt ) ⪰ 0,

L((
√
Aiixi − x2

i )[x]t−1[x]Tt−1) ⪰ 0 (i ∈ V ),

L((Aij − xixj)[x]t−1[x]Tt−1) ⪰ 0 ({i, j} ∈ EA ∪ EA),

L((A− xxT ) ⊗ [x]t−1[x]Tt−1) ⪰ 0
}
. (6.13a)

Observe that via Corollary 1.6, the constraints (6.12) are implied by the stronger
constraints (6.13a). We now show (see Lemma 6.3 below) that the polynomial matrix
localizing constraint (6.13a) implies the tensor positivity constraint in (6.10e). As a
result, it follows that

ξ
cp,(2019)
t (A) ≤ ξ

cp,(2022)
t (A) for all t ∈ N ∪ {∞}.

We further substantiate this theoretical result with numerical examples later in
Table 1.

Lemma 6.3. [81, Lemma 19] Consider t ∈ N, A ∈ Rn×n
+ and L ∈ R[x]∗2t. If

L(xxT ) = A and L((A− xxT ) ⊗ [x]t−1[x]Tt−1) ⪰ 0, then L((xxT )⊗ℓ) ⪯ A⊗ℓ (ℓ ∈ [t]).

Proof. Observe that

L((A− xxT ) ⊗ [x]t−1[x]Tt−1) ⪰ 0 ⇐⇒ L((A− xxT ) ⊗ ⟨x⟩t−1⟨x⟩Tt−1) ⪰ 0, (6.14)

where ⟨x⟩t−1 denotes the vector of noncommutative monomials of degree less than t in
the variables x1, . . . , xn. This equivalence holds because the latter matrix is obtained
by duplicating rows/columns of the former matrix.

Note that, for each ℓ ∈ [t], L((A − xxT ) ⊗ ⟨x⟩t−1⟨x⟩Tt−1) contains the matrix

L((A− xxT ) ⊗ (xxT )⊗(ℓ−1)) as a principal submatrix. To see this, observe that, for
each ℓ ∈ N, (xxT )⊗ℓ = (x⊗ℓ)(x⊗ℓ)T is a principal submatrix of ⟨x⟩=ℓ⟨x⟩T=ℓ (where
⟨x⟩=ℓ are all the noncommutative monomials with degree exactly ℓ), because all the
entries of x⊗ℓ are contained in ⟨x⟩=ℓ.
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Since L((A−xxT )⊗⟨x⟩t−1⟨x⟩Tt−1) ⪰ 0, we obtain L((A−xxT )⊗(xxT )⊗(ℓ−1)) ⪰ 0,

and thus L((xxT )⊗ℓ) ⪯ A⊗L((xxT )⊗(ℓ−1)) for all ℓ ∈ [t]. Combined with L(xxT ) = A
this permits us to show:

L((xxT )⊗ℓ) ⪯ A⊗ L((xxT )⊗(ℓ−1) ⪯ · · · ⪯ A⊗(ℓ−1) ⊗ L(xxT ) = A⊗ℓ. □

Adding ideal constraints to the hierarchy. We now use the observation
that x ∈ KA satisfies xixj = 0 for all {i, j} ∈ EA, to further improve upon the
hierarchy in (6.13). For t ∈ N ∪ {∞} consider the following SDP:

ξcpt (A) := min
{
L(1) : L ∈ R[x]∗2t,

L(xxT ) = A,

L([x]t[x]Tt ) ⪰ 0,

L((
√

Aiixi − x2
i )[x]t−1[x]Tt−1) ⪰ 0 (i ∈ V ),

L((Aij − xixj)[x]t−1[x]Tt−1) ⪰ 0 ({i, j} ∈ EA), (6.15a)

L(xixj [x]2t−2) = 0 ({i, j} ∈ EA), (6.15b)

L((A− xxT ) ⊗ [x]t−1[x]Tt−1) ⪰ 0
}
.

This hierarchy now explicitly uses ideal constraints induced by zero entries in the
matrix A. Hence, the constraints (6.10d), which run over all off-diagonal entries of
the matrix A, are now split into two constraints (6.15a) and (6.15b). Thus, it clearly
follows that

ξ
cp,(2022)
t (A) ≤ ξcpt (A) for all t ∈ N ∪ {∞}.

Adding scalar localizing constraints based on nonnegativity. Exploit-
ing the fact that the variables xi should be nonnegative, one may add localizing
constraints like the following:

L([x]2t) ≥ 0, (6.16)

L((
√
Aiixi − x2

i )[x]2t−2) ≥ 0 (i ∈ V ), (6.17)

L(Aij − xixj)[x]2t−2) ≥ 0 ({i, j} ∈ EA), (6.18)

L(xixj [x]t−1[x]Tt−1) ⪰ 0 ({i, j} ∈ EA). (6.19)

Note that the constraints (6.19) are redundant at the smallest level t = 1. One could
add a similar constraint to (6.19) by replacing xixj with any monomial. We use the
notation ξcpt,†(A) to denote the parameter obtained by adding (6.18) to the program

defining ξcpt (A). Define analogously ξ
cp,(2019)
t,† (A) by adding (6.18) to ξ

cp,(2019)
t (A), so

that we have
ξ
cp,(2019)
t,† (A) ≤ ξcpt,†(A).

As we will see in relation (6.27) below, the bound ξ
cp,(2019)
2,† (A) is at least as good

as rank(A), which is an obvious lower bound on rankcp(A). Let ξcpt,‡(A) denote the

further strengthening of ξcpt,†(A) by adding constraints (6.16), (6.17), and (6.19), so
that we have

ξcpt (A) ≤ ξcpt,†(A) ≤ ξcpt,‡(A) for any t ∈ N ∪ {∞}.
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6.1.3. An ideal-sparse hierarchy of lower bounds for τcp(A). The ideal
constraints (6.15b) are of a form susceptible to the technique of ideal sparsity de-
scribed in Section 3.1.4. Hence, we follow the approach described in Section 3.1.4 to
create a new ideal-sparse hierarchy for the parameter τcp(A), as characterized by the
GMP (6.9). The process will be similar to what was done for the nonnegative rank
in Section 5.1.2.

Begin by considering the support graph GA := (V = [n], EA) of the matrix A,
and let V1, ..., Vp denote all the maximal cliques of the graph GA. For t ∈ N ∪ {∞},
define the ideal-sparse moment bounds:

ξcp,ispt (A) :=

min
{ ∑

k∈[p]

Lk(1) : Lk ∈ R[x(Vk)]∗2t (k ∈ [p]),

∑
k∈[p]:i,j∈Vk

Lk(xixj) = Aij (i, j ∈ V ), (6.20a)

Lk([x(Vk)]t[x(Vk)]Tt ) ⪰ 0 (k ∈ [p]),

Lk((
√
Aiixi − x2

i )[x(Vk)]t−1[x(Vk)]Tt−1) ⪰ 0 (i ∈ Vk, k ∈ [p]),

Lk((Aij − xixj)[x(Vk)]t−1[x(Vk)]Tt−1) ⪰ 0 (i ̸= j ∈ Vk, k ∈ [p]), (6.20b)

Lk((A− xxT )|Vk
⊗ [x(Vk)]t−1[x(Vk)]Tt−1) ⪰ 0 (k ∈ [p]). (6.20c)

Here, in equation (6.20c), it is understood that, for a given k ∈ [p], in the matrix
A− xxT one sets the entries of x indexed by V \ Vk to zero.

Analogous to the constraints (6.16), (6.17), (6.18) and (6.19) in the dense hi-
erarchy, we can add the following constraints that exploit the nonnegativity of the
variables:

Lk([x(Vk)]2t) ≥ 0 (k ∈ [p]), (6.21)

Lk((
√
Aiixi − x2

i )[x(Vk)]2t−2) ≥ 0 (i ∈ Vk, k ∈ [p]), (6.22)

Lk((Aij − xixj)[x(Vk)]2t−2) ≥ 0 ({i, j} ⊆ Vk, k ∈ [p]), (6.23)

Lk(xixj [x(Vk)]t−1[x(Vk)]Tt−1) ⪰ 0 (i ̸= j ∈ Vk, k ∈ [p]). (6.24)

Define ξcp,ispt,† (A) by adding constraint (6.23) to ξcp,ispt (A), and ξcp,ispt,‡ (A) by adding

the constraints (6.21), (6.22) and (6.24) to ξcp,ispt,† (A), so that

ξcp,ispt (A) ≤ ξcp,ispt,† (A) ≤ ξcp,ispt,‡ (A).

Weak-ideal-sparse hierarchies for τcp(A). Observe that, if, in equation

(6.20c), we replace the matrix A − xxT by its principal submatrix indexed by Vk,

then one also gets a lower bound on τcp(A), possibly weaker than ξcp,ispt (A), but

potentially easier to compute. We let ξcp,wisp
t (A) denote the parameter obtained in

this way by replacing, in the definition of ξcp,ispt (A), equation (6.20c) by

Lk((A[Vk] − x(Vk)x(Vk)T ) ⊗ [x(Vk)]t−1[x(Vk)]Tt−1) ⪰ 0 (k ∈ [p]), (6.25)
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so that we have

ξcp,wisp
t (A) ≤ ξcp,ispt (A).

Note that by relaxing constraint (6.20c) to (6.25), we can no longer claim that

ξcp,ispt (A) is at least as good as the dense hierarchy ξcpt (A). In some numerical in-
stances, it is strictly worse. Indeed, in our numerical experiments, we frequently
observe the strict inequality ξcp,wisp

t (A) < ξcpt (A) for randomly generated matrices
A (see Section 6.3.1 for details). For example, the matrix (with entries rounded for
presentation)

A =


1.0 0.578 0.0 0.0 0.225

0.578 1.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.656
0.0 0.0 0.0 1.0 0.526

0.225 0.0 0.656 0.526 1.0


has the following parameters at level t = 2:(

ξcp,wisp
2 (A) = 4

)
<
(
ξcp2 (A) = 5

)
≤
(
ξcp,isp2 (A) = 5

)
≤
(

rankcp(A) = 5
)
.

6.2. Links to other lower bounds on the completely positive rank

Here, we indicate links to other known lower bounds on the CP rank. Clearly,
the rank is a lower bound:

rank(A) ≤ rankcp(A).

Edge clique-cover bound. A combinatorial lower bound arises naturally from
the edge clique-cover number of the support graph GA. Given a graph G = (V,E),
its edge clique-cover number, denoted c(G) (following [67]), is defined as the smallest
number of (maximal) cliques in G whose union covers every edge of G. This parameter
is NP-hard to compute [70]. Clearly, c(G) = |E| if G is a triangle-free graph (i.e.,
ω(G) = 2, where ω(G) denotes the maximum cardinality of a clique in G). As observed
in [67], the edge clique-cover parameter gives a lower bound on the CP rank:

c(GA) ≤ rankcp(A).

Indeed, if A =
∑

ℓ∈[r] aℓa
T
ℓ with aℓ ∈ Rn

+ and r = rankcp(A), then the supports of

a1, ...,ar are (not necessarily distinct) cliques that provide an edge clique-cover of GA

by at most r cliques.

The bound τ soscp (A). In [67], a semidefinite parameter τ soscp (A) is introduced, which

is shown to be at least as good as rank(A). Moreover, τ soscp (A) is also at least as good
as cfrac(GA), the fractional edge clique-cover number, which is defined by

cfrac(GA) := min
{ ∑

k∈[p]

λk : λ ∈ Rp
+,

∑
k:{i,j}⊆Vk

λk ≥ 1 for {i, j} ∈ EA

}
. (6.26)

The parameter cfrac is the natural linear relaxation of c(GA). If we require that λ in
(6.26) be integer-valued, then we recover c(GA). Thus, we have

max{rank(A), cfrac(GA)} ≤ τ soscp (A) ≤ τcp(A).
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In [80], it is shown1 that the bounds ξcp2,(2019),†(A) are at least as strong as τ soscp (A).

Hence we have a chain of inequalities

cfrac(GA) ≤ τ soscp (A) ≤ ξcp2,(2019),†(A) ≤ ξcp2,†(A) ≤ ξcp,isp2,† (A) ≤ τcp(A). (6.27)

Observe now that the (weak) ideal-sparse bound ξcp,wisp
1 (A) at level t = 1 is at

least as good as the parameter cfrac(GA).

Lemma 6.4. If A ∈ CPn with support graph GA, then

cfrac(GA) ≤ ξcp,wisp
1 (A).

Proof. Let (L1, ..., Lp) be an optimal solution for the parameter ξcp,wisp
1 (A).

Using (6.20b), we have Lk(Aij − xixj) ≥ 0 for all i ̸= j with {i, j} ⊆ Vk and k ∈ [p],
which gives AijLk(1) ≥ Lk(xixj). Summing over k we get

Aij =
∑

k∈[p]:{i,j}⊆Vk

Lk(xixj) ≤ Aij

∑
k∈[p]:{i,j}⊆Vk

Lk(1),

using (6.20a) for the first equality. As Aij > 0, this gives
∑

k:{i,j}⊆Vk
Lk(1) ≥ 1

for every edge {i, j} ∈ EA. Hence, the vector λ = (Lk(1))pk=1 ∈ Rp
+ is feasible for

program (6.26), which implies cfrac(GA) ≤
∑

k∈[p] Lk(1) = ξcp,wisp
1 (A), as desired. □

Known upper bounds on the CP rank. General upper bounds on the
CP rank are

• rankcp(A) ≤ n if n ≤ 4 [146],

• rankcp(A) ≤
(
n+1
2

)
− 4 if n ≥ 5 [146], and

• rankcp(A) ≤
(
r+1
2

)
− 1 if r = rank(A) ≥ 2 [12].

It is known that c(GA) ≤ n2/4 [63]. It has been a long-standing conjecture by Drew
et al. [58] that the CP rank of an n× n completely positive matrix is at most n2/4.
This conjecture, however, was disproved in [22, 23] for any n ≥ 7. In particular, it
is shown in [23] that the maximum CP rank of an n × n CP matrix is of the order
n2/2 + O(n3/2).

If the support graph GA is triangle-free, then |EA| ≤ rankcp(A) ≤ max{n, |EA|}.
Moreover, if GA is connected, triangle-free, and not a tree, then rankcp(A) = |EA|
[58]. Hence, if GA is a tree, then n− 1 = |EA| ≤ rankcp(A) ≤ n, with rankcp(A) = n

if A is nonsingular. By Lemma 6.4, we know that ξcp,wisp
1 (A) ≥ |EA| if GA is triangle-

free. Hence, the bound ξcp,wisp
1 (A) gives the exact value of the CP rank when GA is

connected, triangle-free, and not a tree. On the other hand, if GA is a tree and A is
nonsingular, then the bound ξcp2,†(A) gives the exact value (equal to n) of the CP rank

since it is at least τ soscp (A) ≥ rank(A) by relation (6.27).

Separation between ideal-sparse and dense bounds. We now give a class
of CP matrices that exhibit an arbitrarily large separation between the dense and
ideal-sparse bounds at level t = 1; these matrices A have size n = 2m and

ξcp1 (A) < m + 1 ≤ m2 = ξcp,wisp
1 (A) = rankcp(A).

1Indeed the proof for the relevant result [80, Proposition 7] only uses the relation
L((Aij − xixj)xixj) ≥ 0 from (6.18) and the relation L((xxT )⊗2) ⪯ A⊗2 in (6.10e).
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Example 6.5. Complete bipartite support graph matrices. For n = 2m,
consider the matrix

A =

(
(m + 1)Im Jm

Jm (m + 1)Im

)
∈ Sn,

where Im is the identity matrix and Jm the all-ones matrix. Then, A is a CP matrix
because it is nonnegative and diagonally dominant. Because the support graph of A
is the complete bipartite graph Km,m, which is triangle-free, we know from [58] that
rankcp(A) = |EA| = m2. Using Lemma 6.4, we obtain

cfrac(Km,m) = ξcp,isp1 (A) = ξcp,wisp
1 (A) = m2 = rankcp(A).

Next, we claim ξcp1 (A) < m + 1. For this, observe that ξcp1 (A) can be reformulated as

ξcp1 (A) = min
{
L(1) :L ∈ R[x]∗2,

L(1) ≥ 1,

L(xi) ≥
√
Aii (i ∈ [n]),

L(xxT ) = A,

L([x]1[x]T1 ) ⪰ 0
}
.

Consider the linear functional L ∈ R[x]∗2 defined by L(xxT ) = A, L(xi) =
√
m + 1 for

i ∈ [n] and L(1) = 2m(m+1)
2m+1 . We show that L is feasible for the above program, which

implies ξcp1 (A) ≤ L(1) < m + 1. For this it suffices to show that L([x]1[x]T1 ) ⪰ 0. By
taking the Schur complement with respect to the upper left corner, this boils down to
checking that L(1)A− (m + 1)Jm ⪰ 0. As the all-ones vector is an eigenvector of A
(with eigenvalue 2m + 1), it is an eigenvector of L(1)A− (m + 1)Jm with eigenvalue
L(1)(2m+ 1)− 2m(m+ 1) = 0. Since the matrix A is positive semidefinite, the proof
is complete.

6.3. Numerical results and examples

In this section, we present the computed bounds for three classes of matrices:
high-CP rank matrices from the literature, randomly generated CP matrices, and
doubly-nonnegative matrices that are not CP.

We aim to demonstrate improved bounds due to adding a polynomial matrix
localizing constraint (see (6.13a)) and using ideal sparsity (see (6.20)). To this end,
we show the following.

First, we show the improvement of ξ
cp,(2022)
t (A) over ξ

cp,(2019)
t (A) (see Section 6.3.1)

due to replacing the constraint (6.10e) with (6.13a).
Second, we show the improvement due to ideal sparsity (see Section 6.3.2) in

better bounds (see Table 2) and computation times (see Figures 1 and 2). As a side
note, we explore flatness and atom extraction for the dense and ideal-sparse settings
(see Table 3).

Thirdly, we show that the ideal sparsity is also better at detecting non-membership
in the cone of CP matrices (see Section 6.3.4).
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6.3.1. Improvement due to the polynomial matrix localizing constraint.
To demonstrate the impact of the constraint (6.13a), we compare our bounds ξcp,20223 (A)

from [81] to the bounds ξ
cp,(2019)
3 (A) from [80] on the CP rank of some matrices A

known to have a high CP rank, taken from [22]. The boldface entries in Table 1
show a strict improvement in the bounds. For these computations, we used the high
precision solver SDPA-GMP [124] because MOSEK [5] and SDPA [169, 170] could
not certify solutions. 2

Table 1. Bounds for completely positive rank at level t = 3.

A rank(A) n ⌊n2

4 ⌋ ξ
cp,(2019)
3 (A) ξ

cp,(2022)
3 (A) rankcp(A)

M7 7 7 12 10.5 11.4 14

M̃7 7 7 12 10.5 10.5 14

M̃8 8 8 16 13.82 14.5 18

M̃9 9 9 20 17.74 18.4 26

6.3.2. Improvement due to ideal sparsity. We consider a class of randomly
generated sparse CP matrices. The exact construction is given below. In all numerical
examples we considered, the bounds ξcpt (A) and ξcp,ispt (A) obtained for these matrices
were always at most rank(A) + 2. So we do not list the numerical bounds for these
examples as little insight is gained from them. However, random examples allow us to
compare the computation times amongst hierarchies and across various matrix sizes,
non-zero densities, and levels. In what follows, the non-zero density of a symmetric
matrix A ∈ Sn, denoted nzd(A), is defined as the proportion of non-zero entries above
the main diagonal, i.e., nzd(A) = |EA|/

(
n
2

)
. Hence a diagonal matrix has nzd=0, and

a dense matrix has nzd=1.

The second class contains examples from the literature whose CP rank is known
from theory. However, recall the moment hierarchies provide lower bounds on τcp,
whose value is often unknown and could be strictly less than the CP rank. Regardless
these examples give an interesting testbed to evaluate the quality of the new bounds.

The third class of examples consists of doubly nonnegative matrices, which are
known not to be completely positive. In running these examples, the hope is to obtain
an infeasibility certificate from the solver. Thereby obtaining a numerical certificate
that the matrix is not completely positive. In this context, one hierarchy performs
better than another if it returns the infeasibility certificate at a lower level or uses
less run time.

The size of the matrices involved in the semidefinite programs snowballs with the
level t in the hierarchy (roughly, as

(
n+t
t

)
), so these problems become quickly too big

for the solver (in particular, due to limited memory). We will consider matrices up to

2The code is available at: https://github.com/JAndriesJ/ju-CPrank

https://github.com/JAndriesJ/ju-CPrank
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size n = 12 for the dense and ideal-sparse hierarchies at level t = 2. At level t = 3 and
for matrices of size n = 12, we can only compute bounds for the weak-ideal-sparse
hierarchy.

All computations shown were run on Windows 11 Home 64-bit with an 11th Gen
Intel(R) Core(TM) i7-11800H @ 2.30GHz Processor and 16GB of RAM. The software
we use was custom coded in Julia [20] utilizing the JuMP [59] package for problem
formulation and MOSEK [5] as the semidefinite programming solver. 3

Randomly generated sparse CP matrices. We first describe how we con-
struct random sparse CP matrices. Given integers n ∈ N and n − 1 ≤ m ≤

(
n
2

)
, we

create a symmetric n× n binary matrix M with exactly m ones above the diagonal,
whose positions are selected uniformly at random. Let G be the graph with M as
its adjacency matrix. We only keep the instances where G is a connected graph.
We enumerate the maximal cliques V1, ..., Vp of G (using, e.g., the Bron-Kerbosch
algorithm [26]). Then, we select a subset of maximal cliques Vq1 , ..., Vql whose union
covers every edge of G (e.g., using a greedy algorithm). For each k ∈ [l], generate
mk ≥ 1 vectors (a(k,i))i∈[mk] ⊆ Rn

+ with uniformly random entries following U [0, 1]
and supported by Vqk . We will choose mk = 2 by default. Then consider the matrix∑

k∈[l]

∑
i∈[mk]

a(k,i)(a(k,i))T and scale it so that all diagonal entries are equal to 1,

call A the resulting matrix. By construction, A is completely positive with connected
support GA = G, and non-zero density nzd = m/

(
n
2

)
.

We generate random examples for varying matrix size (n = 5, 6, 7, 8, 9) and incre-
menting nzd in ascending order. To not include examples with disconnected graphs,
we need nzd ≥ (n − 1)/

(
n
2

)
. To account for different graph configurations with the

same non-zero density, we generate 10 examples per matrix size and nzd value. For all
of them, we compute the dense- and weak-ideal-sparse bounds of level t = 2 and t = 3.
Here we are not interested in the numerical bounds but rather in their computation
times. This numerical experiment allows us to show the differences in computation
time between the ideal-sparse and dense hierarchies. It turns out that the computa-
tion times for the parameters ξcpt , ξcpt,†, and ξcpt,‡ are all comparable at level t = 2, 3,
likewise for the ideal-sparse analogs. For this reason, we only plot the results for the
“†” variant, i.e., for the parameters ξcpt,†, ξcp,ispt,† , ξcp,wisp

t,† . The results are shown in

Figure 1 (for t = 2) and in Figure 2 (for t = 3).

We can make the following observations about the results in Figure 1. As ex-
pected, the ideal-sparse hierarchy is faster to compute than the dense hierarchy for
matrices with non-zero density nzd ≤ 0.8. The computation of the weak-ideal-sparse
hierarchy is even faster. Moreover, the speed-up increases with the matrix size and
the hierarchy level, as seen across Figures 1 and 2. At level t = 3, some hierarchies
can no longer be computed for specific matrix sizes and non-zero densities. This is
particularly evident in the case of the dense hierarchy for matrices of size seven and
larger. The ideal-sparse hierarchies can be computed up to size nine depending on

3See the code repository https://github.com/JAndriesJ/ju-cp-rankju-cp-rank.

https://github.com/JAndriesJ/ju-cp-rankju-cp-rank
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Computation times vs. matrix size and non-zero density, level t = 2

Figure 1. Scatter plot of the computation times (in seconds)

for the three hierarchies ξcp2,† (indicated by a red square), ξcp,isp2,†
(indicated by a yellow losange), ξcp,wisp

2,† (indicated by a green

circle) against matrix size and non-zero density for 850 ran-
dom matrices, generated using the above-described procedure.
The matrices are arranged in ascending size (n = 5, 6, 7, 8, 9)
and then ascending non-zero density, ranging from the minimal
density needed to have a connected support graph up to a fully
dense matrix (nzd = 1).

the non-zero density. We only show examples we could compute in less than 103 sec-
onds. The parameters that either took longer than 103 seconds or exceeded memory
constraints can be inferred by the absence of their respective markers in Figure 2.

Selected sparse CP matrices. Here we compute the dense and (weak) ideal-
sparse parameters for a few selected CP matrices from the literature. We first briefly
discuss the four example matrices we will consider, denoted ex1, ex2, ex3, ex4, and
shown below.

ex1 =


3 2 0 0 1
2 5 6 0 0
0 6 14 4 0
0 0 4 9 1
1 0 0 1 2

 , ex2 =


2 0 0 1 1
0 2 0 1 1
0 0 2 1 1
1 1 1 3 0
1 1 1 0 3

 ,
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Computation times vs. matrix size and non-zero density, level t = 3

Figure 2. This is a similar plot to Figure 1 but now for level
t=3 of each of the hierarchies. By omitting markers, we in-
dicate that the corresponding computations either exceeded
memory constraints or took longer than 103 seconds.

ex3 =



781 0 72 36 228 320 240 228 36 96 0
0 845 0 96 36 228 320 320 228 36 96
72 0 827 0 72 36 198 320 320 198 36
36 96 0 845 0 96 36 228 320 320 228
228 36 72 0 781 0 96 36 228 240 320
320 228 36 96 0 845 0 96 36 228 320
240 320 198 36 96 0 745 0 96 36 228
228 320 320 228 36 96 0 845 0 96 36
36 228 320 320 228 36 96 0 845 0 96
96 36 198 320 240 228 36 96 0 745 0
0 96 36 228 320 320 228 36 96 0 845


,

ex4 =



91 0 0 0 19 24 24 24 19 24 24 24
0 42 0 0 24 6 6 6 24 6 6 6
0 0 42 0 24 6 6 6 24 6 6 6
0 0 0 42 24 6 6 6 24 6 6 6
19 24 24 24 91 0 0 0 19 24 24 24
24 6 6 6 0 42 0 0 24 6 6 6
24 6 6 6 0 0 42 0 24 6 6 6
24 6 6 6 0 0 0 42 24 6 6 6
19 24 24 24 19 24 24 24 91 0 0 0
24 6 6 6 24 6 6 6 0 42 0 0
24 6 6 6 24 6 6 6 0 0 42 0
24 6 6 6 24 6 6 6 0 0 0 42



.
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The matrix ex1 (from [11]) is supported by the 5-cycle C5 and the matrix ex2
(from [168]) is supported by the bipartite graph K3,2. In both cases, we have that

ξcp,isp1 (A) = rankcp(A) = |EA| (combining Lemma 6.4 and the results of [58] men-
tioned earlier at the end of Section 6.2). The matrices ex3 and ex4 were constructed,
respectively, in [22, 23] as examples of matrices having a large CP rank exceeding
the value n2/4 (thus refuting the conjecture by Drew et al. [58]). The matrix ex3 is
supported by C11, the complement of an 11-cycle, and matrix ex4 is supported by the
complete tripartite graph K4,4,4. One can verify that the edge clique-cover number is

equal to 8 for C11 and to 16 for K4,4,4.

The numerical results for these four examples are presented in Table 2, where
we also show other parameters for the matrix (size n, rank r, CP rank rcp) and its
support graph (number p of maximal cliques, edge clique-cover number c). Here are
some comments about Table 2.

Table 2. Dense and ideal-sparse bounds for literature selected
sparse CP matrices

A n p c r bounds rcp times (seconds)

ξcp1 ξcp,isp1 ξcp,wisp
1 dense isp wisp

ex1 5 5 5 5 2.71 5 5 5 < 1 < 1 < 1
ex2 5 6 6 4 3 6 6 6 < 1 < 1 < 1
ex3 11 22 8 11 4.24 8.53 8.53 32 < 1 < 1 < 1
ex4 12 64 16 10 4.85 29.66 29.63 37 < 1 < 1 < 1

ξcp2,‡ ξcp,isp2,‡ ξcp,wisp
2,‡

ex1 5 5 5 5 5 5 < 1 < 1 < 1
ex2 5 4 6 6 6 6 < 1 < 1 < 1
ex3 11 11 21.93 22.32 22.32 32 123.86 54.89 8.14
ex4 12 10 29.57 29.66 29.66 37 238.94 33.78 1.28

ξcp3,‡ ξcp,isp3,‡ ξcp,wisp
3,‡

ex3 11 11 - - 22.33 32 - - 2648.69
ex4 12 10 - - 29.66 37 - - 28.69

n = size of A, p = number of maximal cliques of GA,

c = edge clique-cover number of GA, r = rank(A), rcp = rankcp(A)

- : computations that failed due to memory constraints

These results substantiate the claims in Lemma 6.4: the ideal-sparse bound of
level t = 1 is equal to the number of edges for ex1 and ex2 (and matches the CP
rank); moreover, it gives a strong improvement on the dense bound of level 1. The
bounds of level t = 2 all exceed the rank of the matrix (as expected in view of (6.27)).
At level t = 3, only the weak-ideal-sparse bound can be computed for the matrices
ex3 and ex4.

In Table 2, the values of the bounds at level t = 3 are close to those at level t = 2
for matrices ex3 and ex4. However, the tests for the flatness condition (3.18) fail, so
that one cannot claim that the bounds are equal to τcp at this stage.
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6.3.3. Flatness and atom extraction. For the application to the CP rank, if
the flatness condition holds for an optimal solution for the parameter ξcpt (A) (resp.,

ξcp,ispt (A)), then the parameter is equal to τcp(A) and one can extract a CP factor-
ization of A. In this way, one finds an explicit factorization of A and thus an upper
bound on its CP rank. If the computed value of τcp(A) equals the number of re-
covered atoms, this certifies that τcp(A) equals the CP rank and the recovered CP
decomposition of A is an optimal one.

We tested whether the flatness conditions (3.16) and (3.18) hold for matrices
ex1 and ex2 at level t = 2 and whether one can extract atoms and construct a CP
factorization.

The results are summarized in Table 3, where we indicate the number of atoms
(corresponding to a CP factorization with that many factors) when the extraction
procedure is successful. We indicate that the extraction procedure fails by reporting
“# atoms=0”. As mentioned in [85], one may apply the extraction procedure even
if flatness does not hold.

For the dense bounds of level t = 2, flatness does not hold for the matrices ex1
and ex2. However, while one does not succeed in extracting atoms for matrix ex1, the
extraction is successful for matrix ex2 and returns six atoms. Interestingly, flatness
holds for the ideal-sparse bounds, and the atom extraction is successful. However, the
number of extracted atoms is 10 for matrix ex1, thus twice the CP rank. To verify
that the extracted atoms are (approximatively) correct, we use them to construct
a CP matrix Arec, which we then compare to the original matrix A. In all cases
we obtain ∥Arec − A∥1 ≤ 10−8, which shows that a correct factorization has been
constructed.

Note that for the ideal-sparse parameter, since one splits the problem over the
maximal cliques and has a distinct linear functional Lk for each clique Vk, it may be
more difficult to satisfy the flatness condition (3.18) (since each Lk must satisfy it),
as happens for matrices ex3 and ex4.

Table 3. Testing flatness and atom extraction

A ξcp2,‡ ξcp,isp2,‡ ξcp,wisp
2,‡

flat. (3.16) # atoms flat. (3.18) # atoms flat. (3.18) # atoms
ex1 false 0 true 10 false 0
ex2 false 6 true 6 true 6

ξcp3,‡ ξcp,isp3,‡ ξcp,wisp
3,‡

ex1 false 10 true 10 false 0
ex2 true 6 true 6 true 6

6.3.4. Doubly nonnegative matrices that are not completely positive.
We consider the following three matrices that are known to be doubly nonnegative
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102 6. COMPLETELY POSITIVE RANK

but not completely positive (taken from [140, 126, 11]):

ex5 =


1 1 0 0 1
1 2 1 0 0
0 1 2 1 0
0 0 1 2 1
1 0 0 1 3

 , ex6 =


1 1 0 0 1
1 2 1 0 0
0 1 2 1 0
0 0 1 2 1
1 0 0 1 6

 ,

ex7 =


7 1 2 2 1 1
1 12 1 3 3 5
2 1 2 3 0 0
2 3 3 5 0 0
1 3 0 0 2 4
1 5 0 0 4 10


The objective is to see whether the hierarchies are able to detect that the matrix

is not CP. This can be achieved in two ways: when the solver returns an infeasibility
certificate, or when it returns a bound that exceeds a known upper bound on the
CP rank. We test this for the bounds at levels t = 1 and t = 2. At level t = 2
we try different variants by adding the constraints (6.16),(6.17), (6.18), and (6.19)
and their ideal-sparse analogs. The results are presented in Tables 4 and 5. There
we indicate one of three possible outcomes. The first outcome is indicated with a
question mark “?”, which means that the solver could not reach a decision within the
default MOSEK solver parameters. The second possible outcome is when the solver
returns an infeasibility certificate (indicated with “*”), or when it returns a value that
exceeds a known upper bound for the CP rank (in which case the bound is marked
again with “*”). The last column in both tables, labeled rcp ≤, provides such an
upper bound on the CP rank of a CP matrix with the given support graph. The third
possible outcome is when the solver returns a value that does not violate the upper
bound, in which case no conclusion can be drawn. All computations took less than a
second and hence computation times are not shown.

Table 4. Detecting non-CP matrices for t = 1.

A n r ξcp1 ξcp,isp1 ξcp,wisp
1 rcp ≤

ex5 5 4 2.47 * * 5
ex6 5 5 2.59 * * 5
ex7 6 6 2.4 3.02 3.02 17

* = infeasibility certificate

We make three observations about Tables 4-5. The first is that the ideal-sparse
hierarchies show infeasibility at level t = 1 already for examples ex5 and ex6, while
the dense hierarchy shows the same only at level t = 2 with all additional constraints
imposed. Secondly, the ideal-sparse hierarchy correctly identifies ex7 as not CP at
level t = 2 while the dense hierarchy does not succeed even at level t = 3. The
third observation is that adding additional constraints helps prevent the solver from
returning an “unknown result status” but this seems to be less needed in the case
of the ideal-sparse hierarchies. It should be noted that increasing the level of the
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Table 5. Detecting non CP matrices for t = 2, 3.

A n r ξcp2 ξcp,isp2 ξcp,wisp
2 ξcp2,† ξcp,isp2,† ξcp,wisp

2,† ξcp2,‡ ξcp,isp2,‡ ξcp,wisp
2,‡ rcp

ex5 5 4 ? * ? ? * * * * * ≤5
ex6 5 5 13.56* ? * 13.56* * * 16.11* * * ≤5
ex7 6 6 ? 34.88* 34.01* 12.94 * * 13.89 * * ≤17

ξcp3 ξcp,isp3 ξcp,wisp
3 ξcp3,† ξcp,isp3,† ξcp,wisp

3,† ξcp3,‡ ξcp,isp3,‡ ξcp,wisp
3,‡

ex5 5 4 ? * ? * * * * * * ≤5
ex6 5 5 ? * * ? * * 194.2* * * ≤5
ex7 6 6 ? ? ? ? * * ? * * ≤17

* = infeasibility certificate, ? = unknown result status

hierarchy creates more opportunities for numerical errors in the computations, as
seen in Table 5.
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CHAPTER 7

Separable rank

This chapter considers the separable rank of a complex-valued matrix. We in-
troduce separable bipartite states, which are complex-valued matrices ρ ∈ Hn

+ ⊗Hn
+.

Our interest in these states comes from their use in quantum information, which we
briefly touch upon in the introduction of this chapter. Our objective here is not to
introduce the reader to physics theory but rather to show that the separable rank,
as a parameter, can be lower bounded by a hierarchy of SDPs using the tools of
Section 3.1, similar to what we did for the nonnegative rank (Chapter 5) and the
completely positive rank (Chapter 6). In Section 7.1, we construct a hierarchy of
lower bounds for τsep(ρ), the optimal value of a GMP that lower bounds the separa-
ble rank of ρ.

Our contribution to this topic is three-fold: First, we are the first to construct
hierarchies of lower bounds for the separable rank. Second, we investigate three
(incomparable) hierarchies based on different scalings of the factors. Third, we in-
corporate a polynomial matrix localizing constraint into the hierarchies, similar to
constraint (6.13a) in Section 6.1, to get improved bounds.

Unlike the nonnegative rank and the completely positive rank, the entries of
ρ are not nonnegative, and as a result, we do not get ideal constraints of a form
where ideal sparsity can be exploited. However, we do consider a block-diagonal
reduction technique (Section 7.2) for removing redundant variables, thereby reducing
the moment matrix sizes in the associated hierarchy.

Our approach for lower bounding the separable rank extends naturally to the mul-
tipartite setting, the mixed separable rank, and the real separable rank (Section 7.3).

We conclude with examples and numerical experiments to substantiate our the-
oretical results (Section 7.4).

The cone of separable states. Consider the following matrix cone:

SEPn := cone{xx∗ ⊗ yy∗ : x ∈ Cn, y ∈ Cn, ∥x∥ = ∥y∥ = 1} ⊆ Hn
+ ⊗Hn

+, (7.1)

which is also sometimes denoted as SEP when the dimension n is not important.
Recall that Hn denotes the cone of complex Hermitian n×n matrices, and Hn

+ is the
subcone of Hermitian positive semidefinite matrices. The cone SEPn is of particular
interest in quantum information theory; its elements are known as the (unnormalized,
bipartite) separable states on Hn⊗Hn. If a PSD matrix ρ ∈ Hn⊗Hn does not belong
to SEPn, then it is said to be entangled.

105
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106 7. SEPARABLE RANK

Entangled states can be used to observe quantum, non-classical behaviors that
two physically separated quantum systems may display, as already pointed out in the
early work [62]. Entanglement is now recognized as a vital resource used in quantum
information theory to carry out various tasks such as quantum computation, quantum
communication, quantum cryptography, and teleportation (see, e.g., [129, 165] and
references therein). Therefore, deciding whether a state is separable or entangled is
of fundamental interest in quantum information theory.

Gurvits [82] has shown that the (weak) membership problem for the set

SEPn ∩ {ρ : Tr(ρ) = 1}
is an NP-hard problem. In addition, the problem was shown to be strongly NP-hard
in [72]. This is our motivation for finding tractable criteria for the separability or
entanglement of quantum states.

The separable rank. Consider a separable state ρ ∈ SEPn. Then, its separable
rank, denoted ranksep(ρ), is the smallest integer r ∈ N for which there exist vectors
a1, ...,ar,b1, ...,br ∈ Cn such that

ρ =
∑
ℓ∈[r]

aℓa
∗
ℓ ⊗ bℓb

∗
ℓ . (7.2)

In other words,

ranksep(ρ) := min
{
r ∈ N : ρ =

∑
ℓ∈[r]

aℓa
∗
ℓ ⊗ bℓb

∗
ℓ ; aℓ,bℓ ∈ Cn

}
. (7.3)

If ρ ∈ Hn ⊗Hn \ SEPn, then we set ranksep(ρ) = ∞. The separable rank has been
previously studied, e.g., in [156, 55, 32], where it is called the optimal ensemble
cardinality or the length of ρ. It can be seen as a ‘complexity measure’ of the state,
with an infinite rank for entangled states.

The lower bound τsep(ρ). Consider the following parameter, which was first
introduced in our work [81]:

τsep(ρ) := inf
{
λ : λ > 0,

1

λ
ρ ∈ conv{xx∗ ⊗ yy∗ : (x,y) ∈ Kρ}

}
. (7.4)

Here, the semialgebraic set Kρ is defined as

Kρ :=
{

(x,y) ∈ Cn × Cn | ρ ⪰ xx∗ ⊗ yy∗; ∥x∥∞, ∥y∥∞ ≤ ρ1/4max

}
. (7.5)

The second constraint in (7.5) is motivated by a particular scaling of the separable
(SEP) factors. The SEP factors aℓ,bℓ in (7.2) clearly satisfy the PSD condition

ρ− aℓa
∗
ℓ ⊗ bℓb

∗
ℓ ⪰ 0 (ℓ ∈ [r]). (7.6)

Looking at the diagonal, this means that entrywise |(aℓ)i|2|(bℓ)j |2 ≤ ρij,ij (i, j ∈ [n]),
which implies the following bounds on the norms of the SEP factors:

∥aℓ∥2∞ · ∥bℓ∥2∞ ≤ ρmax (ℓ ∈ [r]), (7.7)

∥aℓ∥22 · ∥bℓ∥22 ≤ Tr(ρ) (ℓ ∈ [r]), (7.8)

where
ρmax := max

i,j∈[n]
ρij,ij
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7. SEPARABLE RANK 107

denotes the maximum diagonal entry of ρ. Via rescaling, we may assume without loss
of generality that ∥aℓ∥∞ = ∥bℓ∥∞ and

∥aℓ∥2∞, ∥bℓ∥2∞ ≤ √
ρmax (ℓ ∈ [r]). (7.9)

Lemma 7.1. For any n ∈ N and ρ ∈ SEPn, we have

τsep(ρ) ≤ ranksep(ρ).

Moreover, if ρ ̸∈ SEPn then τsep(ρ) = ranksep(ρ) = ∞.

Proof. Begin with a SEP factorization of ρ ∈ SEPn like the one in (7.2). As-
sume that we have applied the rescaling (7.9) so that each SEP factor (aℓ,bℓ) belongs
to the set Kρ. Then,

1

r
ρ =

∑
ℓ∈[r]

1

r
aℓa

∗
ℓ ⊗ bℓb

∗
ℓ ∈ conv{xx∗ ⊗ yy∗ : (x,y) ∈ Kρ},

is a feasible solution to (7.4) with objective value λ = r. Hence, τsep(ρ) ≤ ranksep(ρ).
If ρ ̸∈ SEPn, then ρ does not have a factorization (7.2) and hence ranksep(ρ) = ∞.

Similarly, there can be no λ > 0 for which 1
λρ ∈ conv{xx∗ ⊗ yy∗ : (x,y) ∈ Kρ} if

ρ ̸∈ SEPn, and thus τsep(ρ) = ∞. □

The parameter τsep(ρ) does not seem any easier to compute than the separable
rank. However, it enjoys an additional convexity property that the combinatorial
parameter ranksep(ρ) does not have. Moreover, τsep(ρ) can be reformulated as the
optimal value of a GMP in the form of (3.1).

GMP formulation of the parameter τsep(ρ).

Lemma 7.2. The parameter τsep(ρ) is equal to the optimal value of the following
generalized moment problem:

valsep(ρ) := inf
µ∈M (Kρ)

{∫
1dµ :

∫
xixjykyldµ = ρij,kl (i, j, k, l ∈ [n])

}
. (7.10)

Proof. (valsep(ρ) ≤ τsep(ρ)) Any feasible solution to τsep(ρ), i.e., any decom-
position of the form ρ = λ

∑
ℓ∈[r] cℓaℓa

∗
ℓ ⊗ bℓb

∗
ℓ , with λ > 0, cℓ > 0,

∑
ℓ∈[r] cℓ = 1,

aℓa
∗
ℓ ⊗ bℓb

∗
ℓ ⪯ ρ, and ∥aℓ∥∞, ∥bℓ∥∞ ≤ ρ

1/4
max, corresponds to a finite atomic measure

µ := λ
∑
ℓ∈[r]

cℓδ(aℓ,bℓ)

that is feasible for valsep(ρ), with objective value r. Hence, valsep(ρ) ≤ τsep(ρ).
(valsep(ρ) ≥ τsep(ρ)) Assume (7.10) is feasible, else valsep(ρ) = ∞ and there is

nothing to prove. Let µ ∈ M (Kρ) be a feasible for (7.10). In view of Theorem 2.9 (ii),
we may assume that µ is a finite atomic measure, i.e., µ := λ

∑
ℓ∈[r] cℓδ(aℓ,bℓ), with

λ > 0, cℓ > 0, and (aℓ,bℓ) ∈ Kρ. This measure then induces a SEP decomposition

ρ = λ
∑
ℓ∈[r]

cℓaℓa
∗
ℓ ⊗ bℓb

∗
ℓ

corresponding to a solution for (7.4), with objective value λ. Hence, we have shown
valsep(ρ) ≥ τsep(ρ).

□
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In the next section, we will present a hierarchy of lower bounds on τsep(ρ), con-
structed using tools from Section 3.1. Moreover, these lower bounds will asymptoti-
cally converge to τsep(ρ).

7.1. Hierarchies of lower bounds for the separable rank

For t ∈ N ∪ {∞} with t ≥ 2, define the parameter

ξsept (ρ) := inf
{
L(1) |

L ∈ C[x,y,x,y]∗2t (Hermitian),

L(xx∗ ⊗ yy∗) = ρ,

L([x,y,x,y]t[x,y,x,y]∗t ) ⪰ 0,

L((
√
ρmax − xixi)[x,y,x,y]t−1[x,y,x,y]∗t−1) ⪰ 0 (i ∈ [n]), (7.11a)

L((
√
ρmax − yiyi)[x,y,x,y]t−1[x,y,x,y]∗t−1) ⪰ 0 (i ∈ [n]), (7.11b)

L((ρ− xx∗ ⊗ yy∗) ⊗ [x,y,x,y]t−2[x,y,x,y]∗t−2) ⪰ 0
}
. (7.11c)

As explained in Section 3.1.1, this does yield a hierarchy, i.e.,

ξsep2 (ρ) ≤ ξsep3 (ρ) ≤ · · · ≤ ξsep∞ (ρ). (7.12)

Archimedean quadratic module. Observe that the polynomials involved in
(7.11a) and (7.11b) generate an Archimedean quadratic module, since we have

2n · √ρmax −
∑
i∈[n]

(xixi + yiyi) ∈ M2

({√
ρmax − xixi,

√
ρmax − yiyi : i ∈ [n]

}︸ ︷︷ ︸
H:=

)
.

(7.13)
Here, the polynomials in H define constraints that are equivalent to the last con-
straints in (7.5).

Remark 7.3. Note that the localizing constraints (7.11a) and (7.11b) imply the
localizing constraints corresponding to (7.7). This follows from the identity:

ρmax − xixiyjyj = (
√
ρmax − xixi)yjyj +

√
ρmax(

√
ρmax − yjyj).

Similarly, the polynomial matrix localizing constraint (7.11c) implies the localizing
constraints corresponding to (7.8). This follows from the identity:

Tr(ρ) − (
∑
i

xixi)(
∑
j

yjyj) =
∑
i,j

(ρij,ij − xixiyjyj) =
∑
i,j

eTij(ρ− xx∗ ⊗ yy∗)eij .

Here, we use eij := ei ⊗ ej to denote the tensor product of the ith unit vector of Rn

with the jth unit vector of Rn.

Thus we have motivated the choice of scaling in (7.11a) and (7.11b) as opposed
to directly using (7.7) or (7.8).
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Linking the hierarchy ξsept (ρ) to the parameter τsep(ρ). By Theorem 3.2,
we can conclude the following result.

Lemma 7.4. For any ρ ∈ SEPn and each t ∈ N∪{∞}, the program (7.11) attains
its optimum, and

lim
t→∞

ξsept (ρ) = ξsep∞ (ρ) = τsep(ρ).

Moreover, the GMP (7.10) has an optimal solution µ that is finite atomic and is
supported on Kρ.

Proof. We simply check that the three assumptions of Theorem 3.2 hold. As-
sumption (A) is satisfied because of Lemma 7.1, assumption (B) because of (7.13),
and assumption (C) holds by taking zi,j,k,l = 0 (i, j, k, l ∈ [n]) and c = 1

2 . □

Alternative SEP factor scalings. The scaling we used in (7.9) resulted in
the localizing constraints (7.11a) and (7.11b). However, this is only one of several
possible scalings. We now consider three other (possibly mutually exclusive) scalings
using the Euclidean norm that follow from (7.8):

∥aℓ∥22 ≤ Tr(ρ), ∥bℓ∥2 = 1 (ℓ ∈ [r]), (7.14)

∥aℓ∥22 = ∥bℓ∥22 ≤
√

Tr(ρ) (ℓ ∈ [r]), (7.15)

∥aℓ∥22 ≤
√

Tr(ρ), ∥bℓ∥2 =
√

Tr(ρ) (ℓ ∈ [r]). (7.16)

From each of these scalings, we can derive the following sets of polynomials:

•
{

Tr(ρ) − ∥x∥2,±(1 − ∥y∥2)
}

, corresponding to (7.14),

•
{
± (∥x∥2 − ∥y∥2),

√
Tr(ρ) − ∥y∥2

}
, corresponding to (7.15),

•
{√

Tr(ρ) − ∥x∥2,±1(
√

Tr(ρ) − ∥y∥2)
}

, corresponding to (7.16).

Replacing the constraints (7.11a) and (7.11b) in (7.9) with the localizing constraints
based on the above polynomials produces other hierarchies different from ξsept . The
resulting hierarchies are incomparable in that there are examples for each case where
each one provides better bounds than the others. We give a more detailed explanation
of this in Section 7.4.

7.1.1. SEP membership tests. Since SEPn is a n4-dimensional cone, by
Carathéodory’s theorem we have ranksep(ρ) ≤ n4. Similarly, ranksep(ρ) ≤ rank(ρ)2

holds. Hence, we have the following necessary condition on any separable state
ρ ∈ SEPn:

ranksep(ρ) ≤ rank(ρ)2 ≤ n4.

Using this necessary condition, we can conclude that ρ ∈ Hn⊗Hn \SEPn if, for some
integer 2 ≤ t ∈ N, one would have ξsept (ρ) > rank(ρ)2. Thus, we have a tractable test
for non-membership in SEPn. As we now show, the reverse implication also holds.

Lemma 7.5. Let ρ ∈ Hn ⊗Hn. Then, we have

ρ ∈ SEPn ⇐⇒ ξsept (ρ) ≤ rank(ρ)2 for all t ≥ 2.

Proof. (⇒) It is clear that ξsept (ρ) ≤ ranksep(ρ) ≤ rank(ρ)2 when ρ ∈ SEPn.
(⇐) Conversely, assume ξsept (ρ) ≤ rank(ρ)2 for all integers t ≥ 2. Then, using
Lemma 3.1, one can conclude the existence of a linear functional L ∈ C[x,y,x,y]∗

feasible for ξsep∞ (ρ), so that ξsep∞ (ρ) ≤ L(1) < ∞. Then, by Lemma 7.4, we have
τsep(ρ) < ∞, which shows ρ is separable. □
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Alternatively, one can substitute rank(ρ)2 with any other valid upper bound on
ranksep(ρ). Consider, for example, the birank of ρ, which is defined as the pair
(rank(ρ), rank(ρTB )). Here, ·TB denotes the operation of taking the partial trans-
pose on the second register, i.e.,

A⊗B =

 A11B · · · A1nB
...

. . .
...

An1B · · · AnnB

 , (A⊗B)TB =

 A11B
T · · · A1nB

T

...
. . .

...
An1B

T · · · AnnB
T

 .

Since ranksep(ρ) = ranksep(ρTB ), we have

max
{

rank(ρ), rank(ρTB )
}
≤ ranksep(ρ) ≤

(
min

{
rank(ρ), rank(ρTB )

})2
. (7.17)

Yet another necessary condition for separability is the positive partial transpose
(PPT) criterion, which states that if p ∈ Cn1 ⊗Cn2 is PSD, then so is ρTB . The PPT
criterion was introduced in [130, 86]. While it was shown to be sufficient to ensure
the separability of bipartite states ρ ∈ C2 ⊗ C3 [167], it is, in general, not sufficient
for the separability of states acting on larger dimensional spaces (see, e.g., [87, 167]).
It has been shown that no semidefinite representation exists for SEPn when n ≥ 3
[64]. The PPT criterion is an easy necessary condition to consider before resorting
to more involved membership tests. In the latter half of [81], the PPT criterion is
examined from the perspective of the moment method.

We will use these results in Section 7.4 to determine how well our hierarchy can
detect known entangled states from the literature.

7.2. Block-diagonal reduction for the parameter ξsept (ρ)

Observe that only monomials of the form xαxα′
yβyβ′

, with |α| = |α′|, |β| = |β′|,
occur in the program (7.11) defining ξsept (ρ). As such, we will try to remove the
monomials that do not satisfy this property to create a more economical program
than (7.11) with equally strong bounds.

In Lemma 7.6 below, we show that we may restrict the optimization in (7.11) to
linear functionals L that satisfy the condition

L(xαxα′
yβyβ′

) = 0 if |α| ̸= |α′| or |β| ≠ |β′|. (7.18)

In particular, (7.18) implies that L(xαxα′
yβyβ′

) = 0 if either |α+α′| or |β+β′| is odd.

The primary advantage of using only functionals that satisfies (7.18) is that the
associated moment matrix and localizing matrices become block-diagonal. By only
having to check PSDness on the diagonal blocks (and not the whole) of the matrix, the
associated SDP requires fewer computational resources, thereby leading to possibly
faster computations and access to higher levels of the hierarchy. To see this, consider
first the matrix L([x,y,x,y]t[x,y,x,y]∗t ), which is indexed by the set

It := {(α, α′, β, β′) ∈ (Nn)4 : |α + β + α′ + β′| ≤ t}. (7.19)
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Here, the tuple (α, α′, β, β′) corresponds to the monomial xαxα′
yβyβ′

. One can
partition the index set as follows:

It =

t⋃
r,s=−t

Itr,s,

using the sets

Itr,s :=
{

(α, α′, β, β′) ∈ It : |α| − |α′| = r, |β| − |β′| = s
}

(r, s ∈ [−t, t]). (7.20)

With respect to this partition of its index set, the matrix Mt(L) is block-diagonal,
and thus Mt(L) ⪰ 0 if and only if its principal submatrices Mt(L)[Itr,s] indexed by

the sets Itr,s are positive semidefinite, i.e.,

Mt(L) ⪰ 0 ⇐⇒ Mt(L)[Itr,s] ⪰ 0 (r, s ∈ [−t, t]).

The same reasoning applies to each localizing moment matrices in (7.11a) and (7.11b)
(indexed by It−1), and similarly to L((ρ− xx∗ ⊗ yy∗) ⊗ [x,y,x,y]t−2[x,y,x,y]∗t−2)
in (7.11c) (indexed by It−2).

Lemma 7.6. Adding the constraint (7.18) to the definition (7.11) of the parameter
ξsept does not change the optimal value.

Proof. It suffices to show that for any L feasible for ξsept (ρ), we can construct

another feasible solution L̃ with the same objective value as L and satisfying (7.18).
Begin by defining

L̃(xαxα′
yβyβ′

) =

{
L(xαxα′

yβyβ′
) if |α| = |α′| and |β| = |β′|,

0 otherwise.
(7.21)

Then, by construction, L̃ satisfies (7.18) and L̃(1) = L(1). We now show that L̃ is

feasible for the program (7.11). Clearly, we have L̃(xx∗ ⊗ yy∗) = ρ.

(Mt(L̃) ⪰ 0) The matrix Mt(L̃) is block-diagonal with respect to the partition
It = ∪t

r,s=0Ir,s of its index set It. The principal submatrix Mt(L)[Itr,s] of Mt(L)

corresponds exactly to the Itr,s-block of Mt(L̃) because the monomials involved are of
the form

xγxγ′
yδyδ′ with |γ| = |γ′| and |δ| = |δ′|. (7.22)

Hence, because Mt(L) ⪰ 0, it follows that Mt(L)[Itr,s] ⪰ 0 (r, s ∈ [−t, t]) and thus

Mt(L̃) ⪰ 0.

(Mt−dg (gL̃) ⪰ 0) The preceding argument hold mutatis mutandis for showing

that Mt−dg (gL̃) ⪰ 0 for g ∈ S :=
{√

ρmax − xixi,
√
ρmax − yiyi : i ∈ [n]

}
. The

diference now is that we adjust the index set It−1 = ∪t−1
r,s=−t+1I

t−1
r,s to account for

the degree of g. This works because the polynomials in S have the property that the
terms have the same degree in x as they do in x (resp., y as they do in y), namely

either 0 or 1. Hence, if a monomial xγxγ′
yδyδ′ is of the form (7.22), then the terms

of xγxγ′
yδyδ′ · g(x,x,y,y) will also be of the form (7.22).

(Mt−2(ρ−xx∗ ⊗yy∗ ⊗ L̃) ⪰ 0) The analogous reasoning applies to showing that

Mt−2(ρ − xx∗ ⊗ yy∗ ⊗ L̃) ⪰ 0. Now, we use the modified index set [n]2 × It−2 and
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its partition

[n]2 × It−2 =
t−2⋃

r,s=−t+2

([n]2 × It−2
r,s ).

Then, Mt−2(Gρ ⊗ L̃) is block-diagonal with respect to this partition, with each block

corresponding to a principal submatrix of Mt−2(Gρ ⊗L). Hence, Mt−2(Gρ ⊗ L̃) ⪰ 0.

Thus, L̃ is feasible for the program (7.11), with L̃(1) = L(1). □

Example 7.7. A Block-diagonal reduction example. To illustrate the effect
of the block-diagonalization, we consider an example with ρ ∈ H3 ⊗ H3 ≃ H9 (i.e.,
n = 3) and the bound ξsep3 (ρ) at level t = 3.

In Table 1, we indicate the respective sizes of the matrices involved in the pro-
gram for ξsep3 (ρ) with and without block-diagonalization. There, ‘# entries’ stands
for

∑
i m

2
i , where mi are the sizes of the matrices involved in the program, and ‘#

variables’ indicates the total number of variables in each case. The last line indi-
cates the typical run time for such an instance, we collect the computational details
later in Section 7.4. The un-block-diagonalized program cannot be solved; thus, block-
diagonalization is crucial to enable computation.

For the next case n = 4 (i.e., ρ ∈ H4 ⊗H4), one can compute the bound at level
t = 2 but not at level t = 3, even after block-diagonalization.

Table 1. Matrix sizes block-diagonalized vs. not.

Matrix block-diagonalized not

M3(L) 25 × (12 × 12 to 96 × 96) 455 × 455
M2(gL) 78 × (6 × 6 to 38 × 38) 6 × (91 × 91)

M1(Gρ ⊗ L) 5 × (36 × 36 to 108 × 108) 234 × 234
# entries 110480 286624
# variables 6952 18564

run time 4.6 min memory error

Remark 7.8. As observed above, using the block-diagonalized version of the pro-
gram for ξsep3 is crucial to be able to compute the bounds for some larger matrix
sizes. We note, however, that the optimal solution to this program will not satisfy the
flatness condition

rankMt(L) = rankMt−1(L) (t = 2, 3).

Indeed, one can check that this flatness condition can hold only in the trivial case
ρ = 0. Intuitively this can be (roughly) explained by noting that, due to its symmetric
structure, L tends to lie within the interior of the feasible region. Hence our approach,
which produces lower bounds on ranksep(ρ), can be viewed as being complementary
to the approach in, e.g., [57, 113, 128], which uses flatness to produce separable
decompositions of ρ and thus upper bounds on ranksep(ρ).
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7.3. Extensions to other matrix factorizations

Using separable factorization as a basis, we explore three other factorizations.
The approach we have described thus far (and in Section 3.1) generalizes straightfor-
wardly to these three new settings.

First, however, we would like to state that we have assumed the bipartite states
are symmetric in the sense that

ρ ∈ Cn1 ⊗ Cn2 ,

with n1 = n2. This was done to not unnecessarily complicate the notation and
exposition in Section 7.1, but the treatment clearly applies to the general case with
n1 ̸= n2. We now break from this convention and will shortly see an example where
n1 ̸= n2.

Multipartite quantum states. As opposed to bipartite states, we consider m-
partite quantum states. Here, ρ ∈ Cn1 ⊗Cn2 ⊗· · ·⊗Cnm , and separability means that
ρ belongs to the cone

cone{x(1)(x(1))∗ ⊗ · · · ⊗ x(m)(x(m))∗ : x1 ∈ Cn1 , . . . ,xn ∈ Cnm , ∥x(i)∥ = 1 (i ∈ [m])}.
All the previous results of Section 7.1 have analogous results for this setting, with
provisions made for the new variables. Practical computations in this setting become
much harder because the matrices ρ are much larger than their bipartite counterparts.

Mixed (bipartite) states. In this setting, we consider factorization into mixed
states as opposed to pure states, i.e., factorization of the form ρ =

∑
ℓ∈[r] Aℓ ⊗ Bℓ

with Aℓ, Bℓ ∈ Hn
+. Then, the mixed separable rank of ρ is defined as

rankmixsep(ρ) := min
{
r ∈ N : ρ =

∑
ℓ∈[r]

Aℓ ⊗Bℓ; Aℓ, Bℓ ∈ Hn
+

}
.

This notion has been considered, e.g., in [46, 47, 57] and mixed separable decompo-
sitions are called S-decompositions in [128] (which deals with real states).

To define bounds on the mixed separable rank, one can follow the same approach
as in Section 7.1, but with more variables. Indeed, we now need variables x =
(xij)1≤i≤j≤n and y = (yij)1≤i≤j≤n to model the entries of the matrices Aℓ ∈ Hn

+

and Bℓ ∈ Hn
+, while we previously only needed variables (xi)i∈[n] and (yi)i∈[n] to

model the vectors aℓ ∈ Cn and bℓ ∈ Cn. Additionally, the corresponding Hermitian
matrices X = (xij)

n
i,j=1 and Y = (yij)

n
i,j=1 are taken to be positive semidefinite.

One may again scale the variables so that they satisfy a boundedness condition such
as |xij |, |yij | ≤

√
ρmax. This enables one to design hierarchies of lower bounds that

converge to the mixed separable analog of the parameter τsep(ρ). The details are
analogous and thus omitted.

Specialization to bipartite real states. Here, we are given a real symmetric
bipartite state ρ ∈ Sn ⊗ Sn, where Sn is the set of real symmetric n × n matrices.
The state ρ is called real separable if it admits a decomposition like (7.2) with all vec-
tors aℓ,bℓ ∈ Rn real-valued. The smallest r for which such a decomposition exists is
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called the real separable rank, denoted rankR
sep(ρ). Note that a real state can be sepa-

rable but not real separable; this is the case for the state Sep3 discussed in Section 7.4.

Analogously to the complex case, one can define a parameter τRsep(ρ) and a hier-

archy ξsep,Rt (ρ) (t ∈ {2, 3, ....,∞}) of bounds. The result of Lemma 7.4 has an analog
for these real parameters. In particular, we again have

ξsep,R2 (ρ) ≤ ξsep,R3 (ρ) ≤ · · · ≤ ξsep,R∞ (ρ)

lim
t→∞

ξsep,Rt (ρ) = ξsep,R∞ (ρ) = τRsep(ρ).

The most significant difference is that we now replace the complex conjugate with
the real transpose operation and work with linear functionals L acting on the real

polynomial space R[x,y]2t. So the parameter ξsep,Rt reads

ξsep,Rt (ρ) := inf
{
L(1) | L : R[x,y]∗2t,

L(xxT ⊗ yyT ) = ρ,

L([x,y]t[x,y]Tt ) ⪰ 0, (7.23a)

L((
√
ρmax − x2

i )[x,y]t−1[x,y]Tt−1) ⪰ 0 (i ∈ [n]), (7.23b)

L((
√
ρmax − y2i )[x,y]t−1[x,y]Tt−1) ⪰ 0 (i ∈ [n]), (7.23c)

L((ρ− xxT ⊗ yyT ) ⊗ [x,y]t−2[x,y]∗t−2) ⪰ 0
}
. (7.23d)

By removing the complex conjugates, we end up with much smaller matrices in the
SDP. Moreover, we can also apply a variant of block-diagonalization to reduce the
involved matrices’ size further.

Real block-diagonalization. Since the terms of the polynomials involved in the
constraints of the above program have even degree in x (resp., y), we may assume
that the variable L satisfies the condition

L(xαyβ) = 0 if |α| or |β| is odd. (7.24)

This is the real analog of the complex case’s condition (7.18). By adding the condition
(7.24) to (7.23) we can replace the PSD constraint matrices in (7.23) with block-
diagonal matrices. The key to this insight (similar to what was done in Section 7.2)
is that one can take the index set of Mt(L) = L([x,y]t[x,y]t)

T in (7.23a)

It :=
{

(α, β) ∈ (Nn)2 : |α + β| ≤ t
}

and partition it by the sets

It =
⋃

a,b∈{0,1}

Ita,b ; Ita,b :=
{

(α, β) ∈ It : |α| ≡ a, |β| ≡ b modulo 2
}
.

Using this partition, the matrix Mt(L) becomes block-diagonal with only the prin-
cipal submatrices Mt(L)[Ita,b] (a, b ∈ {0, 1}) being nonzero. Thus, Mt(L) ⪰ 0 if and

only if Mt(L)[Ita,b] ⪰ 0 (a, b ∈ {0, 1}).

A mutatis mutandis argument will work for showing block-diagonalization for the
matrices in (7.23b) and (7.23c) using the index set It−1 = ∪a,b∈{0,1}I

t−1
a,b . Similarly,
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we can block-diagonalize the matrix in (7.23d) using the following partition of its
index set: [n2] × It−2 = ∪a,b∈{0,1}([n2] × It−2

a,b ).

7.4. Numerical results and examples

We now illustrate the behavior of the bounds ξsept (ρ) and ξsep,Rt (ρ) for different
choices of localizing constraints, at levels t = 2, 3, 4, respectively; see Tables 2, 3,
and 4.

Computations were made in Windows using Julia [20], JuMP [59], and MOSEK
[5] with hardware specifications: i7-8750 CPU with 32 Gb Memory. 1

Examples of states ρ from the literature. For our examples, we will use
the separable states Sep1, Sep2, Sep3, and the entangled state Ent1 that we describe
now. For numerical stability, we do the computations with a scaling of these states
so that they have trace equal to 1. We present the examples in matrix form with
lines drawn to indicate the block structure ρ =

((
ρij,i′j′

)
j,j′∈[d2]

)
i,i′∈[d1]

. Zero-valued

entries are left blank for easier viewing.

Sep1 :=


1

1

 ; Sep2 :=


2 1 1 1
1 1 1 1
1 1 1 1
1 1 1 2



Sep3 :=


4

4 2 2
2 2 1 −1

1 2 1 −1
−1 1 5 1

2 −1 1 2

 ; Ent1 =



1 1 1
2 1

1
2 1

1 1
2

1 1 1
2 1

1 2
1 1

2
1 1 1


.

The separable states Sep1, Sep2, and Sep3 were previously studied for example in
[31]. The entangled state Ent1 was constructed by Choi in [35] as the first example
in dimension (n1, n2) = (3, 3) of an entangled state ρ that satisfies the PPT condition
(Section 7.1.1).

In addition, we revisit four examples taken from [57]. They include three separa-
ble states, named here Sep4, Sep5 and Sep6, corresponding to Examples 3.8, 3.10 and
3.11 in [57], and one entangled state, named here Ent2, corresponding to Example
3.9 in [57].

1The code is available at: https://github.com/JAndriesJ/sep-rank

https://github.com/JAndriesJ/sep-rank
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Different SEP factor scalings. In Section 7.1 we provided three different
choices of localizing constraints in (7.9), (7.15) and (7.14), that we denote here as S1,
S2 and S3, respectively.

The examples show that the different choices lead to incomparable bounds. Let
us use the notation S1 < S2 as short hand for “there exists a ρ such that ξsept (using
scaling S1) < ξsept (using scaling S2)”. Then, at level t = 2, the state Sep1 demon-
strates both S3 < S1 and S2 < S1, and, at level t = 3, Sep2 demonstrates both
S2 < S3 and S1 < S3 and Sep3 demonstrates both S1 < S2 and S3 < S2. A case
where the various constraints differ in ability to detect entanglement is provided by
the state Ent1 at level t = 2. On the other hand, for the state Ent2, all three scalings
detect entanglement at level t = 2. Thus we have detection at the same level as for
the approach followed in [57].

In addition, we show in Figure 1 a scatter plot of the bound ξsep3 (ρ) vs. its com-
putation time in seconds for 100 random complex matrices ρ grouped and colored by
the respective scalings S1, S2 and S3. These matrices are defined by

ρ =
5∑

j=1

a(j)(a(j))
∗
⊗ b(j)(b(j))

∗
,

where a(j),b(j) ∈ C3 are random vectors whose entries are of the form x +
√
−1y,

with x,y ∈ N (0, 1), i.e., the entries of x (resp., y) are sampled from the Gaussian
distribution with mean 0 and variance 1. We also normalize the trace here for nu-
merical stability. This construction guarantees separability and provides the upper
bound ranksep(ρ) ≤ 5. Such states also satisfy the reverse inequality ranksep(ρ) ≥ 5
almost surely since rank(ρ) = 5 almost surely. We use this class of examples merely
to test the quality of the bounds.

From the figure, we can draw the following observations: First, the bounds are
concentrated around the means 2.7, 3.4, and 3.3 for the scalings S1, S2, and S3,
respectively. Second, in this class of examples, the S1 rescaling yields inferior bounds
compared to S2 and S3. Third, out of the hundred examples and for the three different
scalings considered, no bound exceeded the value 4.

Separable but not real separable states. As mentioned in Section 7.3, there
exist real states ρ ∈ Sn ⊗ Sn that are separable but do not admit a decomposition
using real vectors aℓ,bℓ ∈ Rn.

Our bound ξsep,R2 provides a proof of the latter for the state Sep3: its real sep-
arable rank is infinity since our lower bound is infeasible (i.e., there exists a dual

certificate that proves rankR
sep(Sep3) = ∞).

Finally, we note that one sometimes needs to go beyond level t = 2 (and thus
beyond the PPT criterion) to reveal entanglement: with the localizing constraints S3,
the bound for Ent1 is feasible at t = 2, but infeasible at t = 3. Going to a higher
level naturally increases the size of the SDP. For the examples Sep3, Sep4, Sep6, and
Ent1, this prevented us from computing level t = 4.
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Figure 1. Scatter plot of ξsep3 (ρ) vs computation time (sec.)
for 100 random matrices, grouped and colored by rescalings S1,
S2 and S3.

Table 2. Examples and numerical bounds level t = 2

ρ (n1, n2) bi-r ξsep2 (ρ) ξsep,R2 (ρ) rsep time

S1 S2 S3 S1 S2 S3
Sep1[31] (2,2) (2,2) 2.0 1.0 1.0 2.0 1.0 1.0 2 < 1
Sep2[31] (2,2) (3,3) 1.421 1.0 1.0 1.421 1.0 1.0 3 < 1
Sep3[31] (2,3) (4,6) 1.333 1.0 1.0 * * * 6 < 1
Sep4[57] (3,3) (2,2) 1.0 1.0 1.0 1.0 1.953 1.0 2 < 1
Sep5[57] (2,2) (4,4) 1.069 1.0 1.0 N/A N/A N/A ≤ 7 < 1
Sep6[57] (3,3) (7,7) 1.053 1.0 1.0 N/A N/A N/A ≤ 9 < 1
Ent1[35] (3,3) (4,4) 2.069 * 1.525 2.069 * 1.525 ∞ < 1
Ent2[57] (2,2) (2,4) * * * N/A N/A N/A ∞ < 1

Run time given in seconds

bi-r : birank(ρ)

rsep : ranksep(ρ)

* : Infeasibility certificate returned

- : Solver could not reach a conclusion (not a memory error)

N/A : Not Applicable

We indicate using boldface when a bound (after rounding up) equals the separable rank
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Table 3. Examples and numerical bounds level t = 3

ρ (n1, n2) bi-r ξsep3 (ρ) ξsep,R3 (ρ) rsep time

S1 S2 S3 S1 S2 S3
Sep1 (2,2) (2,2) 2.0 2.0 2.0 2.0 2.0 2.0 2 < 1
Sep2 (2,2) (3,3) 1.909 2.0 2.178 1.909 2.0 2.178 3 2
Sep3 (2,3) (4,6) 2.423 3.0 2.790 * * * 6 25
Sep4 (3,3) (2,2) 1.652 2.0 - 1.65 2.0 1.0 2 261
Sep5 (2,2) (4,4) 1.988 2.048 2.079 N/A N/A N/A ≤ 7 4
Sep6 (3,3) (7,7) 2.715 3.326 - N/A N/A N/A ≤ 9 290
Ent1 (3,3) (4,4) - - * - * * ∞ 67

Table 4. Examples and numerical bounds level t = 4

ρ (n1, n2) bi-r ξsep4 (ρ) ξsep,R4 (ρ) rsep time

S1 S2 S3 S1 S2 S3
Sep1 (2,2) (2,2) 2.0 2.0 2.0 2.0 2.0 2.0 2 105
Sep2 (2,2) (3,3) 3.0 3.0 3.0 3.0 3.0 3.0 3 332
Sep5 (2,2) (4,4) 4.0 4.0 4.0 N/A N/A N/A ≤ 7 161
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Discussion

A link between completely positive and nonnegative rank. For a matrix
M ∈ Rn×m

+ its nonnegative rank can be seen as

rank+(M) = min
{

rankcp

(
X M
MT Y

)
: X ∈ Sn, Y ∈ Sm

}
.

Hence, nonnegative rank can be recast as a (completely positive) matrix completion
problem. However, this line of attack does not appear to contribute much.

Non-commutative matrix ranks. We have explored applications of the mo-
ment method to nonnegative and completely positive matrix factorization ranks. In
Section 7.3, we discussed the mixed-separable rank and, in so doing, hinted at a
generalization to noncommutative ranks.

The non-commutative analogs of CP rank and NN rank, namely the positive
semidefinite (PSD) rank and the completely positive semidefinite (CPSD) rank, in-
troduced in Section 4.5, can be attacked using similar techniques to what we have
discussed thus far, as was done in [80].

In the noncommutative setting of the PSD rank, if the matrix M has a PSD
factorization

Mi,j = ⟨Ai, Bj⟩, for i ∈ [n] and j ∈ [m],

for some A1, ..., An, B1, ..., Bm ∈ Sr
+, then the zero entries of M also imply ideal-type

constraints of the form AiBj = 0. Thus the techniques of ideal sparsity may extend
to this general setting. We leave this extension to future work.

Tensor ranks. Hierarchies of moment-based relaxations have also been employed
to obtain sequences of bounds for the rank of tensors [153], as well as for the symmet-
ric nuclear norm of tensors [127]. We hope that our exposition on the separable rank
and its generalizations in Section 7.3 gave the reader an inkling of what is possible
with the moment approach.

Disadvantages of atom extraction in the ideal-sparse setting. On the
surface, it may seem less likely that each of the p-many moment matrices satisfies the
flatness condition (3.18) simultaneously than simply requiring that flatness holds on
the single dense moment matrix. This was not an issue in most of our computations
(recall Table 3)). However, we have no proper motivation for why this would hold in
general GMPs.

Because atom extraction is carried out independently on each linear functional
Lk, it is possible for one to end up with multiples of the same atom across different
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Lk’s. Indeed, suppose that x′ is an atom with support contained in both Vk1
and Vk2

,
then it is possible that the atom extraction process of Section 3.2.2 would produce x′

for both Lk1
and Lk2

. This may seem relatively rare, but it has been observed in our
computations of Table 3.

Advantages of atom extraction in the ideal-sparse setting. The atoms
one attains are sparse by construction. This is clear when one recalls that an atom x′ of
Lk must have support contained in Vk, i.e. x′

i = 0 for all i ̸∈ Vk. The atoms recovered
via the dense GMP formulation tend to have small non-zero entries, culminating in
inaccurate factorization. Even if one tries to clean up the factors with rounding, the
approximations are still poorer than their sparse counterpart.

Because each moment matrix Lk([x(Vk)]sk [x(Vk)]Tsk) can be handled indepen-
dently of each other, the process is well suited for parallel computing. Though, atom
extraction is seldom the computational bottleneck in solving GMPs.

More general ideal sparsity and applications. We have considered an
ideal sparsity structure, where the ideal in (2.8) is generated by monomials. Beside
their use for bounding matrix factorization ranks, constraints of the form xixj = 0
naturally arise in a number of other applications. First, we note that up to a change of
variables, one can consider more general constraints of the form (a⊤x+b)(c⊤x+d) = 0.
This type of constraint is commonly referred to as a complementarity constraint, where
either the term (a⊤x + b) or the term (c⊤x + d) is required to be zero. We mention
two areas where such complementary constraints naturally arise: analysis of neural
networks and optimality conditions in optimization.

Complementarity constraints arise naturally when modeling neural networks with
the rectified linear activation functions (ReLU). The semialgebraic representation of
the graph of the ReLU function involves a constraint of the form y(y− x) = 0, which
is exactly a complementarity constraint. The fact that the graph of the ReLU func-
tion admits a semialgebraic representation has been exploited computationally using
the moment-sum-of-squares framework for analyzing the Lipschitz constant of the
neural network as well as stability and performance properties of dynamical systems
controlled by the ReLU neural networks, see, e.g., [33, 34, 98]. Ideal sparsity is,
therefore, a natural candidate to render these methods more computationally efficient
and would deserve further study.

Complementarity systems also arise in optimization within the Karush-Kuhn-
Tucker (KKT) conditions. The complementarity slackness of the KKT condition
reads λifi(x) = 0, where λi is the Lagrange multiplier associated to the ith constraint
fi(x) ≤ 0. If fi is affine, this is in the form of ideal constraints. The KKT conditions
form a basic semialgebraic set when the optimization problem has polynomial data was
exploited in [99] to analyze dynamical systems controlled by optimization algorithms,
albeit without exploiting the ideal sparsity. More generally, the ideal sparsity could
be used to analyze the linear complementarity problems (LCP) that have applications
in, e.g., economics, engineering, or game theory; see [37] for an extensive treatment
of the subject.
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Part 3

Convex scalarizations in portfolio
selection
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In Chapter 8, we give some background on the portfolio optimization problem
in finance. In particular, we introduce the Markowitz model and several extensions:
higher-order moments, shorting and leverage, and sparse portfolios. This leads to the
mean-variance-skewness-kurtosis (MVSK) problem with possible sparse variants. We
also introduce some general theory concerning multi-objective optimization problems.
There, we discuss the link between multi-objective problems and their scalarizations.

In Chapter 9, we mathematically formalize the MVSK problem as a multi-objective
optimization problem. We attack the MVSK problem via linear scalarization. We
characterize sufficient conditions on the scalarizing hyper-parameter defining the scalar-
ization to result in a convex optimization problem. We show that a large class of
scalarizations results in convex (single-objective) optimization problems, which are
amenable to first-order optimization methods. Analogous results are shown for a
sparse variant of the MVSK problem. Hence, we partially recover the Pareto set of
MVSK by solving different scalarized MVSK problems.

In Chapter 10, we collect our numerical experiments and methodology support-
ing the theory built in Chapter 9. To solve the scalarized MVSK problems, we use
the well-known optimization algorithm fast iterative shrinkage-thresholding algorithm
(FISTA) (Section 10.1). We visualize and compare the resulting approximate Pareto
sets for various domains (simplex and cube) with and without sparsity. We observe
that there are some points that provide a better trade-off among the four objectives.
We call such points solutions of superior trade-off. They are described and visualized
in Section 10.2.

This part of the thesis is based on the work in [150].
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CHAPTER 8

The portfolio selection problem

8.1. Background

In finance, the portfolio selection problem is the task of selecting a subset of as-
sets (called a portfolio) from a pool of available assets in such a way as to maximize
the appreciation of the selection’s value while minimizing the risk of losing the initial
capital investment, see [19]. In 1952, Markowitz [118] created the first mathematical
formulation of this problem. Since then, models have evolved into various directions,
each trying to capture some aspect of the practical problem, e.g., transaction cost
[112, 121], non-Gaussian data [149, 141, 152], short selling and leveraging [119].
Regardless of the model used, the resulting problem should not be so difficult that
available computers cannot solve it (at least approximately) in a reasonable time. To
deal with computational difficulties, new techniques have been developed, in particu-
lar, in [103, 117, 121].

The Markowitz model. Markowitz modeled a portfolio’s profitability by the
mean returns and its risk by using the variance as a proxy. The model can be seen
as a bi-objective optimization problem

max wTM

min wTV w

s.t. w ∈ ∆n,

(8.1)

where ∆n is the standard simplex, V ∈ Sn
+ is a covariance matrix, and M ∈ Rn is the

vector of means. Here, n denotes the number of assets that are available for selection
and, for each i ∈ [n], wi denotes the weight of the ith asset in the portfolio w. The
values of M and V are known or computed from some available data. Problem (8.1)
can be converted into a single-objective optimization problem of the form:

min (1 − λ)wTV w − λwTM

s.t. w ∈ ∆n,
(8.2)

for some hyper-parameter λ ∈ [0, 1] modelling the investors risk tolerance. Hence, the
two conflicting objectives, maximizing the mean returns wTM and minimizing the
variance wTV w, are pitted linearly against each other.

Extending to higher-order moments. Problem (8.1) is often called the mean-
variance model, as it only uses the means (i.e., M ∈ Rn) and the variance (i.e.,
V ∈ Sn

+) in its description. In statistics, the mean and variance are the data’s first
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124 8. THE PORTFOLIO SELECTION PROBLEM

and second moments. Vastly different distributions can have identical means and
variances. Hence, by only using these moments, the model implicitly assumes that
higher-order moments like skewness and kurtosis are not important. This assump-
tion is financially hazardous if the market data is not Gaussian distributed, which
has been shown to be the case in practice; see [141, 149]. The danger comes from
underestimating the frequency of extreme events, like rare but significant losses. We
mention two ways of addressing the problem.

The first way is to combine or reject the covariance-based risk model in favor of
other methodologies like mutual information or entropy-based risk, thereby removing
the Gaussian assumption, see, e.g., [79, 152]. We also class asymmetric risk models
like Value at Risk (VaR) in this category, see, e.g., [38].

The second approach extends the model to include higher-order statistical mo-
ments, allowing for more varied data distributions. Publications that propose extend-
ing the model to include higher-order moments like skewness and kurtosis include
[101, 174, 120, 95, 147, 117, 92].

Skewness, the third data moment, represents the asymmetric characteristics of
a distribution. One can think of a distribution leaning in a particular direction, the
skewness quantifying the direction and intensity of the leaning, see Figure 1.

Figure 1. Diagram of the probability density function of a
Gaussian with skewness, taken from [56].

Kurtosis, the fourth data moment, is similar to variance in that larger values
correspond to a sharper peak and fatter tails, i.e., more extreme returns on either
side of the mean, compared with the normal distribution, see Figure 2.

Most investors would prefer a large positive skewness and a small kurtosis if given
a choice. Adding these new terms improves the model’s expressiveness at the cost of
adding more complexity. Skewness, in particular, is likely non-convex (more on this
in Section 9.1).

The extended model (now including skewness and kurtosis) is called the mean-
variance-skewness-kurtosis (MVSK) problem. It is a multi-objective optimization
problem (MOOP) with the first four moment functions as objectives, see (9.2) and
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8.1. BACKGROUND 125

Figure 2. Diagram of distributions with positive and negative
kurtosis compared to the normal distribution (dashed line),
taken from [48].

(9.3) in Section 9.1 for the formal definitions. Finding solutions for the MVSK will
be our primary task.

Leverage and shorting. We consider the option to hold shorted and leveraged
positions; this means that the portfolio can consist of borrowed assets.

In brief, short selling (or “holding a shorted position”) is an investment strategy
where one borrows an asset, speculating that the asset will soon appreciate in value.
One then sells the asset before it depreciates and repurchases it for a profit after it has
depreciated. The repurchased asset and a premium are then returned to the original
owner. Mathematically, negative portfolio weights can model this.

Leverage is an investment strategy that uses credit to bolster assets, magnifying
potential profits and losses. Mathematically this means that the portfolio weights can
sum up to more than one, i.e., we no longer optimize over the simplex but rather over
a bounded cube.

For our intents and purposes, shorting and leverage are expressed in the feasible
regions of the optimization problems we consider (see the beginning of Section 9.1).
We contribute little to the topic in this regard other than showing the compatibility
of our approach to both these settings. For a general overview of financial terms, we
refer the reader to any standard text like [119].

Sparse portfolios via cardinality constraints. A portfolio w ∈ Rn is sparse
if it supports fewer assets than the selection pool allows, i.e., if |{i ∈ [n] : wi ̸= 0}| < n.
Given two equally well-performing portfolios, one often prefers the sparser portfolio
to dense portfolios (where all weights are non-zero) because having fewer assets to
manage leads to fewer transaction costs [19].

Transaction costs (fees paid to brokers to purchase and sell assets) often under-
mine the profitability of portfolios. Investors manage these costs in one of two ways.
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126 8. THE PORTFOLIO SELECTION PROBLEM

First, explicitly modeling the cost as a type of penalty in the objective, i.e., as a
quantity to be minimized; see, for example, [112].

Second, by imposing cardinality constraints, i.e., requiring that any solution has
support of some bounded size. This adds to the difficulty of optimizing the portfolio,
as cardinality constraints are often combinatorial. Authors like [121] have attacked
such problems using penalized alternating direction methods. These methods break
the problem at the constraints into two coupled sub-problems, each capturing a differ-
ent half of the original problem. For example, the domain constraints (e.g., solutions
must belong to the simplex) and the support constraint (e.g., the solution support
may not exceed some fixed k ∈ N) could be separated into respective sub-problems. It-
eratively solving and alternating between these sub-problems, one obtains a sequence
of solutions that, under convexity conditions, converge to a globally optimal solution.

Our work is also in the spirit of cardinality restriction. We consider sparse vari-
ants of MVSK in Section 9.1. We show that in our setting, one often attains sparse
solutions by projecting onto the simplex as part of using projected gradient descent to
compute an optimum (see Section 10.1). Suppose our projection approach fails (i.e.,
the solution is not sparse enough). In that case, we impose the support restriction
by “splitting” the domain and using a heuristic (based on the solution of the original
problem) to search over the resulting parts (see Section 10.1.1).

A disclaimer on variance-based models for portfolio selection. The
saying “all models are wrong, but some are useful” is worth repeating in this section.
We would like to explicitly state that this part of the thesis is not intended to advocate
the use of the MVSK model in portfolio selection, as this would fall in the domain of
economics. Our core message is that if one is interested in the MVSK model, then the
problem has convexity properties that are, to the best of our knowledge, untapped.

8.2. Multi-objective optimization problems

In addition to inheriting the difficulties of single-objective optimization problems,
multi-objective optimization problems (MOOPs) have new challenges to address, see,
e.g., [61] for background. Consider the general MOOP:

min f(x) :=
(
f1(x), f2(x), ..., fp(x)

)
s.t. x ∈ X,

(8.3)

where f1, f2, ..., fp are some scalar-valued functions defined on Rn, and X ⊆ Rn.

How one defines optimality is the first change from single to multiple objectives.
Real numbers are well ordered by ≤, and as such, it is clear when one solution gives
a better objective value than another. In contradistinction, the values of MOOPs
are real-valued vectors, and thus they are only partially ordered by ≤, applied entry-
wise between two vectors (of equal size). Optimal solutions to MOOPs are hence
only optimal in the sense of not being strictly worse than any other solution vector.



617919-L-bw-Steenkamp617919-L-bw-Steenkamp617919-L-bw-Steenkamp617919-L-bw-Steenkamp
Processed on: 27-9-2023Processed on: 27-9-2023Processed on: 27-9-2023Processed on: 27-9-2023 PDF page: 135PDF page: 135PDF page: 135PDF page: 135

8.2. MULTI-OBJECTIVE OPTIMIZATION PROBLEMS 127

Formally we define a partial order on vectors v, w ∈ Rp:

v ≥ w ⇐⇒ vi ≥ wi (i ∈ [p]),

v ≩ w ⇐⇒ v ̸= w, vi ≥ wi (i ∈ [p]),

v > w ⇐⇒ vi > wi (i ∈ [p]).

(8.4)

A point x ∈ X is said to be Pareto optimal for (8.3) if there exists no y ∈ X such
that

f(x) = (f1(x), f2(x), ..., fp(x)) ≩ (f1(y), f2(y), ..., fp(y)) = f(y). (8.5)

Similarly, a point x ∈ X is said to be locally Pareto optimal for (8.3) if it is Pareto
optimal in some open neighborhood of x. The Pareto front of (8.3) is defined as the
set of all Pareto optimal solutions of (8.3). The following is a well-known fact.

Lemma 8.1. Consider the MOOP (8.3), and assume that the objectives f1, f2, ..., fp
are all convex functions and that the domain X is a convex set. Then, any local Pareto
optimal point x of (8.3) is also (globally) Pareto optimal.

Proof. Suppose by way of contradiction that x is not globally Pareto optimal
and let y ∈ X be a point such that f(y) ≨ f(x). Take any t ∈ (0, 1) and observe that
via convexity we have

f(ty + (1 − t)x) ≤ tf(y) + (1 − t)f(x) ≨ tf(x) + (1 − t)f(x) = f(x).

Since this holds for arbitrarily small positive values of t, it holds that x∗ is not locally
Pareto optimal, contradicting our initial assumption. □

Scalarized multi-objective optimization problems. Among the several
approaches to optimizing a MOOP, we will look for optimizers via scalarizations of
the MOOP. Scalarization is a well-known approach that converts a MOOP into a
single objective optimization problem called the scalarized problem. Several authors
have done this for MVSK by encoding some objectives as constraints, see, e.g., [117].
One downside of this approach is that one must make an a priori estimate of these
objectives. Alternatively, one can scalarize by combining the multiple objectives into
a single scalar-valued objective function. We follow this approach. For the MVSK
problem, the literature predominantly considers two scalarizations. The first is the
Minkowski scalarization, as seen in [103, 120, 6]. Here one first computes the optimal
value for each of the objectives independent of the others

f∗
i := min

x∈X
fi(x) (i ∈ [p]).

Using these independent optima one constructs, for some positive user-defined hyper-
parameter λ ∈ Rp, the Minkowski distance scalarization is as follows:

min
x∈X

∑
i∈[p]

∣∣fi(x) − f∗
i

∣∣λi
. (8.6)

We elaborate more on the Minkowski distance scalarization in the discussion at the
end of Part 3.

The second scalarization is simply a linear combination of the objectives with
the linear weights being some choice of hyper-parameter λ ∈ Rp, see [95, 94]. The
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resulting scalarized optimization problem is hence

min
x∈X

Fλ(x), (8.7)

where
Fλ(x) :=

∑
i∈[p]

λifi(x). (8.8)

Note that this scalarization has a linear dependence on hyper-parameters and
is also conceptually simple to interpret. We will be using this linear scalarization
throughout Part 3. Optimizers of the scalarized problem are not guaranteed to be
Pareto optimal for the MOOP, but for neat scalarizations, this is the case. A scalar-
ization is said to be neat if any optimal solution x of the scalarized problem is also a
Pareto optimal solution of the original MOOP.

Lemma 8.2 (Proposition 3.9 in [61]). If λ > 0, then the scalarization (8.7) is
neat, i.e., global optimizers of (8.7) are (global) Pareto optimizers of (8.3).

Proof. Let x ∈ X be an optimal solution of (8.7) and suppose by way of con-
tradiction that x is not Pareto optimal for (8.3), i.e., there exists a y ∈ X such that
f(x) ≩ f(y). Then ∑

i∈[p]

λifi(x) >
∑
i∈[p]

λifi(y)

because λi > 0 for all i ∈ [p]. Hence, this contradicts the fact that x optimizes
(8.7). □

Consider now the case when the feasible set is defined as

X := {x ∈ Rn : gj(x) ≥ 0, j ∈ [q]}, (8.9)

for some functions g1, g2, ..., gq : Rn → R. Let J(x) = {j ∈ [q] : gj(x) = 0} denote the
index set of active constraints at x. The following result holds for the MOOP (8.3).

Theorem 8.3 (Theorem 3.25 in [61]). Let X be the set defined in (8.9). Let
f1, f2, ..., fp, g1, g2, ..., gq be scalar-valued functions that are continuously differentiable
at x∗ ∈ X. Assume that x∗ is a Pareto optimal point of (8.3) and that there is no
vector v ∈ Rn such that

⟨∇fi(x
∗), v⟩ ≤ 0 for all i ∈ [p], (8.10a)

⟨∇fk(x∗), v⟩ < 0 for some k ∈ [p], (8.10b)

⟨∇gj(x
∗), v⟩ ≤ 0 for all j ∈ J(x∗). (8.10c)

Then, there exist vectors λ ∈ ∆p and η ∈ Rq such that λ > 0, η ≥ 0, and∑
i∈[p]

λi∇fi(x
∗) +

∑
j∈[q]

ηj∇gj(x
∗) = 0,

∑
j∈[q]

ηjgj(x
∗) = 0.

Therefore, x∗ is a KKT point of the following scalarization of the problem (8.3):

min Fλ(x) :=
∑
i∈[p]

λifi(x)

s.t. x ∈ X.

(8.11)
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A point x∗ ∈ X that is Pareto optimal and does not satisfy the system (8.10) for
any v ∈ Rn is also known in the literature as being properly efficient in the Kuhn-
Tucker sense (see Definition 2.49 in [61]).

Proposition 8.4. Assume the conditions of Theorem 8.3 hold. If, in addition,
X is a convex set and Fλ a convex function, then x∗ is a global optimizer of (8.11).

Proof. The claim follows from the fact that any KKT point of a convex problem
must be a global optimizer. □

Let us again consider the scalarized problem (8.7) where Fλ(x) =
∑

i∈[p] λifi(x)

for some 0 < λ ∈ Rp. Depending on the functions f1, ..., fp, the hyper-parameter λ,
and the domain X, problem (8.7) can still be extremely difficult to solve. However,
in the special case when the objective Fλ(x) and the domain X are convex (strictly
convex), there are efficient methods to find the (unique) minimizer [15]. Having found
an optimizer to the scalarized problem, Lemma 8.2 relates said optimizer back to a
Pareto point of the MOOP.

The core theme of Part 3 is to partially recover the Pareto set of the MVSK
problem by solving different linear scalarizations of the MVSK problem. In order to
achieve this, we identify classes of hyper-parameters λ ∈ ∆4 that ensure the resulting
scalarization Fλ is convex over the optimization domain (either the standard simplex
or the cube).
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CHAPTER 9

The MVSK problem

This chapter gives the mathematical formulation of the MVSK optimization prob-
lem (9.5) starting from a random variable representing asset price (see Section 9.1).
We look at two possible domains of optimization, each motivated by the inclusion or
omission of shorting and leveraging of assets. Using asset price, we define the four
objectives of the MVSK multi-objective optimization problem. Combining the four
objective functions and the chosen feasible region we get the MVSK optimization
problem (9.5). After defining and interpreting the MVSK problem, we look at a pos-
sible sparse variant of the MVSK problem and give two motivations for it.

In Section 9.2, we consider a linear scalarization (9.7) of the multi-objective (9.5)
and analyze the conditions under which the resulting (scalar objective) optimization
problem is convex. Convex optimization problems (having a convex objective function
and convex feasible region) have the useful property that any local optimizer is also
a global optimizer. This is a fact we will make use of in order to recover part of the
Pareto front of problem (9.5). Moreover, convex functions are well-studied; they can
be efficiently optimized if the gradient is known and one can project onto the feasible
region efficiently. See, for example, the standard textbook [24].

9.1. Formulating the MVSK

To distinguish the general results of Chapter 8 from the particular setting of the
MVSK problem, we now change the notation from a general vector x ∈ Rn to a vector
of weights, w ∈ ∆n or w ∈ [−1, 1]n.

The domain of optimization. As a variable, we consider a portfolio, which
consists of a weighted selection of n ∈ N assets, represented by w ∈ Rn. At first, we
consider two choices of the domain for portfolios.

We consider the standard simplex, where investors cannot short assets nor take
leveraged positions (recall the definitions in Chapter 8), i.e.,

w ∈ ∆n :=
{
w ∈ [0, 1]n :

∑
i∈[n]

wi = 1
}
.

Secondly, we consider the cube, where we allow short selling and leverage. We assume
that there is a bound B ∈ R+ on how leveraged a position can be. Mathematically
we write

w ∈ [−B,B]n :=
{
w ∈ Rn : −B ≤ wi ≤ B (i ∈ [n])

}
,

where we set B = 1 for simplicity.

130
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Later we will look at the sparse variants of these domains.

The objective functions. For asset i ∈ [n] let R̃i denote the relative return of

asset i, i.e., R̃i is the fractional change in price relative to the initial cost of purchasing

the asset i. For our intents and purposes, we consider R̃ to be a random variable taking
values in Rn. Denote the vector of expected returns by

M := E[R̃] = (E[R̃i])i∈[n] ∈ Rn, (9.1)

and define the centralized relative returns as

R :=
(
R̃i −Mi

)
i∈[n]

.

The expected return of the portfolio w is given by

f1(w) := MTw. (9.2)

For k = 2, 3, 4 we can define the functions

fk(w) := E
[
⟨R,w⟩k

]
, ⟨R,w⟩k := (RTw)k =

( ∑
i∈[n]

Riwi

)k
, (9.3)

which relate to the second, third, and fourth moments of R as follows:

f2(w) = wTV w, f3(w) = (w ⊗ w)TSw, f4(w) = (w ⊗ w)TK(w ⊗ w), (9.4)

where V := E[RRT ] ∈ Rn×n is the covariance matrix, S := E[(R⊗R)RT ] ∈ Rn2×n is

the skewness matrix, and K := E[(R⊗R)(R⊗R)T ] ∈ Rn2×n2

is the kurtosis matrix,
all w.r.t. the data R. With slight abuse of terminology, we refer to f2(w) as the vari-
ance of portfolio w, and similarly, f3(w) and f4(w) are called its skewness and kurtosis.

The functions f1, f2, and f4 are convex. We note that f1, f2, and f4 are
convex on Rn. Indeed, f1 is linear and therefore convex. The functions f2 and f4
are convex and nonnegative for all w ∈ Rn because V and K are PSD. To see why
V is PSD observe that V is the expectation of a random variable RRT , taking PSD
matrices as values. Hence, the Hessian of f2, H(f2) = V , is PSD, and thus f2 is
convex. Similarly, the Hessian H(f4)(w) of the kurtosis function f4 at w can be
written as

H(f4)(w) = 12 · E[wT (RRT )w ·RRT ] ⪰ 0,

where the PSDness follows from the fact that wT (RRT )w ≥ 0 and RRT ⪰ 0 for all
w ∈ Rn.

MVSK optimization problem. Using the objective functions defined in (9.2)
and (9.3), and using the simplex as the feasible region, we define the MVSK problem:

max f1(w)

min f2(w)

max f3(w)

min f4(w)

s.t. w ∈ ∆n.

(9.5)
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This program can be interpreted as follows: one wishes to maximize returns while
minimizing extreme events like rare but significant losses. In expectation, the “odd”
functions f1 and f3 correspond to increased returns when positive and losses when
negative. The “even” functions f2 and f4 describe the spread of returns, with larger
values corresponding to more significant fluctuations at the extremes. Note that vari-
ance and kurtosis are symmetric, which means they treat extreme profits and losses
with equal prejudice.

As discussed in Chapter 8, multi-objective optimization problems have a set of
Pareto optimal points. Since each Pareto optimal point is not strictly worse than any
other Pareto optimal point, it falls to the investor to choose among these solutions.
However, some Pareto solutions provide a better spread among the multiple objectives
of (9.5); more on this in Chapter 10.

A sparse variant of MVSK. A sparse portfolio w is one with many of its
entries wi set to zero. Our general sparse version of the problem (9.5) reads as
follows:

max f1(w)

min f2(w)

max f3(w)

min f4(w)

s.t. w ∈ ∆n∏
i∈C

wi = 0 for C ∈ C,

(9.6)

where C ⊆ P([n]). We give two motivations for the above form of sparsity.

Reducing transaction costs and management fees. One of the core ideas
in portfolio selection, diversification, is the principle that buying causally-unrelated
assets will protect the investor from rare but significant losses. The idea is that one
expects the random depreciation of a single asset to be unrelated (or inversely related)
to the value of other assets. Of course, this only holds outside systemic events like
economic crises, see [152]. To get the benefits of diversification, many assets must
often be held in one’s portfolio. This creates a new problem, as larger portfolios lead
to increase management fees and transaction costs when rebalancing (re-optimizing
the portfolio to account for new data). The additional costs will then counteract the
profitability of the portfolio.

We impose an upper bound on the portfolio size to prevent this, i.e., we require
that | supp(w)| ≤ k − 1, where supp(w) := {i ∈ [n] : wi ̸= 0} and k is some integer
such that 1 ≤ k ≤ n. In problem (9.6) we model this by setting

C = {C ⊆ [n] : |C| = k}.

Accounting for causally linked assets. The second way a portfolio can
become sparse is by disallowing certain asset combinations. When one knows that
two assets are causally linked, the portfolio gains negligible diversification by holding
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both. To factor in this notion of causally linked assets into the above model (9.6), we
set

C = {(i, j) : i ̸= j, | DKL(Ri, Rj)| ≤ γ},
for some γ > 0, where DKL is the Kullback–Leibler divergence, see [139]. Other
notions of mutual information or expert opinion could also be used instead of the
Kullback–Leibler divergence when constructing C.

By adding sparsity, we restrict the optimization domain and obtain a possibly
weaker optimal solution. Indeed, if w is a Pareto optimal solution of the sparse
problem (9.6), it need not be Pareto optimal for the dense problem (9.5).

9.2. Scalarizing the MVSK

In this section, we consider the linear scalarization (9.7) (resp, (9.12)) of problem
(9.5) (resp, (9.6)). The main result is Lemma 9.2 which characterizes sufficient condi-
tions under which the scalarized problem is convex. This result adds value, as many
authors, e.g., [95, 117, 174, 120, 147, 92], studying the MVSK problem assumed
the scalarization (or even just kurtosis alone) to be nonconvex and as such, forgo
applying the powerful techniques of convex optimization.

Our plan now is as follows: Via Lemma 8.2, we can find Pareto optimal solutions
of (9.5) by solving (9.7) for λ > 0 such that Fλ is convex. By doing this for various
appropriate λ, we hope to recover part of the Pareto front. Later, we also apply the
same process for λ that are neither strictly positive nor resulting in convex Fλ, this
still yields a feasible solution of (9.7), but we have no guarantees of it being Pareto
optimal for the multi-objective optimization problem (9.5).

Linear scalarization of MVSK. For any choice of λ := (λ1, λ2, λ3, λ4) ≥ 0,
consider the following scalarization of the multi-objective problem (9.5):

F ∗
λ := min Fλ(w) := −λ1f1(w) + λ2f2(w) − λ3f3(w) + λ4f4(w)

s.t. w ∈ ∆n.
(9.7)

Since, for any scalar c > 0, we have

argminw∈∆n Fλ(w) = argminw∈∆n Fcλ(w),

we can hence, without loss of generality, scale λ such that it lies in the simplex ∆4

because we are only looking for the optimizers of Fλ and not an optimal value.

Pareto optimizers of (9.5) and optimizers of (9.7). Via Lemma 8.2, a
local optimizer of (9.7) for λ > 0 such that Fλ is convex is also a Pareto optimizer
of (9.5). However, it is not necessarily true that all Pareto optimizers of (9.5) are
also optimizers for some scalarization of the form (9.7). It is true, though, that each
Pareto optimizer w∗ of (9.5) satisfying (8.10) corresponds to a Karush–Kuhn–Tucker
(KKT) point of some scalarization with λ > 0, as was seen in Theorem 8.3. Applying
Theorem 8.3 to our setting with the simplex domain, we have the following result.

Corollary 9.1 (KKT). Let w∗ be a Pareto optimal point of (9.5) with the
property that there exists no v ∈ Rn satisfying the conditions (8.10a), (8.10b), vj ≤ 0
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for any j ∈ [n] \ supp(w∗), and eT v = 0. Then, there exists a positive λ ∈ ∆4, λ > 0,
and η ∈ Rn+1 such that:

• ηj = 0 if j ∈ supp(w∗),
• ηj ≥ 0 if j ∈ [n] \ supp(w∗), and

•
∑4

i=1 λi(−1)i∇fi(w
∗) +

∑n
j=1 ηjej + η0e = 0.

That is to say, w∗ is also a KKT point of (9.7).

We now shift to finding λ for which Fλ is convex over the simplex, the cube, or
the whole space Rn.

9.2.1. Convex linear scalarization of MVSK. In general, optimizing a qua-
dratic polynomial over the simplex is already hard. Indeed, recall the Motzkin-Straus
[122] formulation of the stability number α(G) of an undirected graph G as a qua-
dratic optimization problem over the simplex, i.e.,

1

α(G)
= min

x∈∆n
xT (I + A(G))x,

where A(G) is the adjacency matrix of G. Problem (9.7) has a quartic objective and
is expected to contain the difficulty of the quadratic case.

However, as shown in [15], one can optimize programs of the form

min
x∈Rn

f(x) + g(x)

using the proximal gradient method, under some assumptions on the functions f and
g. Assuming some convexity and closedness conditions on the functions f and g,
and the existence of optimizers (see Assumption 10.1 of [15] for details), [15, The-
orem 10.21] claims convergence to the global optimum at a rate of O( 1

k ), where k
is the number of iterations. In Chapter 10, we will use a proximal gradient method
called FISTA which converges to the global optimum at a rate of O( 1

k2 ). The prox-
imal gradient method consists of iterating between a gradient step and a proximal
map. In the case when the gradient and the proximal map are efficiently computable
(in the sense that it requires polynomially many (in terms of input data) operations
to compute), the method as a whole becomes efficient; see [15, Chapter 10] for details.

We now give several characterizations of λ ∈ ∆4 for which Fλ(w) is convex. We
begin by considering the gradient of Fλ at a point w as

∇Fλ(w) = ∇
(
− λ1M

Tw + λ2E[⟨R,w⟩2] − λ3E[⟨R,w⟩3] + λ4E[⟨R,w⟩4]
)

= −λ1M + 2λ2E[R⟨R,w⟩] − 3λ3E[R⟨R,w⟩2] + 4λ4E[R⟨R,w⟩3].

The Hessian H(Fλ)(w) of Fλ at w is given by

∇2Fλ(w) = 2λ2E[RRT ] − 6λ3E[RRT ⟨R,w⟩] + 12λ4E[RRT ⟨R,w⟩2]

= E
[(

2λ2 − 6λ3⟨R,w⟩ + 12λ4⟨R,w⟩2
)
RRT

]
= E[2Φλ(R,w)RRT ],

(9.8)

where we define the function

Φλ(R,w) := 6λ4⟨R,w⟩2 − 3λ3⟨R,w⟩ + λ2. (9.9)

Define the univariate quadratic polynomial

Ψλ(y) := 6λ4y
2 − 3λ3y + λ2,
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9.2. SCALARIZING THE MVSK 135

so that Ψλ(⟨R,w⟩) = Φλ(R,w) under the change of variables y := ⟨R,w⟩.

Lemma 9.2. Let R∆ := minw∈∆n⟨R,w⟩ and R∆ := maxw∈∆n⟨R,w⟩. Then we
have

Φλ(R,w) ≥ 0 for all w ∈ ∆n

if and only if one of the following conditions hold:

(i) λ4 = 0 and 3R∆λ3 ≤ λ2,

(ii) λ4 > 0 and λ3 ≤
√

8
3λ2λ4,

(iii) λ4 > 0, λ3 >
√

8
3λ2λ4, 3R∆λ3 ≤ λ2 + 6R

2

∆λ4, and 4R∆λ4 ≤ λ3,

(iv) λ4 > 0, λ3 >
√

8
3λ2λ4, 3R∆λ3 ≤ λ2 + 6R2

∆λ4, and 4R∆λ4 ≥ λ3.

Proof. If λ4 = 0, then Φλ(R,w) ≥ 0 if and only if 3⟨R,w⟩λ3 ≤ λ2. Requiring
that this hold for all w ∈ ∆n is equivalent to requiring 3R∆λ3 ≤ λ2. Hence, we have
shown case (i).

Suppose λ4 > 0 and consider the discriminant ∆λ := 9λ2
3 − 24λ2λ4 of Ψλ(y).

If ∆λ < 0, then Ψλ(y) has no real roots, and thus Ψλ(y) > 0 for all y ∈ R. The

condition ∆λ < 0 is equivalent to requiring λ3 <
√

8
3λ2λ4. In the case that ∆λ = 0,

then Ψλ(y) has double root at y = 3λ3

12λ4
and Ψλ(y) ≥ 0 for all y ∈ R. Thus, we get

case (ii).
Assume ∆λ > 0. Then, Ψλ(y) has two roots

yl :=
3λ3 −

√
∆λ

12λ4
, yu :=

3λ3 +
√

∆λ

12λ4
.

Hence, there are only two cases when Φλ(R,w) ≥ 0 for all w ∈ ∆n. The first is when
all values of y = ⟨R,w⟩ are below yl, i.e.,

R∆ ≤ 3λ3 −
√

∆λ

12λ4
= yl ⇐⇒

√
∆λ ≤ 3λ3 − 12R∆λ4

⇐⇒ ∆λ = 9λ2
3 − 24λ2λ4 ≤ (3λ3 − 12R∆λ4)2 and 0 ≤ 3λ3 − 12R∆λ4

⇐⇒ 4λ4R∆ ≤ λ3 and 3R∆λ3 ≤ λ2 + 6λ4R
2

∆.

Hence, we have shown case (iii).
The second case is when all values of y = ⟨R,w⟩ are above yu, i.e.,

R∆ ≥ 3λ3 +
√

∆λ

12λ4
= yu ⇐⇒ 12R∆λ4 − 3λ3 ≥

√
∆λ

⇐⇒ 9λ2
3 − 24λ2λ4 ≤ (3λ3 − 12R∆λ4)2 and 0 ≤ 12R∆λ4 − 3λ3

⇐⇒ 4R∆λ4 ≥ λ3 and λ2 + 6λ4R
2
∆ ≥ 3R∆λ3.

With this, case (iv) is proved and the proof is concluded. □

Remark 9.3. Note that condition (iv) in Lemma 9.2 implies R∆ > 0. In numer-
ical experiments with real-world data, we often have R∆ < 0, and thus condition (iv)
seldom holds.

Corollary 9.4. If λ ∈ ∆4 satisfies any of the conditions (i)-(iv) of Lemma 9.2
then Fλ is convex on ∆n. Moreover, if λ ∈ ∆4 satisfies the condition (ii) of Lemma 9.2,
then Fλ is convex on Rn.
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Proof. These results follow directly from the fact that the Hessian of Fλ takes
only PSD matrix values when Φλ(R,w) ≥ 0, i.e.,

Φλ(R,w) ≥ 0 =⇒ H(Fλ)(w) ⪰ 0 (w ∈ Rn).

□

Generalizing the convexity results. The scalarization Fλ(w) is convex on
the standard simplex ∆n if and only if the hyper-parameter λ = (λ1, λ2, λ3, λ4) ∈ ∆4

satisfies

λ3 ≤ max
γ≥0

{
γ : E

[
(2λ2 − 6γ⟨R,w⟩ + 12λ4⟨R,w⟩2)RRT

]
⪰ 0 (w ∈ ∆n)

}
. (9.10)

When λ3 = 0, Fλ is convex, so λ3 is the limiting factor to PSDness of the Hessian
of Fλ. Hence, we seek the largest λ3 for which H(Fλ)(w) ⪰ 0 for all w ∈ ∆n. The
parameter λ1 plays no role in the convexity of Fλ. The Hessian is linear in λ but qua-
dratic in w. The expression in problem (9.10) is not simply a linear matrix inequality,
and to the best of our knowledge, it cannot be solved efficiently [17].

Thus far, we have considered convexity over the simplex domain. Analogous
results hold for the cube. To generalize Lemma 9.2 to the cube, simply modify the
bounds R∆ and R∆ by defining

R□ := max
w∈[−1,1]n

⟨R,w⟩, R□ := min
w∈[−1,1]n

⟨R,w⟩.

The results of Lemma 9.2 and Corollary 9.4 can be extended to strict convexity
by making a mild assumption on the random variable R.

Corollary 9.5. Consider the Hessian given in (9.8) for some λ ∈ ∆4. Assume
that E[RRT ] ≻ 0 and that, for all w ∈ ∆n, Φλ(R,w) > 0 a.e.1. Then, Fλ is strictly
convex on ∆n.

Proof. Since Φλ(R,w) > 0 a.e. for all w ∈ ∆n, we have that H(Fλ) ⪰ 0 on
∆n. Assume by way of contradiction that H(Fλ) is not positive definite, then there
exists a nonzero v ∈ Rn \ {0} such that vTH(Fλ)v = vTE[Φλ(R,w)RRT ]v = 0. By
linearity of the expectation this implies that E[Φλ(R,w)vTRRT v] = 0. Since each
argument is a.e. nonnegative we have that Φλ(R,w)vTRRT v = 0 a.e., and thus
vTRRT v = 0 a.e. by virtue of Φλ(R,w) > 0 a.e.. Taking the expectation we get
0 = E[vTRRT v] = vTE[RRT ]v contradicting our assumption that E[RRT ] ≻ 0. □

Regions of hyper-parameters λ for which Fλ is convex. We define the
following nested sets of hyper-parameters λ

Λ+ ⊆ Λ∆ ⊆ ∆̂ and Λ+ ⊆ Λ□ ⊆ ∆̂,

1The abbreviation a.e. stands for almost everywhere and is used to indicate that the
accompanying statement may fail, but only on a set of measure zero.
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where

∆̂ := {(λ2, λ3, λ4) ≥ 0 : λ2 + λ3 + λ4 ≤ 1} ⊆ R3,

Λ+ := {(λ2, λ3, λ4) ∈ ∆̂ : λ2λ4 ≥ (3/8)λ2
3},

Λ∆ := {(λ2, λ3, λ4) ∈ ∆̂ : λ satisfies any condition of Lemma 9.2 for R∆ and R∆},

Λ□ := {(λ2, λ3, λ4) ∈ ∆̂ : λ satisfies any condition of Lemma 9.2 for R□ and R□}.
(9.11)

Via Lemma 9.2, it now follows that if λ ∈ Λ+, then Fλ is convex over Rn. Similarly, if
λ ∈ Λ∆ (resp., Λ□), then Fλ is convex over the simplex ∆n (resp., the cube [−1, 1]n).
The benefit of eliminating a variable (λ1 in this case) is that the hyper-parameter

sets Λ+, Λ∆, Λ□, and ∆̂ can now be plotted, see Figure 1. Keep in mind that the

set Λ∆ is a conservative estimate for the set of all λ ∈ ∆̂ for which Fλ is convex over
the simplex, i.e.,

Λ∆ ⊆
{

(λ2, λ3, λ4) ∈ ∆̂ : Fλ is convex on ∆n
}
.

Hence, the region Λ∆ shown in Figure 1 should be thought of as pessimistic, and
similarly for Λ□. Furthermore, even if Fλ is non-convex, one can still optimize (9.7)
and hope that the local optimum attained is sufficiently good.

The function of these sets is as follows. By optimizing Fλ for different λ ∈ ∆4,
we recover local optimizers wλ. If λ ∈ Λ∆, then Corollary 9.4 guarantees that the
optimizer wλ is globally optimal for problem (9.7). If additionally, we know that
λ > 0, then by Lemma 8.2, we know that wλ is a Pareto optimal point of the problem
(9.5). Later in Chapter 10, we will visualize the quality of solutions wλ by plotting

objective values fi(wλ) against λ ∈ ∆̂, for i ∈ [4]. Hence, the sets Λ∆, Λ□ are useful
in showing where we certainly have Pareto optimality.

9.2.2. Scalarized sparse MVSK. Analogously to the above discussion, one
can associate a linear scalarization to the sparse multi-objective optimization problem
in (9.6) in the following way

F ∗
λ,C := min Fλ(w) := −λ1f1(w) + λ2f2(w) − λ3f3(w) + λ4f4(w)

s.t. w ∈ ∆n∏
i∈C

wi = 0 for C ∈ C.
(9.12)

We now show that optimization problems of the form (9.12) can be decomposed into
a collection of several independent sub-problems of the form (9.7). The motivation
for doing this is that the sub-problems could possibly be solved independently using
parallelization or other forms of distributed computing.

For any set U ⊆ [n] and vector x ∈ RU , denote by x(0, U) ∈ Rn the lifting of x
into Rn, defined entrywise by

x(0, U)i :=

{
xi i ∈ U
0 i /∈ U

(i ∈ [n]).
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((a)) Λ+ ((b)) Λ□ ((c)) Λ∆

Figure 1. This plot shows the transparent three-dimensional

hyper-parameter set ∆̂ in blue as viewed from the facet:

{(λ2, λ3, λ4) ≥ 0 : λ2 +λ3 +λ4 = 1} ⊂ ∆̂. The different regions
are distinguished by color. In particular, Λ+ is shown in red,
Λ□ is shown in green, and Λ∆ is shown in light-blue. The do-
mains Λ∆ and Λ□ shown here were computed using R∆ = 0.52,
R□ = 0.87, and R∆, R□ < 0. For this instance Λ□ ⊆ Λ∆. The
approximate relative volumes for the sub-domains are as fol-

lows: vol(Λ+)

vol(∆̂)
≈ 0.59, vol(Λ□)

vol(∆̂)
≈ 0.61, and vol(Λ∆)

vol(∆̂)
≈ 0.63.

Similarly, for x ∈ Rn, let x|U = (xi)i∈U ∈ RU denote the restriction of x to RU . For

a function g : Rn → R define the restricted function g|U : RU → R; x 7→ g(x(0, U)).

Proposition 9.6. Let U1, ..., Up ⊆ [n] be all the maximal subsets of [n] not con-
taining any set C ∈ C. Then, we have

F ∗
λ,C = F̃ ∗

λ,C ,
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where
F̃ ∗
λ,C := min

ℓ∈[p]
min

w̃∈∆Uℓ

Fλ|Uℓ
(w̃). (9.13)

Proof. (F ∗
λ,C ≥ F̃ ∗

λ,C) Any optimal solution w of (9.12) must have its support

contained in some Uℓ. Hence, there is a w̃ ∈ ∆Uℓ such that w̃(0, Uℓ) = w and

F̃ ∗
λ,C ≤ Fλ|Uℓ

(w̃) = Fλ(w) = F ∗
λ,C .

(F ∗
λ,C ≤ F̃ ∗

λ,C) Let w̃ ∈ ∆Uℓ for some ℓ ∈ [p] be an optimizer of (9.13), then

F̃ ∗
λ,C = Fλ|Uℓ

(w̃) = Fλ(w̃(0, Uℓ)) ≥ F ∗
λ,C .

□

Proposition 9.6 bares many similarities with Proposition 2.2. In Section 2.2.1,
ideal sparsity was introduced in the context of the generalized moment problem
(GMP) when one restricts the support of the involved measure. A GMP with a
single measure having restricted support can be shown to be equivalent (see Propo-
sition 2.2) to another GMP involving several measures, each having smaller support
than the measure in the original GMP. In Proposition 9.6, we show that a polynomial
optimization problem with restricted support is equivalent to optimizing over a set of
smaller polynomial optimization problems without support constraints.

In both settings, the critical insight is that the restricted support constraint de-
composes into a collection of smaller objects without support constraints.

Convexity of the scalarized sparse MVSK. Similar to the dense case in
Section 9.2.1, the objective function in (9.12) is convex if λ satisfies any of the con-
ditions (i)-(iv) of Lemma 9.2. The result of Lemma 9.2 transfers to the sparse case
because Φλ(R,w) ≥ 0 on ∆n implies that Φλ(R,w) ≥ 0 on

∆n
C :=

{
w ∈ ∆n :

∏
i∈C

wi = 0 for C ∈ C
}
⊆ ∆n. (9.14)

Hence, Lemma 9.2 and its consequences continue to hold in the sparse setting.
Note that the domain ∆n

C is not convex, so the problem (9.12) is not convex.
However, if U1, ..., Up ⊆ [n] denote all the maximal subsets of [n] not containing any
set C ∈ C, then for any ℓ ∈ [p] the sub-problem

min
w̃∈∆Uℓ

Fλ|Uℓ
(w̃),

does have a convex domain, namely the simplex ∆Uℓ . Moreover, on this sub-problem,
Lemma 9.2 can be adapted by using the following bounds

R∆Uℓ := min
w̃∈∆Uℓ

⟨R, w̃(0, Uℓ)⟩, R∆Uℓ := max
w̃∈∆Uℓ

⟨R,w(0, Uℓ)⟩.

Observe that R∆ ≤ R∆Uℓ ≤ R∆Uℓ ≤ R∆ for all ℓ ∈ [p]. Furthermore, any λ that
satisfies at least one of the conditions (i)-(iv) of Lemma 9.2 using the bounds R∆

and R∆ will necessarily again satisfy one of the conditions using instead now the
bounds R∆Uℓ and R∆Uℓ , for any ℓ ∈ [p]. Intuitively one can think of using these new
bounds R∆Uℓ and R∆Uℓ as relaxing the condition Φλ(R,w) ≥ 0 for all w ∈ ∆n to
the weaker condition Φλ(R,w) ≥ 0 for all w ∈ ∆n with supp(w) ⊆ Uℓ. This mirrors
the fact that there are potentially more hyper-parameters λ ∈ ∆4 for which Fλ|Uℓ

is
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convex over ∆Uℓ for each ℓ ∈ [p] than there are λ ∈ ∆4 for which Fλ is convex over ∆n.

The sparse problem (9.12) could have many sub-problems to solve, but each sub-
problem is smaller than the original problem and can be solved independently of the
other sub-problems. If we set C to be the collection of all sets of size k+ 1, then there
are

(
n
k

)
sub-problems to solve, each involving k variables.
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CHAPTER 10

Numerical Experiments

In this section, we apply the theory from Chapter 9 to empirical data from the
Standard and Poor’s 500 (S&P500) stock market index [60].

We discuss the optimization algorithm FISTA, by Beck and Teboulle [16], that
we use to solve the scalarized problem (9.7), and we motivate its use by listing some
of FISTA’s desirable properties (see Section 10.1). We explain our methodology for
acquiring a grid approximation for the Pareto set of problem (9.5) (see Section 10.2).
Having obtained a set of optimizers of the scalarized problem (9.7) for different choices
of hyper-parameters, we compare and visualize the objective values of the multi-
objective problem (9.5) at said optimizers (see Section 10.3). We observe that some
optimizers give a better overall balance among the four objectives. This procedure is
performed for the simplex and cube settings as well as their sparse analogs.

10.1. Optimization algorithm for the scalarized problem

We will be using the fast iterative shrinkage-thresholding algorithm (FISTA), also
known as fast proximal gradient method, which is a well-studied first-order iterative
optimization algorithm first devised and analyzed by Beck and Teboulle [16]. Broadly
speaking, FISTA repeats the following two steps a prespecified number of times, start-
ing from an initial point: A gradient-descent step gives a new point; the new point
is projected back into the feasible region. Notice that one can efficiently project onto
the simplex [164] (resp., the cube).

FISTA provides sparse solutions on the simplex domain. Like many
gradient descent algorithms, FISTA uses a projection operator to maintain the simplex
(resp., cube) constraints. The operator that projects to the simplex is defined by

Proj∆n : Rn → ∆n; x 7→ argminy∈∆n ∥x− y∥.

If the nearest unconstrained optimizer lies outside the simplex, then most gradient
steps will leave the domain. Projecting back to the simplex results in a sparse vector,
i.e., without full support. The sparsity seems to be due to the fact that projections
are often on a face of the simplex. Hence, most optimizers obtained from FISTA
will be sparse. We provide a histogram of the supports of optimizers from the set

W
[40]
∆ (defined in Section 10.1.2) for our particular problem in Figure 1. This sparsity

does not occur in the case of the cube domain, i.e., the supports of W
[40]
□ (defined

in Section 10.1.2) are all full. One possible reason for this is that the unconstrained
optimizer lies within the cube, and, as such, the projection operator does nothing.
Note that the cube is full-dimensional in contradistinction to the simplex, which lies

141
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Figure 1. Normalized histogram of the support sizes

| supp(wλ)| of optimizers wλ ∈ W
[40]
∆ .

in the hyperplane {w ∈ Rn :
∑

i∈[n] wi = 1}.

FISTA benefits from a warm start. FISTA is an iterative algorithm that
starts from an initial guess x0 and then incrementally improves a proposed optimizer
until a certain number of iterations have been completed. In the convex problem,
the algorithm will converge to the global optimum regardless of where one starts,
but a closer start x0 to an optimizer x∗ does imply faster convergence (recall (10.6)).
Furthermore, if the problem is not convex, and one starts sufficiently close to the global
optimizer, then one can be sure that FISTA will converge to the true optimum. An
initial guess x0 that is close to the global optimizer x∗ is called a warm start. We now
propose to use the optimizer from an already solved problem (9.7), with a fixed λ, as

a warm start for solving (9.7) with a different hyper-parameter λ̂. In other words, fix
λ ∈ ∆n. If

wλ ∈ argminw∈∆n Fλ(w),

then take x0 = wλ as a warm start for FISTA when solving

min
w∈∆n

Fλ̂(w). (10.1)

Our intuition here is as follows: if λ is close to λ̂, then we expect wλ should be close to
an optimizer wλ̂ of (10.1). We provide no proof of the validity of this intuition. Note
that using this warm start heuristic could have the unintended effect of preventing
us from reaching the global optimizer when Fλ is nonconvex over the simplex. Our
warm start heuristic can also be applied to computing sparse optimizers via FISTA.
We will elaborate more on this next.

10.1.1. Optimization algorithm for the sparse scalarized problem. We
saw above that the optimizers of the problem (9.7) are sometimes sparse for the
simplex setting, but not always. So, we propose a simple scheme for finding optimizers
with support not exceeding some fixed integer k ∈ N. We do this starting from a set
of possibly dense solutions W . Let wλ ∈ W be the optimizer of the (dense) problem
(9.7). If | supp(wλ)| ≤ k, then we are done. So, suppose that | supp(wλ)| > k. Keeping
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with the notation of Section 9.2.2 we let C = {C ⊆ [n] : |C| > k} and define the set

Uk := {U ⊆ [n] : |U | = k}
of all maximal subsets of [n] that do not contain any set C ∈ C. The sparse problem
(9.12) can be rewritten as follows:

min
w∈∆n

| supp(w)|≤k

Fλ(w) = min
U∈Uk

w̃∈∆U

Fλ|U (w̃).
(10.2)

For a fixed U ∈ Uk we can solve the sub-problem

min
w̃∈∆U

Fλ|U (w̃), (10.3)

using FISTA with x0 = Proj∆U (wλ) as a warm start, where wλ is assumed to be an
optimizer from the dense problem (9.7) with the same hyper-parameter λ.

Removing sub-problems based on proximity to the dense optimizer.
In order to not consider all

(
n
k

)
-many sets U of Uk, we propose the following two

heuristics to remove sets U for which the resulting sub-problem (10.3) could have a
poor optimum value. The two heuristics we introduce can be used independently of
each other. However, we will use them together in the sequence we introduce them.

The first heuristic consists of discarding all sets U ∈ Uk that do not satisfy

U ⊆ supp(wλ). Doing so yields only
(| supp(wλ)|

k

)
≤
(
n
k

)
sets to optimize over in (10.2).

The second heuristic is to look at the elements wλ,U of the set

Wλ,k :=
{
wλ,U :=

(
Proj∆U (wλ)

)
(0, U) : U ∈ Uk, U ⊆ supp(wλ)

}
⊆ Rn,

obtained by projecting wλ onto ∆U ⊆ RU and then lifting the projection to a vector
in Rn by padding entries not supported by U with zeros, for all appropriate sets U .
To use the second heuristic independently of the first one, simply drop the constraint
U ⊆ supp(wλ) in the definition of Wλ,k. We can then choose to solve the problem
(10.3) only over sets U for which wλ,U is close to wλ in the Euclidean norm. For
our implementation we take the sets U corresponding to the n closest wλ,U to wλ.
Though we provide no guarantee that choosing a U ⊆ [n] such that wλ,U is closest to
wλ would result in an optimum value of problem (10.3) being any better than another
choice of U , we still find that this a helpful heuristic for removing poor choices of U .

10.1.2. The set of obtained optimizers. Whether Fλ is convex or not, we can
apply FISTA to obtain at least a feasible point wλ for the problem (9.7). Construct
the following sets of points obtained by applying FISTA to various scalarizations:

W∆ := {wλ ∈ argminFISTA w∈∆n Fλ(w) : λ ∈ ∆4},
W□ := {wλ ∈ argminFISTA w∈[−1,1]n Fλ(w) : λ ∈ ∆4}.

(10.4)

Here, argminFISTA denotes the points obtained via the algorithm FISTA, not to be
confused with the true (unknown) global minimizers. In Section 10.3.1, we will vi-
sualize the values of the objectives f1(w), f2(w), f3(w), and f4(w) for w ∈ W∆

(resp., w ∈ W□) using colors. Similar to (10.4), we construct the sets of sparse points
recovered via FISTA

W∆,k := {wλ ∈ argminFISTA w∈∆n, | supp(w)|≤k Fλ(w) : λ ∈ ∆4},
W□,k := {wλ ∈ argminFISTA w∈[−1,1]n, | supp(w)|≤k Fλ(w) : λ ∈ ∆4},
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obtained by following the procedure described in Section 10.1.1. As mentioned before,
projecting onto the simplex often produces a sparse vector. Hence, it makes sense to
use W∆ as a starting point for computing W∆,k, as many of the vectors of W∆ may
already be sparse enough. Regardless of whether the elements of W∆ (resp., W□) are
sparse, we can use the ideas of Section 10.1.1 to prune computations and generate
warm starts for the problems associated with W∆,k (resp., W□,k).

Defining objective functions from empirical data. For the sake of gen-
erality, we have introduced the MVSK problem in Chapter 9 using a vector-valued

random variable R (resp., R̃) taking values in Rn to describe the data-dependency.
Practically, the data will arise from a table of results, taking the form of an n×m ma-

trix T̃ ∈ Rn×m, where m is the number of outcomes observed over time. We introduce

a new notation for the empirical data T̃ and the subsequently derived quantities. The

entry T̃i,j (resp., Ti,j) is interpreted as the empirical (resp., centralized) relative re-
turns of asset i at time j. In this context, the expectation is taken over the outcomes.
The mean becomes the empirical mean, i.e.,

M =
( 1

m

∑
p∈[m]

T̃i,p

)
i∈[n]

∈ Rn.

Hence, the empirical centralized relative returns is defined for each i ∈ [n] and p ∈ [m]

by Ti,p := T̃i,p − Mi. Similar to the mean, the formulation of the other empirical
moments is as follows:

V =
( 1

m− 1

∑
p,q∈[m]

Ti,pTj,q

)
i,j∈[n]

,

S =
( 1

m

∑
p,q,r∈[m]

Ti,pTj,qTk,r

)
(i,j)∈([n]×[n]), k∈[n]

,

K =
( 1

m

∑
p,q,r,s∈[m]

Ti,pTj,qTk,rTℓ,s

)
(i,j),(k,ℓ)∈([n]×[n])

.

(10.5)

Observe that we use the unbiased estimator of the variance in (10.5); for a general
reference on statistical estimators, we refer to [158]. The objective functions f1, f2,
f3, and f4 defined in (9.2) and (9.3) can henceforth be redefined in terms of the above
M , V , S, or K.

Using T ∈ Rn×m, the bounds R∆ and R∆ in Lemma 9.2 now become

R∆ = max
i∈[n],p∈[m]

Ti,p, R∆ = min
i∈[n],p∈[m]

Ti,p.

For the cube the bounds are R□ = maxp∈[m]

∑
i∈[n] |Ti,p| and R□ = −R□. The sparse

analogs R∆U , R∆U , R□U , and R□U are defined, mutatis mutandis, in the same man-
ner. The bounds we gave in Figure 1 are also used for all computations we show. We
only compute and use the dense bounds (R∆, R∆, R□, and R□), even for the sparse
settings.

In the next section we sub-sample the sets W∆, W□, W∆,5, and W□,5, described

in the preceding section. Our empirical data T̃ will be a selection of stocks from the
well-known Standard and Poor’s 500 (S&P500) stock market index, see [60]. We
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will consider n = 20 stocks, each measured in increments of a day over a timespan
of m = 500 days starting in January 1990. We have chosen this dataset because
it is well-known and publicly available. However, everything we describe in this
chapter could also be applied to any other time series data of asset prices. For the
reader’s convenience, we list some papers [120, 6] that investigate the MVSK model

on markets different from the S&P500. Using T̃ we can generate M , V , S, and K as
described above. From here, we can define the problem (9.7) and its sparse analog
(9.12). Solving these problems, using the procedure described in Section 10.1, we
obtain elements from the sets W∆, W□, W∆,5, and W□,5.

Convergence bounds for the simplex setting. Consider the scalar opti-
mization problem (9.7) and assume that Fλ is convex. Under some mild smoothness
assumptions (see Assumption 10.31 of [15] for details), which hold in our setting, the
following performance guarantee (see [15, Theorem 10.34]) holds for the kth iteration
of FISTA when applied to (9.7):

Fλ(xk) − Fλ(x∗) ≤ 2LF ∥x0 − x∗∥2

(k + 1)2
. (10.6)

Here, LF > 0 is the Lipschitz constant of Fλ, x0 is the initial point, x∗ is an optimizer,
and xk is the point obtained from FISTA at the kth iteration.

Using a result from [102], one can bound the Lipschitz constant Lf of an n-variate
degree d polynomial f(x) over a convex body K as follows:

Lf ≤ 2d2

width(K)
sup
x∈K

|f(x)|, (10.7)

where width(K) is the minimum distance between two distinct parallel supporting
hyperplanes of K. In the scalarized MVSK setting with simplex domain, we have

width
({

x ∈ Rn−1 : xi ≥ 0 (i ∈ [n− 1]),
∑

i∈[n−1]

xi ≤ 1
})

=
1√
n− 1

and ∥x0 − x∗∥ ≤
√

2. We can upper-bound the objective function by

sup
w∈∆n

|Fλ(w)| ≤ max
{

max
i

|Mi|, max
i,j

|Vij |, max
i,j,k

|Sijk|, max
i,j,k,l

|Kijkl|
}

because λ ∈ ∆4, and

max
w∈∆n

|
∑

i,j,k,l∈[n]

wiwjwkwlKijkl| ≤ (
∑
i∈[n]

wi)
4 max
i,j,k,l

|Kijkl| = max
i,j,k,l

|Kijkl|

and similarly for the other terms.

For the above mentioned S&P500 stock market data we get that Fλ(w) is upper
bounded by supw∈∆n |Fλ(w)| ≤ 0.003 for all λ ∈ ∆4. Hence, using the bound in

(10.7), we get LF ≤ 2 · 42
√

19 · 0.003 = 0.49. For all our applications of FISTA, we
used k = 2000 iterations. Thus, using (10.6), we get that

Fλ(x2000) − Fλ(x∗) ≤ 2LF ∥x0 − x∗∥2

(k + 1)2
≤ 2 · 0.49 · 2

20012
= 4.84 × 10−7.
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In order to take the scale of the values of Fλ into account, we note that for all

of the points of W
[40]
∆ we compute using FISTA, the values of Fλ do not go below

−3.4 × 10−3 ≤ min
w∈W

[40]
∆ ,λ∈∆4

[40]

Fλ(w), where W
[40]
∆ and ∆4

[40] are described in the

next section. We found that k = 2000 iterations adequately balanced accuracy and
computation time.

Convergence bounds for the cube setting. We can use the same process
described above to get performance guarantees for the cube setting. The difference
now being that we have to use width([−1, 1]n) = 2, ∥x0−x∗∥2 ≤ 4n, and the objective
function is now upper-bounded by

sup
w∈[−1,1]n

|Fλ(w)| ≤ max
{∑

i

|Mi|,
∑
i,j

|Vij |,
∑
i,j,k

|Sijk|,
∑
i,j,k,l

|Kijkl|
}
.

In the cube setting, for the above mentioned S&P500 stock market data, we get a
bound Fλ(x2000) − Fλ(x∗) ≤ 2.09 × 10−5.

10.2. A grid approximation of the Pareto set

Recall that the ultimate goal is to obtain Pareto optimizers of the MVSK problem
(9.5). Via Lemma 8.2, solving the scalarization (9.7) for λ > 0 gives a Pareto optimizer
of (9.5). However, we can still recover a point by solving the scalarization (9.7) for
λ ≥ 0; we simply have no optimality guarantees with respect to (9.5). Because ∆4

contains uncountably many elements, we resort to sub-sampling ∆4 with a uniform
mesh. Fix s ∈ N, and consider the following sets:

∆4
[s] := {λ : λ ∈ {0,

1

s
,

2

s
, ..., 1}4 ∩ ∆4},

∆̂[s] := {(λ2, λ3, λ4) : (1 − (λ2 + λ3 + λ4), λ2, λ3, λ4) ∈ ∆4
[s]} ⊆ R3,

that are clearly in bijection. For our computations we take s = 40, resulting in

|∆̂[40]| = 11480 choices of hyper-parameter λ to consider. For each λ ∈ ∆4
[40], we solve

the associated scalarization (9.7) using FISTA to obtain a set of local optimizers wλ,
denoted by

W
[40]
∆ ⊆ {wλ ∈ argminFISTA w∈∆n Fλ(w) : λ ∈ ∆4

[40]} ⊆ W∆.

Observe that the set W
[40]
∆ is not necessarily contained in the Pareto front, but the

following subset is:

{wλ ∈ W
[40]
∆ : λ ∈ Λ∆, λ > 0}.

Here, we use the claims from Corollary 9.4 and Lemma 8.2 that if λ ∈ Λ∆ and λ > 0,
then wλ is a Pareto optimizer of problem (9.5). The reason we consider the bigger set

W
[40]
∆ is that we get a more complete picture, see the figures of Section 10.3. Although

some points of W
[40]
∆ are not guaranteed to be a Pareto optimizer of (9.5), they are

nonetheless quite comparable to the points that are Pareto optimal for (9.5). We
illustrate this claim with visualization.
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Comparing objective values. In order to compare points w ∈ W
[40]
∆ , we rank

them in terms of their values for the objective functions f1, f2, f3, and f4 in (9.5).

For each w ∈ W
[40]
∆ we compute the values f1(w), f2(w), f3(w), and f4(w). For the

sake of clarity, since there is a scale difference between the different functions, we
linearly rescale the values to be in the interval [0, 1]. Formally, for each i ∈ [4] define

F
[40]
i,∆ := {f [40]

i (w) : w ∈ W
[40]
∆ },

to be the set of linearly scaled values fi(w) for w ∈ W
[40]
∆ , where

f
[40]
i (w) :=


fi(w)−f

min,[40]
i

f
max,[40]
i −f

min,[40]
i

i = 1 or 3

1 − fi(w)−f
min,[40]
i

f
max,[40]
i −f

min,[40]
i

i = 2 or 4
, (10.8)

with

f
max,[40]
i := max

w∈W
[40]
∆

fi(w), f
min,[40]
i := min

w∈W
[40]
∆

fi(w).

Hence, for any i ∈ [4], the set F
[40]
i,∆ is contained in the unit interval [0, 1], with “less

desirable” values close to zero and “more desirable” values close to one. Note that the
scaling f

[40]
i considers the fact that we want to maximize f1 and f3, and to minimize

f2 and f4. Hence, the set F
[40]
i,∆ gives us a way to compare the performance of each

portfolio w ∈ W
[40]
∆ with respect to the objective function fi, for all i ∈ [4]. For each

i ∈ [4], we plot F
[40]
i,∆ (in color) against ∆̂[40] (in R3), see Figure 2.

In order to aggregate the quality of an optimizer w ∈ W
[40]
∆ over all of the objec-

tives f1, f2, f3, and f4, we propose looking at the value

f [40](w) :=
∑
i∈[4]

f
[40]
i (w) ∈ [0, 4].

The intuition behind this value is that if w ∈ W
[40]
∆ has a value f [40](w) close to

four, then it does well among many of the objectives and is hence a superior choice

to another solution v ∈ W
[40]
∆ for which f

[40]
i (v) ≥ f

[40]
i (w) for some i ∈ [4] but

f [40](v) < f [40](w). We refer to the following set

W
[40],η
∆ := {w ∈ W

[40]
∆ : f [40](w) ≥ (1 − η) ·

(
max

w∈W
[40]
∆

f [40](w)
)
},

where η ∈ (0, 1), as the set of portfolios with η-superior trade-off, and we define the
set of associated scores

F
[40],η
∆ := {f [40](w) : w ∈ W

[40],η
∆ }.

We plot F
[40],0.01
∆ in color against ∆̂[40] in Figure 3. Our plots should not be compared

to figures as those in [117] where three of four objectives are plotted against each
other with two independent and the third dependent. We give a separate plot for
each objective, and we scale for comprehensibility.
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Table 1. Selected results for λ ∈ ∆̂
[40],0.01
∆ ⊆ R4.

λ f
[40]
1 (wλ) f

[40]
2 (wλ) f

[40]
3 (wλ) f

[40]
4 (wλ) | supp(wλ)|

[0.154, 0.256, 0.077, 0.513 ] 0.623 0.81 0.058 0.978 5
[0.026, 0.077, 0.256, 0.641 ] 0.601 0.825 0.05 0.98 10
[0.231, 0.41 , 0.308, 0.051 ] 0.581 0.854 0.034 0.989 5
[0.462, 0.513, 0.026, 0.0 ] 0.691 0.724 0.118 0.942 5

[0.051, 0.051, 0.205, 0.692 ] 0.677 0.741 0.104 0.95 5
[0.179, 0.359, 0.308, 0.154 ] 0.562 0.872 0.026 0.992 5

[0.462, 0.41 , 0.128, 0.0 ] 0.774 0.586 0.241 0.85 3
[0.282, 0.333, 0.385, 0.0 ] 0.752 0.625 0.203 0.881 5

[0.154, 0.231, 0.487, 0.128 ] 0.676 0.742 0.104 0.95 5
[0.256, 0.256, 0.077, 0.41 ] 0.715 0.686 0.148 0.922 5

Handling the cube and sparse cases. Above, we have described the process
for the simplex (w ∈ ∆n), but the same treatment works for the cube domain (w ∈
[−1, 1]n) and sparse domains (w ∈ ∆n, | supp(w)| ≤ k) and (w ∈ [−1, 1]n, | supp(w)| ≤
k ). Notation-wise, the sets W

[40]
□ , F

[40]
i,□ (i ∈ [4]), W

[40],η
□ and F

[40],η
□ are all defined

analogously to the simplex case, now using the domain w ∈ [−1, 1]n instead of w ∈ ∆n.

Similarly, the sparse simplex sets are denoted by W
[40]
∆,k , F

[40]
i,∆,k (i ∈ [4]), W

[40],η
∆,k and

F
[40],η
∆,k , where k ∈ N is an upper bound on the support size of the elements as described

in Section 10.1.1. The sparse cube sets denoted W
[40]
□,k , F

[40]
i,□,k (i ∈ [4]), W

[40],η
□,k and

F
[40],η
□,k , are defined, mutatis mutandis, in the same manner.

10.3. Numerical results

This final subsection is the culmination of the preceding subsections. For the

S&P500 data considered at the end of Section 10.1.2 we compute W
[40]
∆ , F

[40]
i,∆ (i ∈ [4]),

W
[40],0.01
∆ , and F

[40],0.01
∆ . For each i ∈ [4] we plot F

[40]
i,∆ (in color) against the hyper-

parameter set ∆[40] ⊆ R3. Doing so, we observe how each portfolio wλ ∈ W
[40]
∆ makes

a trade-off between the objectives f1, f2, f3, and f4. Which of the objectives are
favored by wλ is influenced by the choice of λ. For example, for λ1 = 1 − (λ2 + λ3 +

λ4) ≥ 0.4 the portfolios wλ tend to have values f
[40]
1 (wλ) close to one, see Figure 2(a).

Observations like these are useful to investors who can now visually navigate the

F
[40]
i,∆ (i ∈ [4]) in Figure 2 to find a portfolio wλ ∈ W

[40]
∆ that matches their risk

preferences.
To see which λ ∈ ∆[40] correspond to portfolios wλ with a good balance of all four

objectives we plot F
[40],0.01
∆ (in color) against ∆[40] (resp., ∆[40] ∩ Λ∆) in Figure 3.

Note that the hyper-parameters λ ∈ ∆[40] for which wλ ∈ W
[40]
∆ \ W

[40],0.01
∆ are not

displayed so as not to clutter the plot.
Above, we explained the process for the (dense) simplex setting, but the same

treatment applies to the cube and sparse settings, resulting in analogous figures and
similar observations.
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((a)) f
[40]
1 (wλ) ∈

F
[40]
1,∆ vs. (λ2, λ3, λ4) ∈

∆̂[40]

((b)) F
[40]
2,∆ vs. ∆̂[40]

((c)) F
[40]
3,∆ vs. ∆̂[40] ((d)) F

[40]
4,∆ vs. ∆̂[40]

Figure 2. This figure shows the transparent three-

dimensional plots of F
[40]
i,∆ (i ∈ [4]) (in color) ver-

sus (λ2, λ3, λ4) ∈ ∆̂[40], viewed from the facet:

{(λ2, λ3, λ4) ∈ ∆̂ : λ4 = 0}. For every i ∈ [4], every

point (λ2, λ3, λ4) ∈ ∆̂[40] is assigned a color f
[40]
i (wλ) ∈ [0, 1],

where wλ ∈ W
[40]
∆ . Hence, red regions correspond to better

values while blue regions correspond to worse values.

10.3.1. Numerical results in the simplex setting: w ∈ ∆n. In Figure 2,
regions where the objectives f1 and f3 perform well (are red) overlap heavily, see
Figure 2(a) and Figure 2(c). Furthermore, these regions overlap with the regions
where the objectives f2 and f4 do poorly (are blue), namely the rear slice of the
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((a)) f [40](wλ) ∈ F
[40],0.01
∆

vs.
(λ2, λ3, λ4) ∈ ∆̂[40] such that

wλ ∈ W
[40],0.01
∆

((b)) F
[40],0.01
∆ vs. ∆̂[40] ∩

Λ∆

Figure 3. This figure shows the transparent three-

dimensional plot of f [40](wλ) ∈ F
[40],0.01
∆ in color versus

(λ2, λ3, λ4) ∈ ∆̂[40] such that wλ ∈ W
[40],0.01
∆ , viewed

from the facet: {(λ2, λ3, λ4) ∈ ∆̂ : λ4 = 0}. In partic-

ular, every point (λ2, λ3, λ4) ∈ ∆̂[40] is assigned a color

f [40](wλ) ∈ [0, 4]. The values F
[40],0.01
∆ range from 0.99 · 2.475

to max
wλ∈W

[40],0.01
∆

f [40](wλ) ≈ 2.475, which is indicated by the

color bar. Again, red regions correspond to better values while
blue regions correspond to worse values.

simplex where either λ2 or λ4 is small, see Figure 2(b) and Figure 2(d). The central

wedge, (λ2, λ3, λ4) ∈ ∆̂[40] such that wλ ∈ W
[40],0.01
∆ , where the objectives seem to

balance out is shown in Figure 3(a) along with the same wedge restricted to Λ∆,
shown in Figure 3(b).

Recall from definition (9.11) that Λ∆ is a set of hyper-parameters λ for which
Fλ is convex over the simplex ∆n. Further, recall that FISTA converges to a global
minimizer when applied to a convex problem. With this in mind, one would expect
the quality of optimizers produced by FISTA to decline as λ leaves Λ∆ and Fλ (pos-
sibly) ceases to be convex. However, this is not apparent from our plots. Observe
how there does not seem to be a change in color in the plots of Figures 2 and 3 as the
hyper-parameters λ move out of the region Λ∆. This hints at the possibility that the
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local optima obtained by FISTA for hyper-parameters in ∆̂ \Λ∆ are not much worse
than the global optima.

Lastly, observe how the set

∆̂
[40],0.01
∆ := {λ ∈ ∆̂[40] : wλ ∈ W

[40],0.01
∆ }

of hyper-parameters corresponding to solutions of superior trade-off overlap with the

respective sets {λ ∈ ∆̂ : λ > 0} and Λ∆, see Figure 1(c) and Figure 3(b). The

approximate volumes of these two sets and their intersection relative to ∆̂
[40],0.01
∆ are

as follows:

vol({λ ∈ ∆̂
[40],0.01
∆ : λ > 0} ∩ Λ∆)

vol(∆̂
[40],0.01
∆ )

≈ 0.77,

vol({λ ∈ ∆̂
[40],0.01
∆ : λ > 0})

vol(∆̂
[40],0.01
∆ )

≈ 0.83,

vol(∆̂
[40],0.01
∆ ∩ Λ∆)

vol(∆̂
[40],0.01
∆ )

≈ 0.90.

Hence, by virtue of Lemma 8.2 and Corollary 9.4, we have that approximately 77%

of the optimizers with a superior trade-off in W
[40],0.01
∆ are guaranteed to be Pareto

optimizers of the MVSK problem (9.5).

For concreteness we show in Table 1 the numerical values f
[40]
i (wλ) (i ∈ [4])

for ten randomly selected hyper-parameters λ ∈ ∆̂
[40],0.01
∆ . We make the following

observations. First, the skewness, i.e., f
[40]
3 (wλ), seems to be the weakest performing

objective relative to the others. Second, variance and kurtosis, i.e., f
[40]
2 (wλ) and

f
[40]
4 (wλ), seem to be positively correlated. Third, the associated portfolios wλ are all

sparse, with at least half of their entries zero. Eight of the ten portfolios in Table 1
have support size 5; this corroborates the data in the histogram shown in Figure 1.

In the literature, computational results are often represented in tabular form as
we did in Tabel 1, see for example [103, 95]. Presenting results in this way for a
large selection of hyper-parameters soon becomes cumbersome, especially in our case

where we have |∆̂[40]| = 11480. Moreover, the overall patterns are often obscured by
the detail of each specific entry. In contradistinction, by representing the results as
we did in Figure 2 and Figure 3, we see larger trends across the various choices of
hyper-parameters λ. Hence, via the grid sampling approach of Section 10.2 and the
visualizations of this section, we believe we get a better overall understanding of the
relationship between λ, wλ, and the objective values fi(wλ) (i ∈ [4]) than by simply
looking at a few specific values of λ. We now proceed with the other settings (sparse
simplex, cube, and sparse cube).

10.3.2. The sparse simplex setting: w ∈ ∆n, | supp(w)| ≤ 5. The similarity
between Figure 4 and its dense analog Figure 2 is because at least half of the portfolios

wλ ∈ W
[40]
∆,5 are from W

[40]
∆ . Recall the histogram in Figure 1, in which more than half

of the points wλ ∈ W
[40]
∆ are shown to have support size five or less. Following the
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((a)) F
[40]
1,∆,5 vs. ∆̂[40] ((b)) F

[40]
2,∆,5 vs. ∆̂[40]

((c)) F
[40]
3,∆,5 vs. ∆̂[40] ((d)) F

[40]
4,∆,5 vs. ∆̂[40]

Figure 4. This figure shows the transparent three-

dimensional plots of F
[40]
i,∆,5 (i ∈ [4]) (in color) ver-

sus (λ2, λ3, λ4) ∈ ∆̂[40], viewed from the facet:

{(λ2, λ3, λ4) ∈ ∆̂ : λ4 = 0}.

procedure of Section 10.1.1, these portfolios are taken as they are when constructing

W
[40]
∆,5 .

Between Figure 5 and Figure 3, there is again much similarity. The reader may
wonder why the range of values in the sparse setting Figure 5 (from 2.57 to 2.59)
exceeds that of the dense setting Figure 3 (from 2.455 to 2.475). There is no con-
tradiction here because the scaling (10.8) is different in each setting (simplex, cube,

sparse, and dense). Hence, the values F
[40],0.01
∆,5 and F

[40],0.01
∆ are incomparable, simi-

larly for the forthcoming cube setting.
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((a)) f [40](wλ) ∈ F
[40],0.01
∆,5

vs.
(λ2, λ3, λ4) ∈ ∆̂[40] s.t. wλ ∈
W

[40],0.01
∆,5

((b)) F
[40],0.01
∆,5 vs. ∆̂[40] ∩ Λ∆

Figure 5. This figure shows the transparent three-

dimensional plot of f [40](wλ) ∈ F
[40],0.01
∆,5 in color versus

(λ2, λ3, λ4) ∈ ∆̂[40] such that wλ ∈ W
[40],0.01
∆,5 .

10.3.3. Numerical results in the cube setting: w ∈ [−1, 1]n. The cube
setting differs significantly from the simplex setting. Portfolios wλ are now in [−1, 1]n

and have full support (at least for all examples we have computed). Except for
skewness, Figure 6(c), the figures of Figure 6 follow roughly the same pattern as in

Figures 2 and 4. In the cube setting, portfolios wλ ∈ W
[40]
□ now require a large λ3 to

attain good values for the skewness objective, see Figure 6(c).
We observe that the portfolios with superior trade-offs are more scarce in the cube

setting than in the simplex counterpart. Hence, in Figure 7, we now take η = 0.025

because the set ∆̂
[40],0.025
□ (of hyper-parameters corresponding to solutions of superior

trade-off) gives a fuller and more informative plot than ∆̂
[40],0.01
□ . Secondly, we observe

the same “wedge” of superior portfolios we saw in Figures 3 and 5. Lastly, the

portfolios wλ ∈ W
[40],0.025
□ that do the best in Figure 7 have λ3 ≥ 0.5, with the

concentration lying outside of Λ□.

10.3.4. The sparse cube setting: w ∈ [−1, 1]n, | supp(w)| ≤ 5. The results
for the sparse cube setting differ vastly from the dense cube setting. The difference

in results is primarily due to the portfolios wλ ∈ W
[40]
□ having full support and thus

differing greatly from the portfolios wλ ∈ W
[40]
□,5 . In particular, we see concentrations

https://s.t.xn--w-kmb/
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((a)) F
[40]
1,□ vs. ∆̂[40] ((b)) F

[40]
2,□ vs. ∆̂[40]

((c)) F
[40]
3,□ vs. ∆̂[40] ((d)) F

[40]
4,□ vs. ∆̂[40]

Figure 6. This figure shows the transparent three-

dimensional plots of F
[40]
i,□ (i ∈ [4]) (in color) ver-

sus (λ2, λ3, λ4) ∈ ∆̂[40], viewed from the facet:

{(λ2, λ3, λ4) ∈ ∆̂ : λ4 = 0}.

forming in the same places as in Figure 6(c), namely the upper tip of ∆̂[40] where λ3

is large. We also see a tinny concentration near λ1 = 1. Despite the changes, we still
have that the odd objectives (mean and skewness) perform better in regions where
the even objectives (variance and kurtosis) do poorly and vice versa, see Figure 8.

Surprisingly, ∆̂
[40],0.025
□,5 in Figure 9 is again the same “wedge”-like shape we have seen

in Figures 3, 5 and 7. There are now hardly any red regions, indicating that very few
points reach the higher value range.
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((a)) f [40](wλ) ∈ F
[40],0.025
∆

vs. (λ2, λ3, λ4) ∈ ∆̂[40] s.t.

wλ ∈ W
[40],0.025
∆

((b)) F
[40],0.025
∆ vs. ∆̂[40] ∩

Λ□

Figure 7. This figure shows the transparent three-

dimensional plot of f [40](wλ) ∈ F
[40],0.025
∆ in color versus

(λ2, λ3, λ4) ∈ ∆̂[40] such that wλ ∈ W
[40],0.025
∆ .
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((a)) F
[40]
1,□,5

vs. ∆̂[40]

((b)) F
[40]
2,□,5

vs. ∆̂[40]

((c)) F
[40]
3,□,5

vs. ∆̂[40]

((d)) F
[40]
4,□,5

vs. ∆̂[40]

Figure 8. This figure shows the transparent three-

dimensional plots of F
[40]
i,□,5 (i ∈ [4]) (in color) ver-

sus (λ2, λ3, λ4) ∈ ∆̂[40], viewed from the facet:

{(λ2, λ3, λ4) ∈ ∆̂ : λ4 = 0}.
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((a)) F
[40],0.025
∆ vs. ∆̂[40] ((b)) F

[40],0.025
∆ vs.

∆̂[40] ∩ Λ∆

Figure 9. This figure shows the transparent three-

dimensional plot of f [40](wλ) ∈ F
[40],0.025
□,5 in color versus

(λ2, λ3, λ4) ∈ ∆̂[40] such that wλ ∈ W
[40],0.025
□,5 .
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Discussion

Disclaimer on the use of the MVSK model in portfolio selction. It
should be noted that the MVSK model is heavily reliant on the estimates of the
moments and is not robust to errors in the data. It is for this reason that the MVSK
model and other (generalized) Markowitz models are often treated with skepticism
in practice. Furthermore, simple portfolio selection strategies (like distributing one’s
capital equally among all assets) surprisingly outperform mean-variance models, see
[51]. The work of Part 3 should not be seen as an endorsement of generalized mean-
variance models, but rather as an observation that there is latent convexity in the
MVSK problem that has been overlooked and underutilized.

Even higher-order moments than kurtosis. The formulation of the objec-
tive functions in (9.3) is well-defined for any integer k > 4. Hence, one can define
objectives fk with k > 4 in addition to those already present in (9.5) and thereby
extend the model. With an extended model, one can again scalarize linearly, now
using more hyper-parameters than before. Again one can characterize the Hessian of
this new scalarization and possibly recover results similar to Lemma 9.2 and Corol-
lary 9.4. There is not much motivation in the literature for this further extension.
Some authors even advocate against relying on correlation-based risk measures [152].
We have not carried out any extensions to higher-order moments beyond kurtosis.

Minkowski distance scalarization. Much of the popularity of the Minkowski
distance scalarization (8.6) comes from the fact that it is an alternative to the linear
scalarization (8.8). One might reasonably ask what is gained from this more involved
formulation. First, this scalarization is also neat for λ > 0 and could reveal Pareto
points that the linear scalarization approach cannot. Second, the Minkowski distance
function could be susceptible to signomial optimization (we elaborate more in the
next paragraph). However, the benefits of the Minkowski distance scalarization must
be weighed against the fact that it is much harder to interpret than linear scalariza-
tion. Moreover, one has to compute the independent optima f∗

k for k ∈ [4], which can
already be challenging in the case of k = 3.

The Minkowski distance formulation lends itself to a signomial optimization in-
terpretation [30]. Indeed, the scalarization (8.6) applied to the MVSK problem with
simplex domain has the following form:

min
w∈∆n

∑
k∈[4]

∣∣fk(w) − f∗
k

∣∣λk ,

158
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where f∗
k := minw∈∆(−1)kfk(w) with fk given in (9.4) and (9.2) for each k ∈ [4].

Under the change of variable exp(u) := (exp(ui))i∈[n] := (wi)i∈[n], the above problem
can be written as a signomial optimization program

min
∑
k∈[4]

exp(λkvk)

s.t.
∑
i∈[n]

exp(ui) = 1

exp(vk) = (−1)kfk(exp(u)) + (−1)k+1f∗
k (k ∈ [4])

u, v ∈ Rn

Problems of this type have been studied before and have mature methods to solve
them, see [123]. Approaching the MVSK problem from the signomial programming
direction opens a new and unexplored line of inquiry into the MVSK problem. As
before, one can try to characterize the convexity of such a scalarization in the hopes
of getting similar results to Lemma 9.2. Though we do not include content on this
topic in this thesis nor in [150], we did investigate this line of inquiry but failed to
reach conclusive results. As such, more research beyond this thesis is required.

The author would like to express his gratitude towards Prof. Dr. Monique Lau-
rent (CWI Amsterdam) for diligently proofreading several versions of the paper that
led to this part of the thesis and for providing critical feedback where it was most
needed. Furthermore, the author thanks Shuanghua Bai and Jan Fiala (NAG Oxford)
for bringing this exciting problem to his attention.
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Part 4

Hypergraph-based polynomials in
queueing theory
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Part 4 considers a class of polynomial optimization problems that arise naturally
in queueing theory when considering a particular job-occupancy model with redun-
dancy scheduling policies. The polynomial objectives fd in question (see (11.1)) have
variables indexed by the edges of a uniform hypergraph and coefficients depending
on certain patterns of unions of edges. Cardinaels, Borst, and van Leeuwaarden [29]
conjectured that the fd polynomials attain their global minimum over the standard
simplex at the barycenter. In order to address this conjecture, we consider a related
but easier-to-analyze class of polynomials pd (see (11.2)). By exploiting the symme-
try properties of these related polynomials pd, we prove that they attain their global
minimum over the standard simplex at the barycenter. Relating this result back to
the original class of polynomial optimization problems posed by Cardinaels et al., we
can partially prove their conjecture.

In Chapter 11, we introduce the main polynomial classes of interest (Section 11.1),
we give a brief motivation from queueing theory for our interest in these polynomials
(Section 11.2), and finally, we give some classical results on matrix algebras (Sec-
tion 11.3) that we will use for the main proof in Chapter 12. In particular, we will
look at some preliminaries on the Terwilliger algebra of the binary Hamming cube.

In Chapter 12, we give the main result of this part of the thesis; namely, we show
that the polynomials pd are convex over the standard simplex and that this implies
that they attain their global minimum at the barycenter of the simplex. Our proof
is based on showing the respective Hessians of pd are positive semidefinite on the
simplex. First, we deal with the simplest case in Section 12.1 to get an intuition for
the proof method. Then, we deal with the general case in Section 12.2.

In the last Chapter 13, we examine the polynomials fd. In Section 13.1, we relate
the polynomials pd to the polynomials fd and show some partial results for fd in the
same spirit as was done in Chapter 12. For a fixed integer d ≥ 2, we show that the
polynomials fd also attain their global minimum at the barycenter of the simplex pro-
vided the fd’s are convex. In particular, we decompose the Hessians H(fd) of fd and
observe a deep connection with the Hessians of pd. This is instrumental in proving
that H(fd) ⪰ 0 for a special case. We then end with a numerical motivation for why
the polynomials fd are in general convex over the simplex (Section 13.2).

Part 4 is based on our joint work with Daniel Brosch and Monique Laurent in
[27].
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CHAPTER 11

Hypergraph-based polynomials and preliminaries

This chapter has three sections. First, in Section 11.1, we introduce two classes of
polynomials fd and pd that we will study in detail in Part 4. Second, in Section 11.2,
we explain the problem from queueing theory that motivates our interest in these two
polynomial classes. Third, in Section 11.3, we state some classical results pertaining
to matrix algebras that we will need for proving the core result of Chapter 12.

Notation. Recall that In (resp., Jn) denotes the n× n identity matrix (resp., all-
ones matrix). Given two integers n,m ≥ 1, Jm,n denotes the m × n all-ones matrix.
If the sizes are clear from the context, we omit the subscripts.

Given two matrices A,B ∈ Rn×n we let A ◦ B ∈ Rn×n denote their Hadamard
product, with entries (A ◦ B)ij = AijBij for i, j ∈ [n]. It is known that A ⪰ 0 and
B ⪰ 0 imply A◦B ⪰ 0, which follows from the fact that the matrix A◦B is a principal
submatrix of the Kronecker product A⊗B.

Throughout, we let u1, . . . , um denote the standard basis of Rm, where all entries
of ui are 0 except its ith entry, which is equal to 1. We let Sym(n) denote the set
of permutations of the set [n]. When we take the factorial α! of some integer-valued
vector α ∈ Nn, we mean the product α! := α1! · · ·αm!.

11.1. Introduction

The polynomial class of interest. Given integers n,L ≥ 2 we set V = [n]
and E = {e ⊆ V : |e| = L}, so that (V,E) can be seen as the complete L-uniform
hypergraph on n elements. We set m := |E| =

(
n
L

)
, where we omit the explicit

dependence on n,L to simplify notation. Denote the standard simplex in Rm as
follows:

∆m =
{
x = (xe)e∈E ∈ Rm : x ≥ 0,

∑
e∈E

xe = 1
}
,

and denote the barycenter of ∆m by x∗ = 1
m (1, . . . , 1).

Given an integer d ≥ 2 we consider the m-variate homogeneous degree d polyno-
mial

fd(x) =
∑

(e1,...,ed)∈Ed

d∏
i=1

xei

|e1 ∪ . . . ∪ ei|
. (11.1)

We wish to optimize fd over the simplex, i.e.,

f∗
d := min

x∈∆m

fd(x).

163
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In [29], it is conjectured that the polynomial fd attains its minimum over the simplex
at the barycenter.

Conjecture 11.1. For any integers n,L, d ≥ 2, f∗
d = fd(x∗).

We partially prove this conjecture by showing that a class of related polynomials
all attain their minimum at the barycenter. We now describe the easier-to-analyze
class of polynomials related to fd.

An easier-to-analyze related class of polynomials. For any integer d ≥ 2,
consider the polynomial

pd(x) :=
∑

(e1,...,ed)∈Ed

1

|e1 ∪ . . . ∪ ed|
xe1 · · ·xed . (11.2)

Note that, for degree d = 2, we have f2 = 1
Lp2. In Chapter 13, we will see that the

Hessian of the polynomial pd enters in some way as a component of the Hessian of the
polynomial fd. This forms a natural motivation for the study of the polynomials pd.
We now claim that the polynomial pd attains its global minimum over the simplex at
the barycenter.

Theorem 11.2. For any integers n,L, d ≥ 2,

pd(x∗) = min
x∈∆m

pd(x).

Proof. See Chapter 12. □

Thus, it follows that f∗
d = fd(x∗) when d = 2 and L ≥ 2. As a further partial

result, we give the next theorem, which we prove in Chapter 13.

Theorem 11.3. For n ≥ 2, d = 3 and L = 2,

fd(x∗) = min
x∈∆m

fd(x).

The key ingredient in proving Theorems 11.2 and 11.3 is showing that pd and fd
are convex by proving that their respective Hessians are PSD over the simplex ∆m.
We exploit symmetry properties inherent in pd and fd and use Terwilliger algebras to
show that the Hessians are PSD.

Example 11.4. Instances of pd with L = 2 and d = 1, 2, 3. As an illustration
of what these polynomials look like, let us consider the polynomial pd for edge size
L = 2. Given a sequence e = (e1, . . . , ed) ∈ Ed, set ce := 1/|e1 ∪ . . . ∪ ed| as a
short-hand for the coefficients in the definition (11.2) of the polynomial pd.

We need to enumerate the possible configurations of d-tuples of edges, i.e., the dis-
tinct multigraphs with d edges. Note that their number is given by the OEIS sequence
A050535 [1], which takes the values 1, 3, 8, 23, 66, 212, 686 for d = 1, 2, 3, 4, 5, 6, 7.

For d = 1, we have p1(x) = 1
2

∑
e∈E xe.

For d = 2 we have

p2(x) =
1

2

∑
e∈E

x2
e +

1

3

∑
(e1,e2)∈E2:

|e1∪e2|=3

xe1xe2 +
1

4

∑
(e1,e2)∈E2:

|e1∪e2|=4

xe1xe2 .

We show in Figure 1 the three possible patterns for pairs of edges e = (e1, e2) and the
corresponding coefficients ce.
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ce = 1
2

ce = 1
3

ce = 1
4

Figure 1. Edge pair patterns for d = 2, L = 2

In the same way, for d ≥ 3, pd(x) =
∑2d

k=2
1
k qd,k(x), where the summand qd,k(x)

is a summation over all d-tuples of edges with a given pattern, depending on the
cardinality of their union

qd,k(x) =
∑

(e1,...,ed)∈Ed:

|e1∪...∪ed|=k

xe1 · · ·xed .

For the case d = 3, we need to consider the values k = 2, 3, 4, 5, 6. In Figure 2 we show
all eight possible patterns of triplets of edges e = (e1, e2, e3) and the corresponding
coefficients ce that contribute to the summands q3,k.

ce = 1
2

ce = 1
3

ce = 1
3

ce = 1
4

ce = 1
4

ce = 1
4

ce = 1
5

ce = 1
6

Figure 2. Edge pair patterns for d = 3, L = 2

11.2. Motivation from queueing theory

The polynomials fd are motivated by a problem in queueing theory. The conjec-
ture that these polynomials attain their minimum at the uniform probability distri-
bution was presented to us by the authors of [29], who use an affirmative answer to
this question to establish a result about the asymptotic behavior of the job occupancy
in a parallel-server system with redundancy scheduling in the light-traffic regime.

In what follows, we will give only a high-level sketch of this connection, and we
refer to the paper [29] for a detailed exposition and an extended review of the relevant
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literature.

A crucial mechanism that has been considered to improve the performance of
parallel-server systems in queueing theory is redundancy scheduling. The key fea-
ture of this policy is that several replicas are created for each arriving job, which
are then assigned to distinct servers (and then, as soon as the first of these replicas
completes (or enters) service on a server, the remaining ones are stopped). The un-
derlying idea is that sending replicas of the same job to several servers will increase
the chance of having shorter queueing times. This, however, must be weighed against
the risk of wastage of capacity. An important question is thus to assess the impact
of redundancy scheduling policies. While most papers in the literature on redundant
scheduling assume that the set of servers to which the replicas are sent is selected
uniformly at random, the paper [29] considers the case when the set of servers is
selected according to a given probability distribution. It investigates the impact of
this probability distribution on the system’s performance. It is shown that while the
impact remains relatively limited in the heavy-traffic regime, the system occupancy is
much more sensitive to the selected probability distribution in the light-traffic regime.

We will now only introduce a few elements of the model considered in [29] so
that we can make the link to the polynomials studied in this part of the thesis. We
keep our presentation high level and refer to [29] for details. The setting is as follows.
There are n parallel servers with average speed µ. Jobs arrive as a Poisson process of
rate nλ for some λ > 0. When a job arrives, L replicas are created that are sent —
with probability xe — to a subset e ⊆ [n] of L servers. Here, L ≥ 2 is an integer and
x = (xe)e∈E is a probability distribution on the set E = {e ⊆ [n] : |e| = L} of possible
collections of L servers. As noted in [29], this can be seen as selecting an edge e ∈ E
with probability xe in the uniform hypergraph (V = [n], E) (with edge size L).

An important performance parameter is the system occupancy at time t, which
is represented by a vector (e1, ..., eM ) ∈ EM , where M = M(t) is the total number of
jobs in the system and ei ∈ E is the collection of servers to which the replicas of the ith

longest job in the system have been assigned. We need three modeling assumptions.
First, one needs to assume suitable stability conditions. Second, all servers should
have the same speed µ. Third, the service requirements of the jobs are assumed to be
independent and exponentially distributed with unit mean. Under these assumptions,
the stationary distribution of the occupancy of the above edge selection is given by

π(e1, . . . , eM ) = C

M∏
i=1

nλxei

µ|e1 ∪ . . . ∪ ei|

for some constant C > 0 ([69], see relation (3) in [29]). Following [29], let Qλ(x) be
a random variable with the stationary distribution of the system occupancy when the
edge selection is given by the probability vector x = (xe)e∈E . It then follows that, for
any integer d ≥ 1, the probability that d jobs are present in the system is given by

P{Qλ(x) = d} =
∑

(e1,...,ed)∈Ed

π(e1, . . . , ed).
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Hence, P{Qλ(x) = 0} = C and

P{Qλ(x) = d} = P{Qλ(x) = 0}
(nλ

µ

)d ∑
(e1,...,ed)∈Ed

d∏
i=1

xei

|e1 ∪ . . . ∪ ei|
.

(See relation (11) in [29]). Therefore, P{Qλ(x) = d} is the polynomial fd(x) (up to a
scalar multiple). In [29], the light-traffic regime is considered, i.e., when λ ↓ 0, in the
case L = 2. By doing a Taylor expansion, one can see that

P{Qλ(x) = 0} = 1 + o(1), P{Qλ(x) ≥ d} =
(nλ

µ

)d
fd(x) + o(λd)

(see relation (13) in [29]). Therefore, with x∗ = (1, . . . , 1)/|E| denoting the uniform
probability vector, we have

lim
λ↓0

P{Qλ(x∗) ≥ d}
P{Qλ(x) ≥ d}

= lim
λ↓0

fd(x∗) + o(1)

fd(x) + o(1)
.

Hence, if the polynomial fd attains its minimum at the uniform distribution x∗, then
one has

lim
λ↓0

P{Qλ(x∗) ≥ d}
P{Qλ(x) ≥ d}

≤ 1.

This indicates that in the light-traffic regime, the system occupancy is minimized when
selecting uniformly at random the assignments to the servers of the job replicas. This
thus motivates the task of showing

fd(x∗) = min
x∈∆m

fd(x),

for all integers n ≥ 2, d = 3 and L = 2.

11.3. Preliminaries on the Terwilliger algebra

A crucial ingredient in proving H(pd) ⪰ 0 on ∆m will be showing that H(pd)
decomposed into matrices that (after some reduction) lie in the Terwilliger algebra of
the binary Hamming cube. We begin with introducing the definition of the Terwilliger
algebra An of the binary Hamming cube on n elements.

Definition 11.5 (Terwilliger algebra of the binary Hamming cube). Let
P([n]) denote the collection of all subsets of the set [n]. For every triple of nonnegative
integers i, j, t we define the 2n × 2n matrix Dt

i,j, indexed by P([n]), with entries

(
Dt

i,j

)
S,T

=

{
1 if |S| = i, |T | = j, |S ∩ T | = t,

0 else
.

for sets S, T ∈ P([n]). Then, the Terwilliger algebra of the binary Hamming cube,
denoted by An, is defined as the (real) span of all these matrices:

An =
{ ∑

i,j,t≥0

xt
i,jD

t
i,j : xt

i,j ∈ R
}
.

It is easy to see that An is a matrix ∗-algebra, i.e., An is closed under taking
linear combinations, matrix multiplications, and transposition. One way to see this is
by realizing that the matrices Dt

i,j are exactly the indicator matrices of the orbits of
pairs in P([n])×P([n]) under the element-wise action of the symmetric group Sym(n).
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All matrix ∗-algebras can be block-diagonalized by Artin-Wedderburn theory (see
[166], see also [13] for a proof).

Theorem 11.6 (Artin-Wedderburn). Let A be a matrix ∗-algebra. Then, there
exist nonnegative integers d and m1, . . . ,md and a ∗-algebra isomorphism

φ : A →
d⊕

k=1

Cmk×mk .

The important property here is that φ is an algebra isomorphism. Hence, we know
that this isomorphism maintains positive semidefiniteness: for any matrix A ∈ A, we
have A ⪰ 0 ⇐⇒ φ(A) ⪰ 0. Moreover, the matrix φ(A) is block-diagonal, with d
diagonal blocks of sizes m1, . . . ,md. This is a crucial property that can be exploited
to get a more efficient way of encoding positive semidefiniteness of matrices in A.

The explicit block-diagonalization of the Terwilliger algebra An was given by
Schrijver [144].

Theorem 11.7 (Schrijver [144]). The Terwilliger algebra An can be block-diagonalized
into ⌊n

2 ⌋+ 1 blocks, of sizes mk = n− 2k + 1 for k = 0, . . . , ⌊n
2 ⌋. The algebra isomor-

phism φ sends the matrix

A =

n∑
i,j,t=0

xt
i,jD

t
i,j

to the block-matrix φ(A) = ⊕⌈n/2⌉
k=0 Bk, where the matrix Bk ∈ Rmk×mk is given by

Bk :=

((
n− 2k

i− k

)− 1
2
(
n− 2k

j − k

)− 1
2 ∑

t

βt
i,j,kx

t
i,j

)n−k

i,j=k

(11.3)

for k = 0, 1, . . . , ⌊n
2 ⌋. Here, for any nonnegative integers i, j, t, k, we set

βt
i,j,k :=

n∑
ℓ=0

(−1)ℓ−t

(
ℓ

t

)(
n− 2k

n− k − ℓ

)(
n− k − ℓ

i− ℓ

)(
n− k − ℓ

j − ℓ

)
. (11.4)

In particular, we have
n∑

i,j,t=0

xt
i,jD

t
i,j ⪰ 0 ⇐⇒ Bk ⪰ 0 for k = 0, 1, . . . , ⌊n

2
⌋. (11.5)
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CHAPTER 12

Convexity of pd

The crux for proving Theorem 11.2 is showing that the polynomials pd are convex
over the standard simplex. We explain why this is the case in Lemma 12.1, after
which we devote the rest of this chapter to proving convexity by showing that the
Hessians H(pd) are PSD. First, in a special case (Section 12.1), then in the general
case (Section 12.2), which is significantly more technical.

Convexity implies optimality at the barycenter. To show pd is optimal
at the barycenter x∗ of ∆m, it suffices to show that pd is convex over ∆m. This relies
on a symmetry argument that exploits the fact that the polynomial pd is invariant
under the permutations of the edge set E.

Lemma 12.1. Assume the polynomial pd is convex on the simplex ∆m. Then

pd(x∗) = min
x∈∆m

pd(x).

Proof. For any tuple (e1, . . . , ed) ∈ Ed, the coefficient of the monomial xe1 · · ·xed

in pd is 1/|e1 ∪ . . .∪ ed|, which depends only on the cardinality of the set e1 ∪ . . .∪ ed.
Any permutation σ ∈ Sym(n) of [n] induces a permutation of E (still denoted σ)

by setting σ(e) = {jσ(1), . . . , jσ(L)} for e = {j1, . . . , jL} ∈ E. In turn, σ acts on ∆m

by setting σ(x) = (xσ(e))e∈∆m
for x = (xe)e∈E ∈ ∆m. Observe that pd is invariant

under this action of permutations σ ∈ Sym(n). Indeed, for any σ ∈ Sym(n), we have

σ(pd)(x) = pd(σ(x)) =
∑

(e1,...,ed)∈Ed
1

|e1∪...∪ed|xσ(e1) · · ·xσ(ed)

=
∑

(f1,...,fd)∈Ed
1

|σ−1(f1)∪...∪σ−1(fd)|xf1 · · ·xfd

=
∑

(f1,...,fd)∈Ed
1

|f1∪...∪fd|xf1 · · ·xfd

= pd(x).

Thus for any global minimizer x̃ ∈ ∆m of pd, and any permutation σ ∈ Sym(n),
the permuted point σ(x̃) belongs to ∆m and pd(x̃) = pd(σ(x̃)). Consider the full
symmetrization of x̃, i.e.,

xsym :=
1

n!

∑
σ∈Sym(n)

σ(x̃),

and observe that xsym ∈ ∆m and xsym = x∗ = (1/m)(1, . . . , 1). Hence, x∗ is a global
minimizer of pd in ∆m because by convexity and the above we have

pd(x∗) = pd(xsym) ≤ 1

n!

∑
σ∈Sym(n)

pd(σ(x̃)) = pd(x̃) = min
x∈∆m

pd(x). □

169
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We are left with the task of showing that the polynomial pd is convex over the
simplex ∆m or, equivalently, that its Hessian matrix is PSD, i.e.,

H(pd)(x) =
( ∂2

∂xe∂xf
pd(x)

)
e,f∈E

⪰ 0 (x ∈ ∆m).

12.1. If d = 2 and L = 2, then pd is convex

Consider the polynomial

p2(x) =
∑

e,f∈E

1

|e ∪ f |
xexf ,

where E = {e ⊆ [n] : |e| = 2}. We show that the Hessian matrix H(p2) of p2 is PSD.
Observe that H(p2) = 2M , where M is the matrix indexed by E with entries

Me,f =
1

|e ∪ f |
for e, f ∈ E. (12.1)

The matrix M can be expressed as a linear combination of the matrices A2, A3, A4,
which are also indexed by E, and have entries

(As)e,f =

{
1 if |e ∪ f | = s,
0 otherwise.

(s = 2, 3, 4).

Some inspection will reveal that A2 = I and A2 + A3 + A4 = J . Observe now that

M =
1

2
I +

1

3
A3 +

1

4
A4 =

1

4
I +

1

12
A3 +

1

4
J =

1

12
I +

1

4
J +

1

12
(A3 + 2I). (12.2)

Thus, if we can show that A3 + 2I ⪰ 0, then M ⪰ 0 follows, and p2 is convex. The
reader can now verify by direct inspection that A3 + 2I = ΓnΓT

n ⪰ 0, where

Γn =
(
|e ∩ {i}|

)
e∈E, i∈[n]

.

Remark 12.2. Note that the matrices A2 = I, A3, A4 generate the Bose-Mesner
algebra of the Johnson scheme Jn

2 , with length n and weight 2, and thus the matrix
M belongs to this Bose-Mesner algebra (see [50] for details on the Johnson scheme).
For arbitrary degree d ≥ 3 and edge size L = 2, one could proceed to show that the
Hessian matrix of pd is convex by using a similar symmetry reduction based on the
Bose-Mesner algebra of the Johnson scheme Jp

2 for suitable values of p. However, for
general edge size L ≥ 3, we will need to use a richer algebra, namely the Terwilliger
algebra of the Hamming cube. Hence, in the rest of the section, we will treat the
general case d ≥ 2 and L ≥ 2.

12.2. If d ≥ 2 and L ≥ 2, then pd is convex over the simplex

Let E = {e ⊆ [n] : |e| = L}, d ≥ 2, and L ≥ 2. We repeat the definition of
polynomial pd from relation (11.2):

pd(x) =
∑

(ei1 ,...,eid )∈Ed

1

|ei1 ∪ . . . ∪ eid |
xei1

· · ·xeid
. (12.3)
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12.2.1. Characterization of the coefficients of the polynomial pd. We
begin by getting the explicit coefficients of the polynomial pd expressed in the standard
monomial basis. The basic fact we will now use is that the coefficients depend only
on the set of distinct edges that are present in the tuple (ei1 , . . . , eid) ∈ Ed and not
on their multiplicities.

Recall that m = |E| and label all the edges as e1, . . . , em so that E = {e1, . . . , em}.
For a d-tuple e := (ei1 , . . . , eid) ∈ Ed with i1, . . . , id ∈ [m] define the m-tuple

α(e) =
(∣∣{j ∈ [d] : ij = ℓ

}∣∣)
ℓ∈[m]

∈ Nm
d .

Then we have |α(e)| = d and

xei1
· · ·xeid

= xα(e)1
e1 · · ·xα(e)m

em = xα(e).

Moreover, all d-tuples e = (ei1 , . . . , eid) ∈ Ed with supp(α(e)) = supp(α), for some
fixed α ∈ Nm

d , have the same associated coefficients, namely,

cα :=
1

|ei1 ∪ . . . ∪ eid |
. (12.4)

As an example, for d = n = m = 3, α = (1, 0, 1):

cα =
1

|e1 ∪ e3 ∪ e1|
=

1

|e3 ∪ e1 ∪ e1|
.

Lemma 12.3. The polynomial pd from (12.3) can be reformulated as follows:

pd(x) =
∑

α∈Nm
d

cα
d!

α!
xα. (12.5)

Proof. Using the definition of the coefficients cα, we can rewrite pd as

pd(x) =
∑

α∈Nm
d

( ∑
e=(ei1

,...,eid
)∈Ed:

α(e)=α

1

|ei1 ∪ . . . ∪ eid |

)
xα =

∑
α∈Nm

d

( ∑
e∈Ed:α(e)=α

cα

)
xα,

which is equal to
∑

α∈Nm
d
cα

d!
α!x

α. Here, for this last equality, we use the monomial

theorem, which claims the identity(
m∑
i=1

xi

)d

=
∑

α∈Nm
d

d!

α!
xα,

or, equivalently, the number of d-tuples e ∈ Ed for which α(e) = α is equal to d!
α! . □

12.2.2. Decomposing the Hessian of pd.

Lemma 12.4. The Hessian of the polynomial pd is the matrix

H(pd)(x) :=
( ∂2pd(x)

∂xei∂xej

)m
i,j=1

=
∑

γ∈Nm
d−2

d!

γ!
xγMγ ,

where, for any γ ∈ Nm
d−2, Mγ := (cγ+ui+uj

)mi,j=1.
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Proof. The result follows from looking at the partial derivatives of pd

∂pd(x)

∂xei

=
∑

α∈Nm
d :αi≥1

d!

(α− ui)!
cαx

α−ui =
∑

β∈Nm
d−1

d!

β!
cβ+ui

xβ ,

and the second-order partial derivatives

∂2p(x)

∂xej∂xei

=
∑

β∈Nm
d−1:βj≥1

d!

(β − uj)!
cβ+ui

xβ−uj =
∑

γ∈Nm
d−2

cγ+ui+uj

d!

γ!
xγ .

□

Hence, if we can show that the matrices Mγ in Lemma 12.4 are all PSD, then it
follows directly that H(pd)(x) ⪰ 0 for any x in the standard simplex.

We proceed with two successive PSD preserving reductions of Mγ into smaller
matrices. After the final reduction, these smaller matrices will be shown to be block-
diagonalizeable as a consequence of belonging to the Terwilliger algebra. The resulting
block-diagonalized matrices will be shown to be PSD by giving their explicit Cholesky
factorization.

First reduction. For any integer-valued vector γ ∈ Nm, define its (edge) support
as the set Sγ = {e ∈ E : γe ≥ 1} and let

Wγ =
⋃

e∈Sγ

e

denote the subset of elements of V = [n] that are covered by some edge in the support
of γ. Then, for any i, j ∈ [m], the support of γ + ui + uj is the set Sγ ∪ {ei, ej} and
we have

(Mγ)ei,ej = cγ+ui+uj
=

1

|Wγ ∪ ei ∪ ej |
.

Hence the matrix Mγ depends only on the set Wγ (and not on the specific choice of
the sequence γ). This justifies defining the matrices

MW =
( 1

|W ∪ e ∪ f |

)
e,f∈E

(12.6)

for any set W ⊆ V = [n]. Hence, for any γ ∈ Nm
d−2, we have:

Mγ = MWγ
. (12.7)

Summarizing, we have shown the following result:

Lemma 12.5. Assume that the matrices MW from (12.6) are positive semidefinite
for all W ⊆ V with |W | ≥ L (if d ≥ 3) and |W | ≤ L(d− 2). Then the polynomial pd
is convex over the standard simplex.

If d = 2, then there is only one matrix to check, namely the matrix M∅ (for
W = ∅). Note that the matrix M∅ coincides with the matrix in (12.1), so we already
know it is positive semidefinite when L = 2. However, if d ≥ 3, one needs to check all
the matrices of the form MW in (12.6).
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Second reduction. We now link these matrices MW to the Terwilliger algebra.
Observe that in the matrix MW , there are identical rows and columns, and the second
reduction consists simply in removing duplicate rows and columns. Set p := |W | and
U := V \W , so that |U | = n− p. In addition, set

F := {e \W : e ∈ E} = {e ⊆ U : L− p ≤ |e| ≤ L}, (12.8)

which consists of the intersections with U of the edges in E. Then, F = E when
p = 0 and the condition |e| ≥ L − p is redundant when p ≥ L. Now we consider the
following matrix Mp, which is indexed by F , with entries

(Mp)e,f =
1

p + |e ∪ f |
for e, f ∈ F. (12.9)

Note that for p = 0 the matrix M0 coincides with the matrix M∅ in (12.6) (and
with the matrix in (12.1)). The next lemma shows that Mp is obtained from MW by
deleting duplicate rows and columns.

Lemma 12.6. Let L ≥ 2 and d ≥ 2. Consider the matrices MW in (12.6) and
Mp in (12.9). The following assertions are equivalent:

(i) MW ⪰ 0 for all W = e1 ∪ . . . ∪ ed−2 with e1, . . . , ed−2 ∈ E.
(ii) Mp ⪰ 0 for all p ≤ L · (d− 2) such that p ≥ L if d ≥ 3.

Proof. If d = 2, the result holds since M0 = M∅ as observed above. So, assume
now d ≥ 3. Let W = e1 ∪ . . . ∪ ed−2, where e1, . . . , ed−2 ∈ E, and set p = |W |.
Consider the partition of the set E into

E =
L⋃

i=0

Ei, Ei := {e ∈ E : |e \W | = i}.

With respect to this partition of its index set, the matrix MW has the following
block-form:

MW =


M0,0

W M0,1
W · · · M0,L

W

M1,0
W M1,1

W · · · M1,L
W

...
...

. . .
...

ML,0
W ML,1

W · · · ML,L
W

 ,

where the block M i,j
W has its rows indexed by Ei and its columns by Ej . Note that,

if two edges e, e′ ∈ E satisfy e \W = e′ \W , then the two rows of MW indexed by e
and e′ coincide: for any f ∈ E we have(

M i,j
W

)
e,f

=
1

|W | + |(e ∪ f) \W |
=

1

|W | + |(e′ ∪ f) \W |
=
(
M i,j

W

)
e′,f

.

In fact, after removing these duplicate rows (and columns) and keeping only one copy
for each subset of U = V \W , we obtain the matrix

M0,0
p M0,1

p · · · M0,L
p

M1,0
p M1,1

p · · · M1,L
p

...
...

. . .
...

ML,0
p ML,1

p · · · ML,L
p

 ,
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which coincides with the matrix Mp in (12.9). Indeed, the above matrix is indexed
by the set F in (12.8) and its block-form is with respect to the partition

F =
L⋃

i=0

Fi, Fi := {e ⊆ U : |e| = i}.

So the block M i,j
p has its rows indexed by Fi, its columns indexed by Fj , and its

entries are

(M i,j
p )e,f =

1

p + |e ∪ f |
=

1

p + i + j − |e ∩ f |
for e ∈ Fi, f ∈ Fj . (12.10)

As the matrix Mp arise from MW by removing its duplicate rows and columns, it is
clear that

MW ⪰ 0 ⇐⇒ Mp ⪰ 0.

This concludes the proof. □

The next section shows that the matrices Mp are positive semidefinite for all
0 ≤ p ≤ n by exploiting their link to Terwilliger algebras.

12.2.3. The matrices Mp are PSD. Fix an integer 0 ≤ p ≤ n and consider
the matrix Mp in (12.9), which has a block-form with blocks as in (12.10). We will
show that Mp ⪰ 0 because it belongs to the Terwilliger algebra An−p (introduced in
Section 11.3).

Observe that relation (12.10) provides the explicit correspondence between the
blocks M i,j

p of Mp and the generating matrices Dt
i,j of the algebra An−p:

Mp =
L∑

i=0

L∑
j=0

min{i,j}∑
t=0

1

p + i + j − t
Dt

i,j =
L∑

i=0

L∑
j=0

min{i,j}∑
t=0

xt
i,jD

t
i,j ,

after setting

xt
i,j =

1

p + i + j − t
. (12.11)

Showing that Mp ⪰ 0. Since Mp ∈ An−p we can use Theorem 11.7 to show that
Mp ⪰ 0 provided we can show that Bk ⪰ 0, where the matrices Bk are defined in
(11.3), with n now replaced with n− p.

Fix the integers p and k. We now proceed to explicitly show that Bk ⪰ 0. To
simplify the notation we introduce the following parameters

a(i) :=

(
n− p− 2k

i− k

)− 1
2

, b(ℓ, i) :=

(
n− p− k − ℓ

i− ℓ

)
, c(ℓ) :=

(
n− p− 2k

n− p− k − ℓ

)
,

which are defined for any integers i, ℓ ∈ Z. Note that we may omit the obvious
bounding conditions on i and ℓ since the corresponding parameters are zero if these
conditions are not satisfied; for instance, a(i) = 0 if i < k and b(ℓ, i) = 0 if ℓ > i.
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Using this new notation we have that

Bk =

a(i)a(j)

min{i,j}∑
t=0

βt
i,j,kx

t
i,j

n−p−k

i,j=k

, (12.12)

where

βt
i,j,k :=

n−p∑
ℓ=0

(−1)ℓ−t

(
ℓ

t

)
c(ℓ)b(ℓ, i)b(ℓ, j). (12.13)

Lemma 12.7. We have

min{i,j}∑
t=0

βt
i,j,kx

t
i,j =

min{i,j}∑
ℓ=0

c(ℓ)b(ℓ, i)b(ℓ, j)

∫ 1

0

g(ℓ, z)zi+jdz,

where g(ℓ, z) := zp−1( 1−z
z )ℓ for z ∈ (0, 1].

Proof. First, we exchange the summations in t and ℓ to obtain

min{i,j}∑
t=0

βt
i,j,kx

t
i,j =

min{i,j}∑
ℓ=0

c(ℓ)b(ℓ, i)b(ℓ, j)

(
ℓ∑

t=0

1

p + i + j − t
(−1)ℓ−t

(
ℓ

t

))
. (12.14)

Observe that, for any integer i ≥ 1, we have 1
i =

∫ 1

0
zi−1dz, which permits us to

give an integral reformulation for the scalars xt
i,j in (12.11) as follows:

1

p + i + j − t
=

∫ 1

0

zp+i+j−t−1dz.

Using this integral representation we can reformulate the inner summation appearing
in (12.14) as follows:

ℓ∑
t=0

1

p + i + j − t
(−1)ℓ−t

(
ℓ

t

)
=

ℓ∑
t=0

(−1)ℓ−t

(
ℓ

t

)∫ 1

0

zp+i+j−t−1dz

=

∫ 1

0

zp+i+j−1(−1)ℓ

(
ℓ∑

t=0

(
−1

z

)t(
ℓ

t

))
dz

(∗)
=

∫ 1

0

zp+i+j−1(−1)ℓ
(

1 − 1

z

)ℓ

dz

=

∫ 1

0

zp+i+j−1(−1)ℓ
(
z − 1

z

)ℓ

dz

=

∫ 1

0

zp−1

(
1 − z

z

)ℓ

zi+jdz =

∫ 1

0

g(ℓ, z)zi+jdz.

The equality marked with (*) follows from use of the binomial theorem. This con-
cludes the proof. □

Lemma 12.8. We have Bk ⪰ 0.
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Proof. Note that in the result of Lemma 12.7, since b(ℓ, i)b(ℓ, j) = 0 if ℓ >
min{i, j}, we may replace the summation on ℓ from 0 ≤ ℓ ≤ min{i, j} to 0 ≤ ℓ ≤ n−p.
This implies:

Bk =
(
a(i)a(j)

n−p∑
t=0

βt
i,j,kx

t
i,j

)n−p−k

i,j=k

=

∫ 1

0

( n−p∑
ℓ=0

g(ℓ, z)c(ℓ) (zia(i)b(ℓ, i))︸ ︷︷ ︸
=:h(ℓ,z,i)

(zja(j)b(ℓ, j))︸ ︷︷ ︸
=:h(ℓ,z,j)

)n−p−k

i,j=k
dz

=

n−p∑
ℓ=0

∫ 1

0

g(ℓ, z)c(ℓ)︸ ︷︷ ︸
≥0

(
h(ℓ, z, i)h(ℓ, z, j)

)n−p−k

i,j=k︸ ︷︷ ︸
⪰0

dz ⪰ 0

Here, we used that, for any ℓ ∈ [0, n− p], the function g(ℓ, z) ≥ 0 on (0, 1]. □

Concluding the proof that pd is convex. We summarize the chain of equiv-
alences we have built with the following schematic:

H(pd)(x) ⪰ 0
Lem. 12.4⇐⇒ Mγ ⪰ 0 (γ ∈ Nm

d−2)

(12.7)⇐⇒ MWγ
⪰ 0 (γ ∈ Nm

d−2)

Lem. 12.6⇐⇒ Mp ⪰ 0 (p ≤ L · (d− 2))

Th.11.7⇐⇒ Bk ⪰ 0 (k = 0, 1, . . . , ⌊n
2
⌋),

where, the final statement, i.e., Bk ⪰ 0 (k = 0, 1, . . . , ⌊n
2 ⌋), is valid via Lemma 12.8.

Thus, pd is convex over the simplex, and Theorem 11.2 is proved.
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CHAPTER 13

Investigating the polynomials fd

We consider the second class of polynomials fd from (11.1), namely

fd(x) =
∑

(e1,...,ed)∈Ed

d∏
i=1

xei

|e1 ∪ . . . ∪ ei|
.

Recall our task was to decide whether

min
x∈∆m

fd(x)
?
= fd(x∗),

where x∗ = 1
m (1, . . . , 1) is the barycenter of the simplex ∆m. This statement is true if

fd is convex over ∆m. To see this, observe that Lemma 12.1 can easily be extended to
the polynomial fd. So, the tasks shift to proving the convexity of fd over the simplex.

Conjecture 13.1. For any integers n,L, d ≥ 2, the polynomial fd is convex over
the simplex ∆m.

Note that if this conjecture holds true, then, via a similar argument to what we
used in Lemma 12.1, Conjecutre 11.1 follows. For degree d = 2, we have f2 = 1

Lp2,
and thus we know from Theorem 11.2 that f2 is convex. In Section 13.1, we prove
that Conjecture 13.1 holds for degree d = 3 and edge size L = 2. In Section 13.2,
we provide numerical justification for why we think Conjecture 13.1 holds for more
values of n,L, and d.

In what follows, we decompose in the monomial basis the Hessian H(fd) of fd
into a family of well-structured polynomial matrices Qγ (see Lemma 13.2). Then we
give a recursive reformulation of the matrices Qγ linking them to the matrices Mγ

(from Lemma 12.4) that constitute the Hessian H(pd) of pd (see Lemma 13.5). In
Section 13.1, we show that the matrices Qγ are PSD in the case when d = 3 and
L = 2, thereby proving Conjecture 13.1 for this special case.

Understanding the general case (d > 3 and L > 2) is technically involved. New
tools for exploiting the symmetry structure in the matrices Qγ are required as the
Terwilliger algebra does not capture the structure. This goes beyond the scope of this
thesis, and we leave it for further research. In recent work, Polak [131] has carried
out a symmetry reduction, which enables him to show that Conjecture 13.1 holds in
the case when d ≤ 8 and L = 2.

177
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13.1. Computing the Hessian of fd

We begin with expressing the polynomial fd in the standard monomial basis:

fd(x) =
∑

α∈Nm
d

xα
∑

e=(e1,...,ed)∈Ed

α(e)=α

d∏
i=1

1

|e1 ∪ . . . ∪ ei|
=
∑

α∈Nm
d

bαx
α,

where we set

bα :=
∑

e=(e1,...,ed)∈Ed

α(e)=α

d∏
i=1

1

|e1 ∪ . . . ∪ ei|
. (13.1)

Lemma 13.2. The Hessian H(fd) of the polynomial fd is given by

H(fd)(x) =
∑

γ∈Nm
d−2

xγQγ , (13.2)

where, for each γ ∈ Nm
d−2, the symmetric m×m matrix Qγ is defined entry-wise by

(Qγ)ij :=

{
(γi + 1)(γj + 1)bγ+ui+uj i ̸= j
(γi + 1)(γi + 2)bγ+2ui i = j

.

Proof. Direct verification. □

A recursive reformulation for the coefficients of the polynomial fd.
Fix α ∈ Nm

d . Looking at the coefficients bα, we see there are d!
α! distinct tuples e

such that α(e) = α. For any such sequence e = (ei1 , . . . , eid) with i1, . . . , id ∈ [m],
α = α(e) means that, for any ℓ ∈ [m], αℓ is the number of occurrences of ℓ within the
multiset {i1, . . . , id}; so αℓ ≥ 1 if ℓ ∈ {i1, . . . , id} and αℓ = 0 if ℓ ̸∈ {i1, . . . , id}.

For instance, for e = (e1, e2, e3, e2, e1), d = 5, m = 4, we have (i1, . . . , i5) =
(1, 2, 3, 2, 1) and α(e) = (2, 2, 1, 0).

Using this fact, we can rewrite bα to be a summation over [m] as opposed to
summing over edge tuples e.

Lemma 13.3. For any α ∈ Nm
d we have

bα = cα
∑

k∈[m]:αk≥1

bα−uk
,

where cα was defined in (12.4).
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Proof. To reformulate bα we exploit the fact that bα enjoys some invariance
property under permutations of [d], namely

bα =
∑

e=(ei1 ,...,eid )∈Ed:

α(e)=α

d∏
k=1

1

|ei1 ∪ . . . ∪ eik |

=
1

d!

∑
σ∈Sym(d)

∑
e=(ei1 ,...,eid )∈Ed:

α(e)=α

d∏
k=1

1

|eiσ(1)
∪ . . . ∪ eiσ(k)

|

=
1

d!

∑
e=(ei1 ,...,eid )∈Ed

α(e)=α

∑
σ∈Sym(d)

d∏
k=1

1

|eiσ(1)
∪ . . . ∪ eiσ(k)

|︸ ︷︷ ︸
=:S

. (13.3)

Observe that the inner summation S in (13.3) does not depend on the choice of the
sequence e such that α(e) = α; thus we may consider it fixed, denoted as (ei1 , . . . , eid).
Since there are d!

α! possible choices for selecting this sequence, using relation (13.3),
we can reformulate bα as follows:

bα =
1

d!

d!

α!

∑
σ∈Sym(d)

d∏
k=1

1

|eiσ(1)
∪ . . . ∪ eiσ(k)

|
=

1

α!

∑
σ∈Sym(d)

d∏
k=1

1

|eiσ(1)
∪ . . . ∪ eiσ(k)

|
.

Next, we pull out the factor 1
|ei1∪...∪eid |

= cα which occurs for k = d and get

bα =
cα
α!

d∑
r=1

∑
σ∈Sym(d):σ(d)=r

d−1∏
k=1

1

|eiσ(1)
∪ . . . ∪ eiσ(k)

|

=
cα
α!

d∑
r=1

bα−uir
(α− uir )!

= cα

d∑
r=1

bα−uir

αir

(∗)
= cα

∑
k∈[m]:αk≥1

bα−uk
.

Here, in the last equality marked (*), we use the fact that αk of the elements in the
multiset {i1, . . . , id} are equal to k. □

We now give a recursive reformulation for the matrices Qγ . Begin by defining a

new parameter b̂α := α! bα, for which we have, via Lemma 13.3, that

b̂α = α! bα = α! cα
∑

k:αk≥1

bα−uk
= α! cα

∑
k:αk≥1

b̂α−uk

α− uk!
= cα

∑
k:αk≥1

αk b̂α−uk
.

Lemma 13.4. For any γ ∈ Nm
d−2 we have Qγ = 1

γ! (̂bγ+ui+uj
)mi,j=1.

Proof. By direct verification, we have, for i ̸= j that

(Qγ)ij = (γi+1)(γj+1)bγ+ui+uj = b̂γ+ui+uj (γi+1)(γj+1)/(γ+ui+uj)! = b̂γ+ui+uj/γ!
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and, for i = j, we have

(Qγ)ii = (γi + 1)(γi + 2)bγ+2ui
= b̂γ+2ui

(γi + 1)(γi + 2)/(γ + 2ui)! = b̂γ+2ui
/γ!.

□

Lemma 13.5. For d ≥ 3 and γ ∈ Nm
d−2 we have

Qγ = (cγ+ui+uj
)mi,j=1︸ ︷︷ ︸

Mγ

◦
( ∑

k∈[m]:γk≥1

Qγ−uk
+

1

γ!
(̂bγ+ui

+ b̂γ+uj
)mi,j=1︸ ︷︷ ︸

=:Rγ

)

= Mγ ◦
( ∑

k∈[m]:γk≥1

Qγ−uk
+ Rγ

)
,

where the matrices Mγ were introduced in Lemma 12.4.

Proof. Combining Lemmas 13.3 and 13.5 we obtain

(Qγ)ij =
1

γ!
b̂γ+ui+uj =

1

γ!
cγ+ui+uj

∑
k:(γ+ui+uj)k≥1

b̂γ+ui+uj−uk
(γ + ui + uj)k

=
1

γ!
cγ+ui+uj

( ∑
k ̸=i,j:γk≥1

b̂γ+ui+uj−uk
γk + b̂γ+uj

(γi + 1) + b̂γ+uj
(γi + 1)

)
=

1

γ!
cγ+ui+uj

( ∑
k:γk≥1

b̂γ−uk+ui+ujγk + b̂γ+ui + b̂γ+uj

)

= cγ+ui+uj

( ∑
k:γk≥1

b̂γ−uk+ui+uj

(γ − uk)!
+

1

γ!
(̂bγ+ui + b̂γ+uj )

)
= cγ+ui+uj

( ∑
k:γk≥1

(Qγ−uk
)ij +

1

γ!
(̂bγ+ui

+ b̂γ+uj
)
)
,

which shows the claim. □

Showing Qγ ⪰ 0 (γ ∈ Nm
d−2) when d = 3, L = 2. In view of Lemma 13.2, it

suffices to show that the matrix Qγ is positive semidefinite for any γ ∈ Nm
1 . Up to

symmetry, it suffices to show that Qγ ⪰ 0 for γ = u1. In view of Lemma 13.5 we have

Qu1
= (cu1+ui+uj

)mi,j=1︸ ︷︷ ︸
=Mu1

◦(Q0 + (̂bu1+ui
+ b̂u1+uj

)mi,j=1︸ ︷︷ ︸
=Ru1

).

Earlier, in Lemma 12.6 and Section 12.2.3, we showed that Mu1 ⪰ 0 because M2 ⪰ 0.
Hence, we endeavor now to show that Q0 + Ru1

⪰ 0, which will imply that Qu1
⪰ 0,

and conclude the proof of Theorem 11.3.

Describing the entries of the matrix Q0 + Ru1. By definition, the entries
of Q0 (case γ = 0) are

(Q0)ii = 2b2ui
=

2

L
, (Q0)ij = bui+uj

=
2

|ei ∪ ej |
for i ̸= j ∈ [m].
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13.1. COMPUTING THE HESSIAN OF fd 181

Moreover, b̂2u1
= 2b2u1

= 2
L and b̂u1+ui

= bu1+ui
= 2

|e1∪ei| for i ≥ 2. Using this, we

obtain that

Q0 + Ru1 = 2 ·
( 1

|e1 ∪ ej |
+

1

|ei ∪ ej |
+

1

|e1 ∪ ei|

)m
i,j=1

=: 2B,

where we define the matrix B as

B :=
( 1

|e ∪ f |
+

1

|e1 ∪ e|
+

1

|e1 ∪ f |

)
e,f∈E

. (13.4)

Proposition 13.6. For L = 2, we have B ⪰ 0.

Before proceeding to the proof, let us make a few observations. Note that the
matrix B can be decomposed as

B =
( 1

|e ∪ f |

)
e,f∈E︸ ︷︷ ︸

=M0

+
( 1

|e1 ∪ e|
+

1

|e1 ∪ f |

)
e,f∈E︸ ︷︷ ︸

=:R

.

As we are in the case L = 2, the matrix M0 is the matrix M from (12.1), and is thus
positive semidefinite. On the other hand, the matrix R is not positive semidefinite.
In fact, R has rank 2 and a negative eigenvalue. One can infer from the results in
Section 12.1 that λmin(M0) = 1/12, while one can check that λmin(R) < −1/12 =
−0.0833... when n ≥ 6 (see Table 1 below). Hence in general, one cannot argue that
B ⪰ 0 by simply looking at the smallest eigenvalues of its summands M0 and R.

On a very high level, we will show positive semidefiniteness of the matrix B by
observing that it has a simple block structure, which we can exploit by taking several
successive Schur complements; in this way, we obtain well-structured matrices that
can be directly shown to be positive semidefinite.

Proof of Proposition 13.6. To fix ideas we let e1 be the edge e1 = {1, 2} and
to simplify notation we set p = n− 2 and q =

(
n−2
2

)
. Then the index set of B can be

partitioned into {e1} ∪ I1 ∪ I2 ∪ I0, setting Ik = {{k, i} : 3 ≤ i ≤ n} for k = 1, 2, and
I0 = {{i, j} : 3 ≤ i < j ≤ n}. So |I1| = |I2| = p and |I0| = q. With respect to this
partition, one can verify that the matrix B has the following block-form:

B =

e1 I1 I2 I0


e1

3
2

7
6J1,p

7
6J1,p J1,q

I1
7
6Jp,1 Jp + 1

6Ip
11
12Jp + 1

12Ip
5
6Jp,q + 1

12ΓT

I2
7
6Jp,1

11
12Jp + 1

12Ip Jp + 1
6Ip

5
6Jp,q + 1

12ΓT

I0 Jq,1
5
6Jq,p + 1

12Γ 5
6Jq,p + 1

12Γ M + 1
2Jq

.

Here, M is the matrix from (12.1) (replacing n by p = n− 2). We have shown in
Section 12.1 (see relation (12.2)) that M can be decomposed as

M =
1

12
Iq +

1

4
Jq +

1

12
ΓΓT ,
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182 13. INVESTIGATING THE POLYNOMIALS fd

where Γ = Γp is the
(
p
2

)
× p matrix whose (f, i)th entry is |{i} ∩ f |. We now proceed

to show that the matrix B is positive semidefinite. Note that its lower right diagonal
block indexed by the set I0 is positive semidefinite (since M ⪰ 0). Our strategy is
now to ‘eliminate’ the three borders indexed by the sets {e1}, I1, and I2 successively,
one by one, by taking Schur complements, until reaching a final matrix (indexed by
I0) whose positive semidefiniteness can be seen directly. To do the Schur complement
operations, we will need to invert matrices of the form aI + bJ .

Lemma 13.7. For a, b ∈ R such that a+pb ̸= 0, the matrix aIp+bJp is nonsingular
with inverse

(aIp + bJp)−1 =
1

a

(
Ip −

b

pb + a

)
Jp.

We now eliminate the three borders of B indexed by {e1}, I1, and I2 by taking
successive Schur complements with respect to the upper left corner.

The first Schur complement. We take a first Schur complement with respect

to the upper left corner of B (indexed by e1). We call B̃1 the resulting matrix, which

reads

B̃1 :=




Jp + 1
6Ip

11
12Jp + 1

12Ip
5
6Jp,q + 1

12ΓT

11
12Jp + 1

12Ip Jp + 1
6Ip

5
6Jp,q + 1

12ΓT

5
6Jq,p + 1

12Γ 5
6Jq,p + 1

12Γ 1
12Iq + 1

12ΓΓT + 3
4Jq

−2

3


7
6Jp,1

7
6Jp,1

Jq,1

( 7
6J1,p

7
6J1,p J1,q

)

=




5
54Jp + 1

6Ip
1

108Jp + 1
12Ip

1
18Jp,q + 1

12ΓT

1
108Jp + 1

12Ip
5
54Jp + 1

6Ip
1
18Jp,q + 1

12ΓT

1
18Jq,p + 1

12Γ 1
18Jq,p + 1

12Γ 1
12Iq + 1

12ΓΓT + 1
12Jq

.

Setting B1 = 6B̃1, we obtain B ⪰ 0 ⇐⇒ B̃1 ⪰ 0 ⇐⇒ B1 ⪰ 0, where

B1 =




5
9Jp + Ip

1
18Jp + 1

2Ip
1
3Jp,q + 1

2ΓT

1
18Jp + 1

2Ip
5
9Jp + Ip

1
3Jp,q + 1

2ΓT

1
3Jq,p + 1

2Γ 1
3Jq,p + 1

2Γ 1
2Iq + 1

2ΓΓT + 1
2Jq

.

The second Schur complement. We now take the Schur complement with
respect to the upper left corner of B1 (indexed by I1), where we use Lemma 13.7 to
invert it:

(Ip + 5/9Jp)−1 = Ip − 5/(5p + 9)Jp.
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13.1. COMPUTING THE HESSIAN OF fd 183

After taking this Schur complement the resulting matrix B̃2 reads:

B̃2 =

( )
5
9Jp + Iq

1
3Jp,q + 1

2ΓT

1
3Jq,p + 1

2Γ 1
2Iq + 1

2ΓΓT + 1
2Jq

−

 1
18Jp + 1

2Ip

1
3Jq,p + 1

2Γ

(Ip − 5

(5p + 9)
Jp

)(
1
18Jp + 1

2Ip
1
3Jp,q + 1

2ΓT
)

=

( )
3
4Ip + 11p+23

4(5p+9)Jp
1
4ΓT + 3p+7

2(5p+9)Jp,q

1
4Γ + 3p+7

2(5p+9)Jq,p
1
2Iq + 1

4ΓΓT + 3p+7
2(5p+9)Jq

.

Setting B2 = 4B̃2 we obtain B ⪰ 0 ⇐⇒ B1 ⪰ 0 ⇐⇒ B2 ⪰ 0, where

B2 =

( )
3Ip + 11p+23

5p+9 Jp ΓT + 2(3p+7)
5p+9 Jp,q

Γ + 2(3p+7)
5p+9 Jq,p 2Iq + ΓΓT + 2(3p+7)

5p+9 Jq
.

The third and final Schur complement. Inverting the top left block of B2

via Lemma 13.7 gives(
3Ip +

11p + 23

5p + 9
Jp

)−1

=
1

3
Ip −

(11p + 23)

3(11p2 + 38p + 27)
Jp.

Taking the third and final Schur complement with respect to this block in B2 we get

the matrix

B3 := 2Iq + ΓΓT +
2(3p + 7)

5p + 9
Jq

−
(

ΓT +
2(3p + 7)

5p + 9
Jq,p

)(1

3
Ip −

(11p + 23)

3(11p2 + 38p + 27)
Jp

)(
ΓT +

2(3p + 7)

5p + 9
Jp,q

)
= 2Iq +

2

3
ΓΓT +

2(9p + 25)

3(11p + 27)
Jq.

It is now clear that B3 ⪰ 0. This implies that B2 ⪰ 0 and thus B ⪰ 0, which con-
cludes the proof of Proposition 13.6.

Why the proof of Proposition 13.6 is hard to extend to L ≥ 3. The
biggest hurdle lies in the richness of the possible intersections between edges of large
sizes. More concretely, recall that the (e, f)th entry of the matrix B in (13.4) depends
on |e ∪ f |, |e ∪ e1| and |f ∪ e1|. So, one has to take into account how the two edges
e, f pairwise interact within e1 and outside of it, which becomes technically involved
when |e1| = L is large. The matrix B has an increasingly involved block structure
when L grows. In addition, some of the blocks in B may have a form that requires
an additional symmetry reduction to become amenable.
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13.2. Numerical justification for convexity of fd

We have carried out some numerical experiments for a range of values of d, L, n
and verified that the matrices Qγ are positive semidefinite for all γ ∈ Nn

d−2 in these
cases. Hence, for these values, the polynomial fd is convex, and Conjecture 13.1 holds.
Recall from Lemma 13.5 that the matrix Qγ can be decomposed as

Qγ = Mγ ◦
( ∑

k∈[m]:γk≥1

Qγ−uk︸ ︷︷ ︸
=:Bγ

+Rγ

)
= Mγ ◦ (Bγ + Rγ).

By the results in Section 12.2, we already know that the matrix Mγ is positive
semidefinite. Hence, it now suffices to show that the matrix Bγ + Rγ is positive
semidefinite for each γ ∈ Nn

d−2. We did this in the previous section for the case d = 3
(and L = 2). We have computed the minimum eigenvalues of the matrices Qγ , Bγ ,
and Rγ for different values of n, d and L and give this information for the case L = 2
in Table 1 below (for d = 3). In Appendix A of [27], extensive tables are provided
for d ≥ 4.

d L n γ λmin(Qγ) λmin(Bγ) λmin(Rγ)

3 2 3 [[1, 2]] 0.0556 0.1667 -0.0236
3 2 4 [[1, 2]] 0.0347 0.0833 -0.0478
3 2 5 [[1, 2]] 0.0347 0.0833 -0.0729
3 2 6 [[1, 2]] 0.0347 0.0833 -0.0987
3 2 7 [[1, 2]] 0.0347 0.0833 -0.1249
3 2 8 [[1, 2]] 0.0347 0.0833 -0.1514

Table 1. Case d = 3, L = 2

For recent progress on this problem, we refer to Polak [131], who proved that all
the matrices Qγ are positive semidefinite in the case d ≤ 8 and L = 2. One of the
difficulties is that one needs to enumerate the distinct patterns for γ ∈ Nm

d−2, i.e., the
number of multigraphs with d− 2 edges. As mentioned earlier in Example 11.4, this
number is given by the OEIS sequence A050535 [1], and it grows quickly with d.
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Discussion

Some background on symmetry. Symmetry is a widely used ingredient in
optimization, in particular in semidefinite optimization and algebraic questions in-
volving polynomials. We mention a few landmark examples as background informa-
tion. Symmetry can be used to formulate equivalent, more compact reformulations for
semidefinite programs. The underlying mathematical fact is Artin-Wedderburn the-
ory, which shows that matrix ∗-algebras can be block-diagonalized (see Theorem 11.6).

A well-known early example is the linear programming reformulation from [143]
for the Lovász theta number of Hamming graphs, showing the link to the Delsarte
bound and Bose-Mesner algebras of Hamming schemes [49, 50]. Symmetry is used
more generally to give tractable reformulations for the semidefinite bounds arising
from the next levels of Lasserre’s hierarchy in [144] (which gives the explicit block-
diagonalization for the Terwilliger algebra of Hamming schemes, see Theorem 11.7)
and, e.g., in [75], [74], [109], [114]. For more examples and a broad exposition
about symmetry in semidefinite programming, we refer, e.g., to [10, 44] and further
references therein. Symmetry is also a crucial ingredient in the study of algebraic
questions about polynomials, like representations in terms of sums of squares and
in polynomial optimization. We refer to [71] for a broad exposition and, e.g., to
[138] (for compact reformulations of Lasserre relaxations of symmetric polynomial
optimization problems), [137] (for methods to reduce the number of variables in
programs involving symmetric polynomials), and the recent works [133, 134] (which
consider symmetric polynomials with variables indexed by the k-subsets hypercube
(as in our case) and uncover links with the theory of flag algebras by Razborov [135]).

Current status of Conjecture 13.1. As of the time of writing this thesis,
Conjecture 13.1 has not been proven to hold for the general case: d ≥ 9 and L ≥ 2.
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[79] G. Gonçalves, P. Wanke, and Y. Tan. A higher order portfolio optimization model
incorporating information entropy. Intelligent Systems with Applications, 15:200101,
2022.

[80] S. Gribling, D. de Laat, and M. Laurent. Lower bounds on matrix factorization ranks
via noncommutative polynomial optimization. Foundations of Computational Mathe-
matics, 19(5):1013–1070, 2019.

[81] S. Gribling, M. Laurent, and A. Steenkamp. Bounding the separable rank via polyno-
mial optimization. Linear Algebra and its Applications, 648:1–55, 2022.

[82] L. Gurvits. Classical deterministic complexity of Edmonds’ problem and quantum
entanglement. In Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory
of Computing, STOC ’03, pages 10–19, New York, 2003.

[83] M. Hall. Combinatorial Theory. John Wiley & Sons, 1988.
[84] D. Henrion, M. Korda, and J. B. Lasserre. The Moment-SOS Hierarchy, volume 4 of

Series on Optimization and Its Applications. World Scientific (Europe), 2020.



617919-L-bw-Steenkamp617919-L-bw-Steenkamp617919-L-bw-Steenkamp617919-L-bw-Steenkamp
Processed on: 27-9-2023Processed on: 27-9-2023Processed on: 27-9-2023Processed on: 27-9-2023 PDF page: 199PDF page: 199PDF page: 199PDF page: 199

190 BIBLIOGRAPHY

[85] D. Henrion and J.-B. Lasserre. Detecting global optimality and extracting solutions
in GloptiPoly. In D. Henrion and A. Garulli, editors, Positive Polynomials in Control,
pages 293–310. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.

[86] M. Horodecki, P. Horodecki, and R. Horodecki. Separability of mixed states: Necessary
and sufficient conditions. Physics Letters A, 223(1):1–8, 1996.

[87] P. Horodecki. Separability criterion and inseparable mixed states with positive partial
transposition. Physics Letters A, 232(5):333–339, 1997.

[88] S. Iliman and T. De Wolff. Amoebas, nonnegative polynomials and sums of squares
supported on circuits. Research in the Mathematical Sciences, 3(1):1–35, 2016.

[89] T. M. Inc. MATLAB version: 9.13.0 (R2022b). The MathWorks Inc., 2022.
[90] J. Lofberg. YALMIP : A toolbox for modeling and optimization in MATLAB.

In 2004 IEEE International Conference on Robotics and Automation (IEEE Cat.
No.04CH37508), pages 284–289, 2004.

[91] C. Josz and D. K. Molzahn. Lasserre hierarchy for large scale polynomial optimization
in real and complex variables. SIAM Journal on Optimization, 28(2):1017–1048, 2018.

[92] E. Jurczenko, B. Maillet, and P. Merlin. Hedge fund portfolio selection with higher-
order moments: A nonparametric mean-variance-skewness-kurtosis efficient frontier.
In Multi-moment Asset Allocation and Pricing Models, pages 51–66. 2012.

[93] O. Kallenberg. Foundations of Modern Probability. Probability Theory and Stochastic
Modelling. Springer Cham, 3 edition, 2021.

[94] P.-M. Kleniati, P. Parpas, and B. Rustem. Partitioning procedure for polynomial op-
timization. Journal of Global Optimization, 48(4):549–567, 2010.

[95] P.-M. Kleniati and B. Rustem. Portfolio decisions with higher order moments. Working
Papers 021, COMISEF, 2009.

[96] I. Klep, V. Magron, and J. Povh. Sparse noncommutative polynomial optimization.
Mathematical Programming, pages 1–41, 2021.

[97] T. G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM Review,
51(3):455–500, 2009.

[98] M. Korda. Stability and performance verification of dynamical systems controlled by
neural networks: Algorithms and complexity. IEEE Control Systems Letters, 6:3265–
3270, 2021.

[99] M. Korda and C. N. Jones. Stability and performance verification of optimization-based
controllers. Automatica, 78:34–45, 2017.

[100] M. Korda, M. Laurent, V. Magron, and A. Steenkamp. Exploiting ideal-sparsity in the
generalized moment problem with application to matrix factorization ranks. Mathe-
matical Programming, 2023.

[101] A. Kraus and R. H. Litzenberger. Skewness Preference and the Valuation of Risk
Assets. The Journal of Finance, 31(4):1085–1100, 1976.
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