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In a dynamic economy, firms’ ability to innovate is essential for their competi-
tive advantage, even survival. Yet the process of generating internal innovation 

frequently clashes with firms’ established production and management processes. 
In this paper, we develop a multitasking model of employees choosing between 
the execution of their assigned activities, which can be compensated according to 
a well-defined performance measure, versus the pursuit of previously unplanned 
innovation. Our central research question is under what circumstances employees 
deviate from their assigned activities to pursue an innovation, and how firm manag-
ers can optimally influence employees’ innovation choices.

The tension between exploitation of existing assets versus exploration of new 
opportunities has long been recognized (James G. March 1991). Established firms 
typically aim to maximize profits and efficiency by planning activities and creating 
measurable performance metrics. A large literature on optimal contracts examines 
optimal employee incentives and performance measurement (Robert Gibbons 1998). 
However, almost by definition, innovation does not fit into such a structure. While 
there are some innovative activities that can be anticipated to a limited extent (e.g., 
incremental product improvement in R&D departments), many important business 
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innovation cannot be planned in advance (e.g., identifying new types of customers, 
customizing product offerings, altering marketing and distribution arrangements, 
etc.). Moreover, employees are often the first to identify these new opportunities. 
As a consequence, innovation in established organizations is typically the result of 
employees taking initiatives that go beyond their narrow job description. Robert A. 
Burgelman (2002), for example, describes how Intel’s strategic move from com-
puter memory to semiconductors was initiated by employees developing new tech-
nologies without the knowledge of senior managers—the so-called “skunkworks” 
approach. More generally, Burgelman (2002) points to the importance of an autono-
mous employee-led innovation process that occurs outside of firms’ main strategic 
decision processes.

If innovation could be planned, then managers could base incentive contracts 
on measurable performance objectives, and the analysis would resemble standard 
multitask incentive models (Bengt Holmström and Paul Milgrom 1991). A central 
idea of this paper is to introduce innovation as an unplanned activity, and to exam-
ine how it interacts with planned activities. Our theoretical starting point is to note 
that there exists a parallel debate in the theory of the firm. The work of Sanford J. 
Grossman, Oliver Hart, and John Moore (see Grossman and Hart 1986; Hart 1995; 
Hart and Moore 1990, 2008) postulates contractual incompleteness, based on the 
argument that it is often too complex and costly to write incentive contracts. By 
contrast, the work of Holmström, Milgrom, and John Roberts (Holmström 1979, 
1999; Holmström and Milgrom 1994; Holmström and Roberts 1998) argues that 
incentive contracting is at the heart of the firm’s internal organization. We would 
argue that one should not focus on which view is “right or wrong”—clearly, there is 
a considerable amount of incentive compensation inside firms, but these incentive 
contracts remain incomplete in important ways—but focus on which view is appro-
priate for which type of activity. Indeed, our premise is that the standard tasks (i.e., 
the planned activities) are well captured by a model with performance measurement 
and ex ante incentive contracts. However, when it comes to innovative tasks (i.e., 
the unplanned activities), a model of incomplete contracts and ex post bargaining is 
more appropriate (see also Philippe Aghion and Jean Tirole 1994).

We then examine the interactions between the planned and unplanned activi-
ties, and show how the optimal level of incentive compensation for planned tasks is 
influenced by the presence of unplanned innovation. Integrating both planned and 
unplanned activities also allows us to evaluate whether and when employees are 
innovating too much or too little, relative to a variety of benchmarks.

We examine a principal-agent model where the principal is a risk-neutral firm 
owner and the agent is a risk-neutral and wealth-constrained employee (David 
Sappington 1983). The employee faces a multitasking choice between performing 
a standard task, for which it is possible to specify ex ante a performance measure 
and therefore also an incentive compensation, versus pursuing an innovation for 
which there is no ex ante performance measure, and hence only the possibility of ex 
post contracting. We assume that the employee receives a private signal about the 
attractiveness of a potential innovation, and that the principal cannot observe the 
employee’s signal, as well as his effort and task choice. We use a model specifica-
tion based on Dominique Demougin and Claude Fluet (2001), where the optimal 
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contract can be expressed as a base wage and a performance bonus. The principal’s 
only tool of influencing the agent’s behavior is the strength of incentives, i.e., the 
size of the performance bonus for the standard task.

While the firm can determine an optimal compensation for the standard task, 
the rewards for innovation are determined by ex post bargaining. In practice, many 
innovative employees receive little or no reward for their inventions. One industry 
survey (Intellectual Property Owners Association (IPO) 2004) found that 84 percent 
of all companies did not pay employees at all for disclosing inventions. While many 
companies pay small amounts for patents (in a range of $500–$1,500), 76 percent of 
companies were found not to make adjustments for “highly valuable” patents. Yet, 
in other circumstances, employees are able to extract considerable rents from their 
innovation, such as in the financial service industry, where the threat of leaving typi-
cally results in higher retention pay (Boris Groysberg, Ashish Nanda, and M. Julia 
Prats 2009). In general, the rents employees extract for their innovation depend on 
outside options, private benefits, the degree to which the ideas can be appropriated 
by the firm, and possibly the allocation of intellectual property rights within the firm 
(Eric Talley 1998). Therefore, our model allows for a flexible parameterization that 
enables us to characterize any division of ex post bargaining rents.

A fundamental insight from the model is that there is a conflict between innova-
tion and the strength of incentives provided for the standard task: the higher the per-
formance bonus, the less the employee pursues unplanned innovation. We examine 
how the firm can modify its incentive compensation for standard tasks, taking the 
employee’s innovation choices into account. If innovation is highly firm specific we 
find that the employee pursues too little innovation relative to the firm’s preferred 
level of innovation. In equilibrium, the firm reduces incentives for the standard 
tasks, in order to encourage the employee to innovate more. This result provides an 
interesting interpretation for frequently observed low-powered incentives (Oliver 
E. Williamson 1975; Daniel Parent 2002). They provide “breathing room” for an 
employee who might want to pursue unplanned activities that will not be reflected in 
his performance measure. However, we also find that if innovation has low levels of 
firm specificity, then the firm wants to discourage innovation ex ante. It can do so by 
increasing its performance bonus beyond normal levels. In this case, high-powered 
incentives provide greater effort for the measurable task, but curtail the pursuit of 
innovation.

Our model also allows for a critical assessment of the question of whether there 
is too much or too little innovation. This is actually a matter of considerable debate 
in the applied management literature. On the one hand, there are many who lament 
the lack of innovation inside large firms.1 On the other hand, there are also a large 
number of management scholars, including Michael E. Porter (1980), who advocate 
strategic focus, or what Julio J. Rotemberg and Garth Saloner (1994) call a “narrow 
business strategy.” Our model allows us to evaluate those claims from a variety of 
vantage points. We first explain that the firm owner and the employee almost never 

1 Consider, for example, the following quote from management guru Gary Hamel (1999):
“If you want your company to join the pantheons of wealth-creating superstars, you have to shift the balance of 

effort from stewardship to entrepreneurship in your organization.”
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agree on the optimal level of innovation. For high levels of firm specificity of inno-
vation, the employee pursues too little innovation from the owner’s perspective, but 
this is always reversed for low levels of firm specificity. From a perspective of joint 
efficiency, we identify two natural benchmarks, depending on whether a social plan-
ner can or cannot actively intervene to change the agent’s decisions. We find that 
there is too little innovation for high firm specificity of innovation, and too much for 
low levels of firm specificity.

Our analysis relates to several strands of economic theory. Gustavo Manso 
(2007) examines optimal incentives for experimentation and finds that standard 
incentive compensation is inappropriate for environments where experimentation 
is important. However, his optimal contract looks very different from ours because 
he assumes contractibility of the innovative task. Indeed, he shows that an optimal 
contract needs to have a complex dynamic structure that provides high-powered 
incentives in the long term, but tolerance for failure in the short term. In an extension 
of our model, we show that tolerance for failure can actually be a two-edged sword: 
while it may encourage innovation, it may also undermine incentives for standard 
tasks, an effect not considered by Manso (2007).

Rotemberg and Saloner (1994) develop a model for the benefits of a narrow busi-
ness strategy, which they contrast with a broader innovation strategy. In their model, 
the firm manager deliberately refuses to implement innovation, because accepting 
one employee’s innovation undermines the other employees’ incentives. Our model 
only needs a single agent, whereas their model relies on interactions among employ-
ees. In their model, the firm also has an ex post commitment problem, which it can 
only solve upfront with a narrow strategy. While the mechanics of the two models are 
very different, both share the premise that there can be a trade-off between focusing 
on the core business versus innovation. In a related vein, Narayanan Subramanian 
(2005) examines a dynamic model of a firm where employees can choose to create 
value for the firm or develop innovation. His main focus is the role of complemen-
tarities between the innovation and the firms’ current assets. In the empirical section 
of this paper, he finds a negative relationship between incentive compensation and 
intrapreneurial activities, a prediction that is also consistent with our model.

Following the work of Grossman, Hart, and Moore, several authors have tried to 
either explain contractual incompleteness (Ilya Segal 1999; Hart and Moore 1999), 
or else explore how a principal can creatively augment standard contracts to include 
unforeseen contingencies (David M. Kreps 1992; Eric Maskin and Tirole 1999). 
Our approach is fundamentally different in that we take the contractual incomplete-
ness around innovation as given, but focus on how the agent (as opposed to the 
principal) responds to unforeseen innovation opportunities. The principal’s response 
in our model is limited to adapting incentive contracts, specifically performance 
bonuses, to indirectly take into account the contractual incompleteness.

The work of Antonio E. Bernardo, Hongbin Cai, and Jiang Luo (2009) and 
Roman Inderst and Manuel Klein (2007) examines how firms can optimally provide 
incentives to employees when there is both an incentive problem and a problem of 
truthful reporting for resource allocation. These models do not consider any multi-
tasking problems. James J. Anton and Dennis A. Yao (1994, 1995), Joshua S. Gans 
and Scott Stern (2000, 2003) and Hellmann and Enrico Perotti (2007) investigate 
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how the appropriability of innovation affects their generation and use. There is also 
a closely related literature that compares incentives inside firms with market-based 
incentives, see e.g., Bharant N. Anand and Alexander Galetovic (2000), Hellmann 
(2007), Jean-Etienne de Bettignies and Gilles Chemla (2008), and Alfonso 
Gambardella and Claudio Panico (2008).

Our paper naturally builds on the large literature on multitasking, see Holmström 
and Milgrom (1994), Gerald A. Feltham and Jim Xie (1994), and George Baker 
(2002). The work by Holmström and Milgrom (1994) is the closest to our paper 
in that they also allow for tasks which are not captured by (ex ante) contractible 
performance measures. However, the essential difference between Holmström and 
Milgrom (1994) and our paper is that we incorporate ex post bargaining over the 
division of surplus which stems from these unmeasurable, but profitable, activities, 
such as the pursuit of innovative ideas. In other words, while unmeasurable tasks do 
not generate any utility for the agent in Holmström and Milgrom (1994), our frame-
work comprises a complete parameterization of the value captured by the agent.

The remainder of the paper is structured as follows. Section I introduces the basic 
model. Section II separately examines the provision of incentives for the standard 
task (planned activity ) and innovation (unplanned activity ). Section III examines 
the agent’s task choice. Section IV derives the principal’s optimal incentive provi-
sion. Section V addresses the question of whether there is too much or too little 
innovation. In Section VI, we discuss the effectiveness of several policies to encour-
age innovation, such as tolerance for failure, investing in employee innovation, 
stock-based compensation, and the allocation of intellectual property rights. Section 
VII discusses empirical predictions that can be derived from our framework. Section 
VIII summarizes our main results and concludes.

I.  The Base Model

Consider an employment relationship between a risk-neutral principal and a 
risk-neutral agent. The agent is financially constrained and his reservation utility is 
normalized to zero.2 There are three dates. At date 0, the principal offers the agent 
an employment contract. According to this contract, the agent is charged with 
conducting a set of tasks, which are henceforth referred to as the standard task. 
The agent’s effort for the standard task cannot directly be observed by the princi-
pal, but the principal receives a performance measure which can be utilized in a 
court-enforceable incentive contract. At date 1, the agent may privately observe an 
innovation opportunity (i.e., an innovative idea), which requires further process-
ing to bring to fruition. Due to time constraints, the agent is confronted with a 
specialization decision: he needs to decide on how much effort (or time) he wants 
to allocate to the standard task and the development of the innovation opportunity. 
At date 2, the principal observes the agent’s standard task performance, and makes 
the corresponding incentive payments as specified in the employment contract. In 

2 The limited liability constraint ensures that transferring the firm to the agent is not feasible.
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case the agent generated an innovation, both parties bargain over the division of 
the created value.

Let us first elaborate on the agent’s main responsibility to perform the standard 
task. By implementing effort ​e​S​ on the standard task, the agent generates revenue 
V(​e​S​), which accrues entirely to the principal. To ensure interior solutions, we 
impose the standard requirement that revenue is increasing and concave in ​e​S​. Also, 
V(0) = 0 and ​V ′​(0) = ∞. Neither the agent’s effort ​e​S​ nor the revenue V (​e​S​) are 
verifiable, and thus cannot be used in a court-enforceable contract. The principal, 
however, receives several pieces of information about the agent’s standard effort ​e​S​ 
which can be summarized in a verifiable and binary signal S ∈ {0, 1}.3 By imple-
menting effort ​e​S​ , the agent affects the likelihood that the favorable signal S = 1 
will be realized. Formally, let Pr{S = 1 | ​e​S​} = min{​e​S​, 1} be the conditional proba-
bility that S = 1. We assume that the agent’s effort costs are such that Pr{S = 1 | ​e​ S​ *​}
= ​e​ S​ *​ < 1 for the second-best effort level ​e​ S​ *​ in order to ensure interior solutions. 
Finally, to motivate standard effort, the principal ties the agent’s compensation to 
his performance measure S. More specifically, in addition to a fixed compensation 
α, the principal pays the agent a bonus β in the event that the favorable performance 
measure S = 1 is realized.4

While being charged with conducting the standard task, the agent may privately 
observe an innovation opportunity with potential value Y. Because innovation 
opportunities are not known ex ante, it is reasonable to assume that no performance 
measure can be defined ex ante. Hence the two parties will have to rely on ex post 
bargaining. Moreover, to capture the notion that the employee is the one who spots 
the opportunity, we assume that the signal about the value of the innovation idea 
is privately observed by the agent. We assume that the potential value of his idea 
Y ∈ [0, ∞) is drawn from a distribution Φ(Y ) with p.d.f. ϕ(Y ).5 We further assume 
that innovation with high firm-specific values are less likely to be discovered by the 
agent, which is reflected by the assumption that ϕ(Y ) is monotonically decreasing 
in Y.6 Once the agent has observed a particular innovation idea with potential value 
Y, he needs to develop this innovation by implementing non-verifiable effort ​e​I​. The 
innovation process will be successful with probability min{μ​e​I​, 1}, and fails with 
probability 1 − min{μ​e​I​, 1}, where 0 < μ < 1. The parameter μ captures the idea 
that the pursuit of innovation is more challenging than the standard task in the sense 
that for a given effort level, success is more likely for the standard task than for the 
innovation. To ensure interior solutions, we assume that μ​e​ I​ *​ < 1 for the second-best 
effort level ​e​ I​ *​. Contractible performance measures which capture the agent’s inno-
vation effort ​e​I​ are not available.

We assume that the innovation value Y is observed by both the principal and the 
agent, but remains unobservable to third parties, such as courts. Due to the absence 

3 Demougin and Fluet (2001) show that if the involved parties are risk-neutral, any verifiable performance mea-
sures can be summarized by a binary statistic without affecting the efficiency of the contract.

4 Due to the binary structure of the information system, the optimal incentive contract must be a bonus contract.
5 We could also impose an upper bound ​

_
 Y ​ for the potential innovation value Y without affecting the quality of 

our results. For sufficiently low values of ​
_
 Y ​, however, it will become clear that innovation might never be beneficial 

from both the principal’s and agent’s perspective.
6 For instance, the exponential distribution satisfies this assumption.
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of contractible measures, the principal cannot provide the agent with a court-
enforceable incentive contract to motivate the creation of innovation. Both parties 
can, however, bargain over the division of the created innovation value. The rela-
tive bargaining power depends on the two parties’ outside options, which, in turn, 
can depend on a variety of factors. If the idea is highly specific to the employee, 
and requires his specialized human capital, then the employee’s bargaining position 
may be strong (e.g., the employee may have an outside option of implementing the 
innovation outside of the firm). On the other hand, if the innovation can be easily 
appropriated inside the firm, then the employee has a weak bargaining position. 
Moreover, if the idea requires the use of complementary assets that are controlled by 
the firm, then the firm has a significantly strong bargaining position. Yet another fac-
tor is to what extent the value created by the innovations consists of private benefits 
that cannot be taken away from the employee.

To model the ex post bargaining game between the principal and the agent, we 
apply the symmetric Nash bargaining solution.7 Clearly, the principal’s share is 
determined by the inside value of the innovation, Y, as well as by her outside option, 
which we denote by ​z​P​Y. The parameter ​z​P​ reflects the appropriability of the inno-
vation, i.e., ​z​P​ captures the extent to which the principal can profitably utilize the 
innovation without the support of the agent. In contrast, the agent’s bargaining posi-
tion is determined by his outside option ​z​A​Y, where the parameter ​z​A​—as discussed 
above—measures the agent’s private benefits from the innovation which cannot be 
expropriated by the principal (e.g., because of specific human capital). Using the 
Nash bargaining solution, the principal obtains ​(1 + ​z​P​ − ​z​A​)​Y/2 of the value of 
an innovation. It is convenient to define λ ≡ ​(1 + ​z​P​ − ​z​A​)​/2, so that the principal 
gets λY, and the agent obtains (1 − λ)Y. Throughout this paper, we refer to λ as the 
appropriability of innovation.8 Note also that because innovations are not contractible 
ex ante, any promise on the part of the principal to award the agent a higher share is 
never credible in this model, since λ is the result of an ex post bargaining game.9

For the agent’s disutility of effort associated with the implementation of standard 
effort ​e​S​ and innovation activity ​e​I​, let e ≡ ​e​S​ + ​e​I​ denote the agent’s total effort. 
Implementing e imposes private cost c(e) which is strictly convex increasing in total 
effort e. The agent’s private effort cost function c(e) thus captures the notion that 
the total effort (or time) he spends on both tasks matters, but not the relative effort 
allocation across these tasks.

II.  The Agent’s Effort Choice

We begin our analysis by investigating the agent’s effort choice for the standard 
task and innovation separately. This facilitates the derivation of the efficient bonus 

7 Using alternative bargaining solutions would not affect the qualitative nature of our results.
8 Throughout the paper, the concept of appropriability refers to the ability of the firm to capture the value of the 

employee’s innovation. We therefore focus on appropriation within firms, rather than appropriation across firms that 
compete in the market place.

9 However, there are indirect ways for the principal to credibly commit to a different sharing rule, e.g., through 
the explicit allocation of intellectual property rights (which we discuss in Section VIC), or through repeated interac-
tions with the agent.
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contract for the standard task which constitutes an important benchmark throughout 
this paper.

Suppose, for a moment, that the agent focuses exclusively on the standard task.10 
Given the bonus contract (α, β), the agent chooses his effort ​e​S​ to maximize his 
expected utility11 

(1)	​    
 
  max    ​e​S​

  ​​U​ S​(​e​S​)  =  α  +  β​e​S​  −  c(​e​S​).

It can be deduced from the first-order condition that the agent’s second-best effort  
​e​ S​ *​(β) is implicitly characterized by 

(2)	 β  = ​ c′​ (​e​S​).

The agent chooses effort ​e​ S​ *​ (β) which clearly ensures equality of his marginal 
expected bonus and marginal effort costs. From (2) we note that stronger incentives 
(higher β) lead to more effort.

Anticipating the agent’s effort choice ​e​ S​ *​ (β), the principal’s problem is to find the 
bonus contract which maximizes her expected net payoff from the standard task: 

(3)	​ Π​ S​(α, β)  =  V(​e​ S​ *​ (β))  −  α  −  β​e​ S​ *​ (β).

Moreover, the optimal bonus contract needs to ensure the agent’s participation, and 
to account for his liability limit, which requires that α ≥ 0 and α + β ≥ 0. The 
next lemma characterizes the efficient contract which maximizes the principal’s 
expected net payoff from the standard task, in addition to its effect on the agent’s 
expected utility.

Lemma 1:

	 (i)	 The agent’s expected utility from the standard task, ​U​ S​(α, β), is increasing in 
α and β. 

	 (ii)	 The principal’s expected profit from the standard task, ​Π​ S​(α, β), is decreas-
ing in α, and concave in β. It reaches its maximum at ​β​0​ which is character-
ized by 

(4)	​ 
d​Π​ S​(​e​ S​ *​ (β), β)  _ 

dβ ​   =  0.

	 (iii)	 The optimal choice of α is ​α​0​ = 0.

10 We show in Section IIIA that, for a given incentive contract, the agent either exerts the standard task (so that ​
e​I​ = 0) or pursues the innovation (so that ​e​S​ = 0).

11 Note that c(e) = c(​e​S​) as ​e​I​ = 0 if the agent exerts only the standard task. The reversed observation can be 
made if he pursues the innovation.
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Proof: 
All proofs are given in the Appendix.

Lemma 1 provides three important observations. First, the agent’s expected utility 
is always increasing in the bonus compensation β. The fact that the agent’s expected 
utility is strictly increasing in β will be a fundamental driver for his specialization 
decision.

The second important observation is that the principal’s expected profit is non-
monotonic in β, with an interior maximum at ​β​0​. For low values of β, the marginal 
benefit of paying the agent outweighs the cost, but for high β, the opposite applies. 
The profit-maximizing value ​β​0​ is a useful benchmark of the intensity of incentives, 
as it measures the principal’s preferred level of incentives in the absence of any mul-
titasking concerns. Hence we will refer to ​β​0​ as the unconstrained incentive bonus.

Third, we note that any fixed compensation α only transfers rents from the prin-
cipal to the agent. Since the agent’s participation constraint is always satisfied for 
any α and β satisfying the conditions α ≥ 0 and α + β ≥ 0, it is immediate that the 
principal always chooses ​α​0​ = 0.

After identifying the agent’s optimal standard effort and the associated bonus 
contract, we now turn to the agent’s incentives to bring innovative ideas to fruition. 
Suppose the agent focuses exclusively on the development of the innovation. Given 
the appropriability of his idea (parameterized by λ), he chooses his innovation effort ​
e​I​ to maximize his expected utility 

(5)	​    
 
  max    ​e​I​

  ​​U​ I​(​e​I​)  =  (1  −  λ)Yμ​e​I​  −  c(​e​I​).

The first-order condition reveals that the agent’s second-best innovation effort  
​e​ I​ *​(λ, Y ) is implicitly characterized by 

(6)	 (1  −  λ)Yμ  = ​ c′​ (​e​I​).

As for the standard task, the agent chooses his innovation effort ​e​ I​ *​(λ, Y ) such that 
the marginal compensation equals his marginal cost of effort. The principal, how-
ever, cannot directly control the agent’s innovation effort as it is implicitly deter-
mined by the appropriability of his idea, λ, and the innovation value Y. It can be 
inferred from (6) that identifying an innovation opportunity with a lower appropri-
ability (λ) or detecting a more valuable innovation (Y) motivates the agent to imple-
ment more effort.

For the subsequent analysis, we now investigate the relationship between the 
appropriability of innovation λ and the principal’s expected net payoff from innova-
tion. We start by briefly discussing the extreme cases: the innovation can entirely 
be appropriated by the principal (λ = 1) or the agent (λ = 0). It is clear that if 
the principal can capture the entire surplus from the innovation (λ = 1), the agent 
refuses to develop any innovation (​e​ I​ *​(1, Y ) = 0) due to the lack of prospective com-
pensations. This, in turn, implies a zero payoff for the principal from innovation  
(​Π​ I​(​e​ I​ *​(1, Y ), 1, Y ) = 0). If the agent can capture the entire surplus (λ = 0), he is 
motivated to implement the first-best effort level ​e​ I​ *​(0, Y ). However, the principal 
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does not benefit from the innovation (​Π​ I​(​e​ I​ *​(0, Y ), 0, Y ) = 0). The previous obser-
vations imply that the principal can only benefit from the innovation if λ ∈ (0, 1) 
such that both involved parties receive a strictly positive share on the corresponding 
surplus. The next lemma emphasizes the relationship between the appropriability of 
the innovation λ and the principal’s expected net payoff from innovation.

Lemma 2: There exists a threshold innovation appropriability level ​λ​*​ ∈ (0, 1) 
such that the principal’s expected net payoff from innovation ​Π​ I​(​e​ I​ *​(λ, Y ), λ, Y ) is 
increasing in λ for λ ≤ ​λ​*​, and decreasing in λ for λ > ​λ​*​.

Lemma 2 exposes one of the fundamental forces in our framework. As dis-
cussed above, a more appropriable innovation (higher λ) diminishes the agent’s 
incentives to develop an innovation opportunity. However, this concurrently 
enhances the principal’s share on the created surplus. Thus, an increase in λ has 
two opposite effects on the principal’s expected payoff from innovation. We thus 
encounter a familiar result from the incentive literature, namely that for low levels 
of incentives (λ > ​λ​*​) both the principal and the agent would benefit from stronger 
incentives. For higher levels of incentives (λ ≤ ​λ​*​), however, only the agent benefits 
from stronger incentives, while the principal’s cost of giving up rents exceeds the ben-
efits of stronger incentives.

III.  The Agent’s Specialization Decision

A. The Agent’s Task Choice

The agent, while being charged with conducting the standard task, may privately 
observe a potential innovation with the firm-specific value Y. He is thus faced with a 
private specialization decision which cannot directly be controlled by the principal. 
Put differently, the agent needs to decide on how much effort he wants to allocate to 
the standard task versus the development of the innovation, respectively.

The next lemma emphasizes the relationship between the innovation value Y, 
which is privately observed by the agent, and his optimal effort allocation.

Lemma 3: There exists a threshold innovation value ​Y​ A​ such that for Y < ​Y​ A​, the 
agent only conducts the standard task (i.e., ​e​ S​ *​ > ​e​ I​ *​ = 0), and for Y > ​Y​ A​ the agent 
only explores the innovation (i.e., ​e​ I​ *​ > ​e​ S​ *​ = 0).

According to Lemma 3, the agent either conducts the standard task or pursues 
the innovation.12 The threshold ​Y​ A​, which captures the agent’s specialization deci-
sion, maximizes his expected utility across both tasks. Using the agent’s optimal 

12 Technically, this lemma is due to the fact that both tasks have a constant marginal expected benefit, and that 
the disutility of effort is convex in total effort. This is extremely useful, because it generates a unique threshold 
between the standard task and the innovation. However, we demonstrate in Section VID that the model can be 
extended by allowing for decreasing marginal benefits of effort, so that the agent divides his time between the two 
activities. We show that our main results—in particular the optimal adjustment of effort incentives—also hold for 
the more general framework.
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effort levels ​e​ I​ *​(β) and ​e​ I​ *​(λ, Y ) as defined by (2) and (6), his expected utility can be 
stated as 

(7)  U  ( ⋅ )  = ​ ∫ 
0
​ 
​Y​ A​

​ ​[α  +  β​e​ S​ *​  −  c(​e​ S​ *​)]​​ dΦ(Y ) 

	 + ​ ∫ 
​Y​ A​

​ 
∞

​ ​[α  +  (1  −  λ)Yμ​e​ I​ *​  −  c(​e​ I​ *​)]​​dΦ(Y ).

Note that we have suppressed the arguments of ​e​ S​ *​ and ​e​ I​ *​. For parsimony purposes, 
we stick to the same practice in the remainder of this paper. It follows directly from 
the first-order condition with respect to ​Y​ A​ that the agent’s threshold innovation 
value ​Y​ A​(β, λ) is implicitly characterized by 

(8)	 β​e​ S​ *​  −  c(​e​ S​ *​)  =  (1  −  λ)​Y​ A​μ​e​ I​ *​  −  c(​e​ I​ *​),

which is equivalent to ​U​ S​(​e​ S​ *​, β) = ​U​ I​(​e​ I​ *​, λ, ​Y​ A​). We can immediately infer from (8) 
that the agent’s choice between exploitation (standard task) and exploration (innova-
tion) is determined by his respective rents for conducting these tasks. At first glance, 
the agent’s specialization decision is beyond the principal’s control. However, recall 
from Lemma 1 that the provision of incentives for the standard task directly affects 
the agent’s associated rent extraction. Thus, we can infer from (8) that the principal 
has some latitude to indirectly control the agent’s specialization decision by adjusting 
standard incentives (β). We now clarify the relationship between effort incentives for 
the standard task and the agent’s preference for exploring potential innovation.

Proposition 1:

	 (i)	 If the principal provides the agent with stronger incentives for the standard 
task, the agent innovates less frequently. Formally, the agent’s threshold 
innovation value ​Y​ A​(β, λ) is increasing in β. 

	 (ii)	 The greater the appropriability of the innovation λ , the less the agent inno-
vates, i.e., ​Y​ A​(β, λ) is increasing in λ.

Proposition 1 establishes the fundamental mechanism by which the principal 
can indirectly control the agent’s specialization decision. Accordingly, intensifying 
effort incentives for the standard task allows the principal to make the exploration 
of innovation less attractive to the agent. The reason is as follows. From Lemma 
1, we know that the principal can affect the agent’s rent from the standard task by 
adjusting the bonus payment β. This, in turn, determines the value of conducting 
the standard task relative to developing the innovation, and hence the agent’s prefer-
ences, as reflected by the threshold ​Y​ A​. Generally speaking, it requires sufficiently 
more “promising” ideas for the agent to be innovative. Note, however, that adjusting 
standard incentives with the aim of manipulating the agent’s specialization decision 
comes at a cost for the principal: it impairs the profitability of the standard task.
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The second part of Proposition 1 provides an important and intuitive comparative 
static result for the agent’s innovation preference. The greater the appropriability of 
the innovation (λ), the weaker his preference for innovation, as reflected by a higher 
threshold value ​Y​ A​.

B. The Principal’s Preference

In order to understand the principal’s optimal compensation choices, it is useful 
to first understand the principal’s preference for innovation, and to compare her 
preferences to the actual choices made by the agent. For now it suffices to examine 
the principal’s innovation preference at the unconstrained level ​β​0​; in Section V we 
will generalize it by accounting for the optimal level of β. We define ​Y​ P​(​β​0​, λ) as the 
threshold value of Y, such that the principal prefers the agent to perform the standard 
task for all Y ≤ ​Y​ P​, and the innovation otherwise.13

Given the agent’s second-best effort levels ​e​ S​ *​ and ​e​ I​ *​ as characterized in Section 
II, the principal’s expected profit is 

(9)	 Π( ⋅ )  = ​ ∫ 
0
​ 
​Y​ P​

​ ​[V(​e​ S​ *​)  −  α  −  β​e​ S​ *​]​​ dΦ(Y )  + ​ ∫ 
​Y​ P​

​ 
∞

​ ​[λYμ​e​ I​ *​  −  α]​​ dΦ(Y ).

Note that by construction ​Y​ P​ does not depend on β. As a consequence, Π( ⋅ ) is 
always maximized at ​β​0​. The optimal choice of ​Y​ P​(​β​0​, λ) is then implicitly charac-
terized by 

(10)	 V(​e​ S​ *​)  − ​ β​0​​e​ S​ *​  =  λ​Y​ P​μ​e​ I​ *​,

which is equivalent to ​Π​ S​(​e​ S​ *​, ​β​0​) = ​Π​ I​(​e​ I​ *​, λ, ​Y​ P​ ). The principal’s preference is sim-
ply dictated by her respective payoffs from either task. As for the agent, preferences 
for a specific task choice are not affected by the fixed wage α. The next lemma 
focuses on the relationship between the appropriability of the innovation λ and the 
principal’s innovation preferences ​Y​ P​.

 Lemma 4: The principal’s preferred threshold innovation value ​Y​ P​(​β​0​, λ) is 
decreasing in λ for λ ≤ ​λ​*​, and increasing otherwise.

Lemma 4 shows that the principal’s innovation preferences, reflected by ​Y​ P​, 
are non-monotonic in the innovation appropriability λ. From Lemma 2, we know 
that the principal’s profit from innovation first increases and then decreases in λ. 
This insight drives Lemma 4. For low λ (i.e., λ ≤ ​λ​*​), the principal benefits from a 
higher share on surplus, making innovation relatively more attractive. However, this 
result is reversed for higher levels of the appropriability of innovation (i.e., λ > ​λ​*​).

13 There also exists an alternative interpretation of the threshold value ​Y​ P​(​β​0​, λ). Consider a model in which the 
principal, not the agent, makes the task decision. This could be either because the principal observed the signal Y, or 
because the agent requires some essential resources in order to pursue the innovation. In such a model, it is easy to 
see that the principal’s optimal choices are always ​β​0​ for the incentive compensation, and ​Y​ P​ for the task allocation.
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We are now well equipped to contrast the principal’s and agent’s preferences 
for exploration versus exploitation, holding incentives constant at the unconstrained 
level ​β​0​.

Proposition 2: There exists a threshold level of the innovation appropriability ​
λ​**​, with ​λ​**​ < ​λ​*​, such that the agent prefers more innovation than the principal if 
λ ≤ ​λ​**​ (i.e., ​Y​ A​(​β​0​) ≤ ​Y​ P​(​β​0​)). Otherwise, the agent prefers less innovation (i.e., ​
Y​ A​(​β​0​) > ​Y​ P​(​β​0​)).

Figure 1 illustrates the preferences of the principal and the agent, ​Y​ P​ and ​Y​ A​, 
for different values of the innovation appropriability λ.14 Consider, first, the intersec-
tion of both curves. At ​λ​**​, both the principal’s and the agent’s preferences towards 
exploration and exploitation are perfectly aligned. Put differently, we would observe 
the same effort allocation for all potential innovation values, irrespective of whether 
the agent’s specialization decision can be dictated by the principal. The specific value ​
λ​**​ of the innovation appropriability, where preferences are perfectly congruent, will 
play an important role in our subsequent analysis. For all other values of λ, we can 
infer from Figure 1 that preferences differ. More specifically, if the agent is in a rela-
tively better bargaining position than the principal because of a low appropriability 
level (λ < ​λ​**​), he prefers to focus more frequently on innovation at the expense of 

14 We show in the Appendix that, if the entire surplus goes to either the principal (λ → 1) or the agent (λ → 0), 
the principal’s preferred threshold ​Y​ P​( ⋅ ) goes to infinity. Because innovation lead to zero payoffs for the principal 
in both cases, she wants the agent to exert only the standard task, irrespective of potential innovation values. The 
same observation applies to the agent’s preferred threshold ​Y​ A​( ⋅ ) in case the principal receives the entire surplus 
(λ → 1).

 Figure 1. Task Choice: Principal versus Agent Preferences 
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the standard task. Yet, the agent has stronger preferences towards exploitation (the 
standard task) as compared to the principal if the innovation is highly appropriable 
(λ > ​λ​**​). Figure 1 thus illustrates the conflicts of interest between both the prin-
cipal and the agent, which constitutes the foundation for our subsequent analysis.

IV.  Firm’s Optimal Incentive Provision

A. Balancing Incentives and Task Choice

We can now investigate the principal’s choice of contracts which aim at balanc-
ing incentives for the standard task and the efficiency of the agent’s task choice. 
Because the agent has private information, the principal might benefit from offering 
a menu of contracts that allows the agent to self select, and thereby to reveal some 
of his private information. Even though the variable of the information asymmetry, 
Y, is continuous, the analysis above already shows that we can classify agents into 
two types: the first type (for lower values of Y ) wants to exclusively focus on the 
standard task, the other type (for higher values of Y ) wants to pursue his innovative 
idea. A useful aspect of this model that greatly simplifies the analysis is that once 
an agent has chosen to be one of these two types, the exact value of Y turns out to 
be unimportant for the purpose of designing the optimal contract. Intuitively, if the 
agent chooses to focus on the standard task, the exact value of Y is irrelevant since 
the innovation is not pursued anyway. If, on the other hand, the agent does pursue 
the innovation, the exact value of Y obviously matters for the agent’s effort decision. 
However, as we will see below, the principal’s choice of contractual instruments is 
sufficiently limited so that she would always want to offer the same contract to all 
agents that pursue their innovative ideas. We can therefore limit the analysis to the 
case where the principal offers a menu of two contracts. To do so, let {​α​*​, ​β​ *​} denote 
the contract tailored to the agent who wants to exert the standard task, and {​α​**​, ​β​ **​} 
the contract for the innovative agent, respectively. For future reference, we denote 
the optimal menu of contracts by ​Ω​*​ = {{​α​*​, ​β​ *​}, {​α​**​, ​β​ **​}}.

We immediately note two important properties of the optimal menu of contracts. 
First, we can deduce from Lemma 1 that the optimal contract for the non-innovative 
agent comprises ​α​*​ = 0. Moreover, since the innovative agent would disregard the 
standard task, his optimal contract is characterized by ​β​ **​ = 0. Thus, it remains 
to derive the optimal bonus ​β​ *​ for the non-innovative agent, and the optimal fixed 
wage ​α​**​ for the innovative agent. To characterize the optimal menu of contracts, we 
proceed in two steps. First, we derive the remaining contract components for both 
types of agents separately. Second, we characterize the optimal menu of contracts 
for different values of λ which accounts for the principal’s preference for innovation.

Consider the contract {​α​*​ = 0, ​β​ *​} a non-innovative agent would choose. This 
contract maximizes the principal’s expected profit, taking the agent’s second-best 
effort levels ​e​ S​ *​ and ​e​ I​ *​, and his threshold innovation value ​Y​ A​(β, λ) into account. The 
principal’s expected profit is thus given by 

(11)	 Π(​e​ S​ *​, ​e​ I​ *​, β, ​Y​ A​)  = ​ ∫ 
0
​ 
​Y​ A​

​ ​[V(​e​ S​ *​)  −  β​e​ S​ *​]​​ dΦ(Y )  + ​ ∫ 
​Y​ A​

​ 
∞

​ ​[λYμ​e​ I​ *​]​​ dΦ(Y ).
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Incentives for the standard task affect the principal’s expected profit in two ways. 
First, the bonus β indirectly determines the agent’s standard effort ​e​ S​ *​, which has a 
significant impact on the profitability of exploitation. Second, the bonus β influences 
the agent’s specialization decision, as reflected by the threshold ​Y​ A​(β, λ). From the 
first-order condition, the optimal bonus ​β​ *​(λ) is implicitly characterized by 

(12)	​  ∂​Π​ S​ _ ∂β ​  = ​ [​Π​ I​  − ​ Π​ S​ ]​​ ϕ(​Y​ A​) _ 
Φ(​Y​ A​)

 ​ ​ d​Y​ A​ _ 
dβ ​.

The central insight from this equation is as follows. Suppose that ​Π​ I​ > ​Π​ S​. This 
means that at ​Y​ A​(β, λ) (i.e., the agent’s point of indifference between the two tasks), 
the principal prefers innovation over the standard task. Intuitively, this corresponds 
to the case where λ > ​λ​**​ in Proposition 2 (see also Figure 1). To act upon her 
preference for innovation, the principal now adjusts the agent’s compensation. The 
first-order condition above indicates that for ​Π​ I​ > ​Π​ S​, the optimal compensation 
occurs at a point where ∂​Π​ S​/∂β is positive. Given the concavity of ​Π​ S​ (see Lemma 
1), this means that ​β​ *​(λ) < ​β​0​, i.e., the principal lowers the incentive bonus below 
the unconstrained level. The intuition is that lowering standard incentives reduces 
the agent’s rent from the standard task, and therefore encourages him to pursue more 
innovation. For ​Π​ I​ < ​Π​ S​, the opposite applies. The following proposition formal-
izes the intuition.

Proposition 3:

	 (i)	 For λ < ​λ​**​, the optimal incentive bonus lies above the unconstrained level 
(i.e., ​β​ *​(λ) > ​β​0​), and for λ > ​λ​**​, the optimal incentive bonus lies below 
the unconstrained level (i.e., ​β​ *​(λ) < ​β​0​). 

	 (ii)	 For λ < ​λ​*​, the optimal incentive bonus ​β​ *​(λ) is decreasing in λ (i.e., 
d​β​ *​(λ)/dλ < 0), and for λ > ​λ​*​, the optimal incentive bonus ​β​ *​(λ) is 
increasing in λ (i.e., d​β​ *​(λ)/dλ > 0).

Next, consider the contract {​α​**​, ​β​ **​ = 0} that an innovative agent would choose. 
Although the fixed payment ​α​**​ does not affect the agent’s effort choice, it can be 
adjusted to manipulate his specialization decision. This can be shown as follows: 
by accounting for the menu of contracts ​Ω​*​, the agent’s preferences—reflected by ​
Y​ A​—are implicitly characterized by ​U​ S​(​α​*​ = 0, ​β​ *​(λ)) = ​U​ I​(​α​**​, ​β​ **​ = 0, ​Y​ A​). 
Implicitly differentiating ​Y​ A​ with respect to ​α​**​ yields 

(13)	​  d​Y​ A​ _ 
d​α​**​

 ​  =  − ​  1 _  (1  −  λ)μ​e​ I​ *​
 ​  <  0.

Clearly, providing the agent with a higher fixed wage ​α​**​ as part of a menu of con-
tracts encourages him to pursue more innovation. The optimal fixed payment ​α​**​ 
maximizes the principal’s expected profit given by 

(14)	 Π( ⋅ )  = ​ ∫ 
0
​ 
​Y​ A​

​ ​[V(​e​ S​ *​)  − ​ β​ *​​e​ S​ *​]​​ dΦ(Y )  + ​ ∫ 
​Y​ A​

​ 
∞

​ ​[λYμ​e​ I​ *​  − ​ α​**​]​​ dΦ(Y ).
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The optimal fixed wage ​α​**​(λ) is implicitly characterized by the following first-
order condition: 

(15)	​ [​Π​ S​  − ​ Π​ I​ ]​​ ϕ(​Y​ A​) _ 
Φ(​Y​ A​) ​ ​ 

d​Y​ A​ _ 
d​α​**​

 ​  =  1.

This equation offers an important insight into the optimal design of incentive con-
tracts. Clearly, (15) can only be satisfied if ​Π​ I​ > ​Π​ S​. In this case, the principal 
strictly prefers innovation over the standard task, and is thus willing to offer the 
agent a contract comprising a strictly positive base wage ​α​**​(λ). Otherwise, innova-
tions are of relatively less importance for the principal such that she refrains from 
offering the agent a strictly positive fixed wage. To get a more complete picture of 
the optimal base wage offered to innovative agents, the next proposition elaborates 
on the relationship between ​α​**​(λ) and the innovation appropriability λ.

Proposition 4:

	 (i)	 For λ ≤ ​λ​**​, the optimal wage ​α​**​(λ) is identical to the unconstrained level 
(i.e., ​α​**​(λ) = ​α​0​ = 0), and for λ > ​λ​**​, the optimal wage ​α​**​(λ) lies above 
the unconstrained level (i.e., ​α​**​(λ) > ​α​0​ = 0). 

	 (ii)	 For ​λ​**​ < λ < ​λ​*​, the optimal wage ​α​**​(λ) is increasing in λ (i.e., d​α​**​(λ)/dλ
> 0), and for λ > ​λ​*​, the optimal wage ​α​**​(λ) is decreasing in λ (i.e., 
d​α​**​(λ)/dλ < 0).

Figure 2 illustrates the fundamental insights from Propositions 3 and 4. Consider, 
first, the optimal incentive bonus ​β​ *​(λ) offered to non-innovative agents. For low 
levels of λ (i.e., λ ≤ ​λ​*​), ​β​ *​(λ) is decreasing in λ, reflecting the above-mentioned 
desire of the principal to encourage innovation by reducing the agent’s rent from the 
standard task. This desire reaches its peak at ​λ​*​, where we know from Lemma 2 that 
the principal obtains maximal profits from innovation. Observe further that at ​λ​**​, 
the optimal bonus ​β​ *​(λ) becomes identical to the unconstrained level ​β​0​. Indeed, we 
know from Proposition 2 (see also Figure 1) that at ​λ​**​, the principal and the agent 
have congruent preferences towards the task choice, reflected by identical innova-
tion thresholds ​Y​ P​ and ​Y​ A​. Finally, for λ < ​λ​**​, the principal wants to actively dis-
courage innovation and refocus the agent on the standard task. For this, she raises 
the incentive bonus above the unconstrained level.

Since the optimal fixed payment ​α​**​(λ) for innovative agents does not interfere 
with effort incentives, its exclusive objective is to manipulate the agent’s specializa-
tion decision. We know from Proposition 2 that the agent is too innovative from the 
principal’s perspective for λ < ​λ​**​. To discourage innovation, the optimal menu of 
contracts comprises higher-powered incentives (i.e., ​β​ *​(λ) > ​β​0​), and a zero fixed 
payment (i.e., ​α​*​ = 0). For λ > ​λ​**​, however, the principal wants the agent to pur-
sue more innovation, which can be achieved by lowering standard incentives (as 
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discussed above), and offering a strictly positive base wage for innovative agents. 
Because the principal’s benefit from innovation reaches its peak when λ = ​λ​*​, she 
minimizes standard incentives and maximizes the base wage for innovative agents.

From the previous discussion, it becomes clear that the optimal menu of contracts ​
Ω​*​(λ) crucially hinges on how much of the surplus from innovation can be captured 
by the principal, which is dictated by the innovation appropriability level λ. Because 
a contractual choice on the side of the agent encourages more innovation, offering a 
menu of contracts can only be optimal whenever the agent is not innovative enough, 
which is clearly the case for λ > ​λ​**​. The next proposition characterizes the optimal 
menu of contracts for all values of λ based upon our previous observations.

Proposition 5: To discourage innovation for λ ≤ ​λ​**​, the principal offers the 
agent the contract ​{​α​*​ = 0, ​β​ *​(λ)}​. In contrast, to encourage more innovation for 
λ > ​λ​**​, the principal offers the agent a menu of contracts ​Ω​*​ = {{​α​*​ = 0, ​β ​*​(λ)}, 
{​α​**​(λ), ​β​ **​ = 0}}.

Proposition 5, in conjunction with Proposition 3, addresses an important economic 
puzzle around low-powered incentives. Many formal and informal empirical studies 
(e.g., Williamson 1975; Parent 2002) have commented on the prevalence of low-pow-
ered incentives in many (but not all) organizations. If one only focuses on the formal 
job description of an employee, it might seem that higher-powered incentives would 
generate more efficient outcomes. In fact, this is clearly apparent in the current model: 
for λ > ​λ​**​ we observe low-powered incentives (i.e., ​β​ *​(λ) < ​β​0​); by focusing 
only on the standard task, it would appear as if there are opportunities for increasing 
(Pareto-) efficiency by enhancing incentives to ​β​0​. However, a central insight of this 
paper is that focusing on the planned and measurable part of the job description is too 
narrow a focus, because employees may also have opportunities to pursue unplanned 

 Figure 2. Innovation Appropriability and the Optimal Menu of Contracts 
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innovation. Proposition 3 thus shows under what conditions the presence of these 
unplanned innovations can explain the prevalence of these low-powered incentives. 
The condition is simply that most of the surplus from innovation can be appropriated 
by firms. Empirically, this is likely to be true in many, but not all, circumstances.

B. Equilibrium Levels of Innovation

In the analysis of Section IIIB, we evaluated preferences at the unconstrained 
performance bonus ​β​0​. We now complete the analysis by explaining how inno-
vation preferences behave at the optimal menu of contracts ​Ω​*​(λ) ∈ {{0, ​β​ *​(λ)}, 
{​α​**​(λ), 0}}. Proposition 3 explains the optimal choice of incentives, and Proposition 
1 shows how incentives affect the agent’s specialization decision. We now charac-
terize how the agent’s equilibrium choice ​Y​ A​(​Ω​*​(λ), λ) depends on λ. Moreover, 
we examine whether in equilibrium there remains any discrepancy between the 
principal’s and agent’s innovation preferences, i.e., we compare ​Y​ P​(​Ω​*​(λ), λ) with 
​Y​ A​(​Ω​*​(λ), λ).

Proposition 6:

	 (i)	 For λ < ​λ​**​, the optimal menu of contracts ​Ω​*​(λ) discourages innovation by 
raising the agent’s innovation threshold ​Y​ A​ (i.e., ​Y​ A​(​Ω​*​(λ), λ) > ​Y​ A​(​β​0​, λ)). 
For λ > ​λ​**​, the optimal menu of contracts encourages innovation by lower-
ing the agent’s innovation threshold ​Y​ A​ (i.e., ​Y​ A​(​Ω​*​(λ), λ) < ​Y​ A​(​β​0​, λ)). 

	 (ii)	 For λ < ​λ​**​, the agent chooses too many innovations relative to the prin-
cipal’s preference (i.e., ​Y​ A​(​Ω​*​(λ), λ) < ​Y​ P​(​Ω​*​(λ), λ)). For λ > ​λ​**​, the 
agent chooses too few innovations relative to the principal’s preference (i.e., 
​Y​ A​(​Ω​*​(λ), λ) > ​Y​ P​(​Ω​*​(λ), λ)).

Figure 3 illustrates the results from Proposition 6. The agent’s equilibrium 
response to incentives is very intuitive. For λ > ​λ​**​, the optimal menu of contracts 
generates fewer rents for the standard task, which encourages the agent to focus 
relatively more on innovation, thus resulting in a lower threshold ​Y​ A​. The opposite 
is true for λ < ​λ​**​.

The principal’s preferred innovation threshold ​Y​ P​ also depends on the level of 
incentives.15 Interestingly, we find that the principal’s innovation threshold under 
the contract {0, ​β​ *​}, ​Y​ P​(​β​ *​, λ), always lies below ​Y​ P​(​β​0​, λ), the threshold based on 
the unconstrained performance bonus (except for λ = ​λ​**​ where ​β​ *​ = ​β​0​). The rea-
son is that ​β​0​ maximizes the principal’s net value from the standard task. Any other 
choice of β, irrespective of whether it is higher or lower than ​β​0​, generates lower 
profits from the standard task, which, in turn, raises the principal’s preference for 
innovation (implying a lower innovation threshold ​Y​ P​). However, the effect of the 
alternative contract {​α​**​, 0} on the principal’s preference ​Y​ P​ is ambiguous. First, 

15 Refer to Proof of Proposition 6 in the Appendix for the analytical results discussed below.
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this contract comprises a fixed wage which lies above the unconstrained level for ​
λ​**​ < λ < 1, which in turn compromises the efficiency of innovation. Thus, one 
could expect ​Y​ P​ to increase. On the other hand, the principal sets ​β​ **​ = 0, render-
ing the standard task unprofitable. As can be inferred from our previous discussion, 
this would clearly lower ​Y​ P​. The net effect on ​Y​ P​, however, depends in particular on 
the appropriability level λ. Finally, comparing the agent’s equilibrium innovation 
choice ​Y​ A​(​Ω​*​(λ), λ) with the principal’s equilibrium preference ​Y​ P​(​Ω​*​(λ), λ), we 
note that except at ​λ​**​, there always exists a discrepancy. Despite providing optimal 
incentives, for high appropriability levels of innovation the principal still finds that 
the agent pursues too few innovations (i.e., for λ > ​λ​**​, we have ​Y​ A​(​Ω​*​(λ), λ) > 
​Y​ P​(​Ω​*​(λ), λ)).16 The interval (​Y​ P​(​Ω​*​(λ), λ), ​Y​ A​(​Ω​*​(λ), λ)) has an interesting inter-
pretation: every time a perceived innovation value Y falls into this interval, the 
agent privately forgoes the innovation opportunity, even though the principal would 
have liked to see him pursue it. For low levels of appropriability, we encounter the 
opposite situation. The agent pursues more innovation than the principal wants him 
to. Every time the potential innovation value Y falls into the range (​Y​ A​(​Ω​*​(λ), λ), 
​Y​ P​(​Ω​*​(λ), λ)), the agent pursues the innovation, even though the principal would 
have preferred the agent to stick to the standard task.

As an aside, one may wonder whether the trade off between standard tasks 
and innovation could not be solved by hiring different groups of employees, one 
that focuses solely on standard tasks, the other on innovation. The analysis above 

16 It is interesting to note that while standard incentives could be tailored to ensure perfect alignment of prefer-
ences, it is not optimal for the principal to do so. This is because adjusting the menu of contracts is costly to the 
principal: raising the fixed wage α imposes additional costs without affecting the effort intensities, and changing 
the incentive bonus β lowers the efficiency of the standard task.
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 Figure 3. Menu of Contracts and the Adjustment of Preferences 
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clarifies that this is never optimal in this setting, for two reasons. First, a purely 
innovative agent would pursue every innovation as long as Y > 0 and λ < 1, and 
thus, would always be too innovative from the perspective of the principal. Second, 
agents “exclusively” employed for standard tasks might still come up with valuable 
innovative ideas, and will thus still be exposed to the trade off between sticking to 
the standard task versus pursuing the innovation.

V.  Evaluating the Agent’s Specialization Decision

In this section, we characterize several benchmarks which allow us to shed more 
light on the efficiency of the agent’s private task choice from a social perspective. 
There are a variety of benchmarks against which one may evaluate the agent’s task 
choice between innovation and the standard task, as characterized by ​Y​ A​(​Ω​*​(λ), λ). 
We have already encountered one such benchmark, namely the principal’s prefer-
ence for innovation, as characterized by ​Y​ P​(​Ω​*​(λ), λ). We now explore two addi-
tional benchmarks that are based on the joint utility of the principal and the agent, 
using the sum of utilities as a standard social welfare criterion. Our first benchmark 
assumes an active social planner who can implement a first-best contract. Our sec-
ond benchmark assumes a passive social planner who cannot influence the equilib-
rium outcome, but evaluates whether there is too much or too little innovation from 
a social perspective.

Our first social benchmark is the first-best outcome, which is defined as the 
outcome chosen by a social planner who can control all of the principal’s and the 
agent’s choices. In our model, the social planner would need to be able to control the 
agent’s task choice—the corresponding threshold is denoted by ​̂  Y ​—and his effort 
choices ​e​S​ and ​e​I​ in order to maximize the total surplus, given as 

(16)	S (​e​S​, ​e​I​, ​  Y ​)  = ​ ∫ 
0
​ 
​̂  Y ​

​ ​[V(​e​S​)  −  c(​e​S​)]​​ dΦ(Y )  + ​ ∫ 
​̂  Y ​
​ 
∞

​ ​[Yμ​e​I​  −  c(​e​I​)]​​ dΦ(Y ).

The first-best effort choices ​e​ S​ FB​ and ​e​ I​ FB​ are implicitly characterized by the first-
order conditions ​V ′​(​e​S​) = ​c′​ (​e​S​) and Yμ = ​c′​ (​e​I​). Moreover, the first-best innova-
tion threshold ​​  Y ​​ FB​ satisfies 

(17)	 V(​e​ S​ FB​)  −  c(​e​ S​ FB​)  = ​​   Y ​​ FB​μ​e​ I​ FB​  −  c(​e​ I​ FB​).

Notice that ​​  Y ​​ FB​ is not affected by the innovation appropriability λ. This can be 
observed because λ determines only the division of surplus from the innovation, and 
not the total surplus.

Our second social benchmark takes the equilibrium outcome—​Ω​*​(λ), ​Y​ A​(​Ω​*​(λ)), ​
e​ S​ *​, and ​e​ I​ *​—as given, and considers the preferences of a (powerless) social planner 
that cares about the total surplus. One can easily verify that the second-best social 
benchmark ​​  Y ​​ SB​(​Ω​*​(λ), λ) satisfies 

(18)	 V(​e​ S​ *​)  −  c(​e​ S​ *​)  = ​​   Y ​​SB​μ​e​ I​ *​  −  c(​e​ I​ *​).
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We now state the main proposition for this section.

Proposition 7: Consider the first-best social benchmark ​​  Y ​​ FB​ and the second-
best benchmark ​​  Y ​​ SB​(​Ω​*​(λ), λ).

	 (i)	 Relative to the first-best innovation threshold ​​  Y ​​ FB​, there is too much innova-
tion for sufficiently low λ (i.e., ​Y​ A​(​Ω​*​(λ), λ) < ​​  Y ​​ FB​), and too little innova-
tion for sufficiently high λ (i.e., ​Y​ A​(​Ω​*​(λ), λ) > ​​  Y ​​ FB​). 

	 (ii)	 Relative to the first-best innovation threshold ​​  Y ​​  SB​(​Ω​*​(λ), λ), there is too 
much innovation for λ < ​λ​**​ (i.e., ​Y​ A​(​Ω​*​(λ), λ) < ​​  Y ​​ SB​(​Ω​*​(λ), λ)), and too 
little innovation for λ > ​λ​**​ (i.e., ​Y​ A​(​Ω​*​(λ), λ) > ​​  Y ​​ SB​(​Ω​*​(λ), λ)).

Figure 4 illustrates this result. Consider the first-best social benchmark ​​  Y ​​ FB​. 
Clearly, ​​  Y ​​ FB​ always lies above ​Y​ A​(​Ω​*​(λ), λ) at λ = 0. We briefly sketch the main 
intuition. At λ = 0, the agent always provides efficient effort ​e​ I​ FB​, because he is the 
full residual claimant of the innovation value. For ​​  Y ​​ FB​, the agent would also provide 
efficient effort ​e​ S​ FB​, but this is not true for ​Y​ A​(​Ω​*​(0), 0), since the agent is not the full 
residual claimant of the value of the standard task. This could only be achieved if 
the principal “sells” the firm to the agent by setting α < 0.17 This, however, would 
violate the agent’s liability limit, and is thus not feasible in this environment.

17 Alternatively, the principal could set α = 0 and adjust β such that the agent obtains the entire surplus from 
the standard tasks. In this case, however, the principal’s net payoff from the standard task is zero, implying that this 
solution cannot be optimal.
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Figure 4. Social Efficiency of the Agent’s Task Choice 
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Finally, the second-best social benchmark ​​  Y ​​ SB​(​Ω​*​(λ), λ) is essentially a weighted 
average of the principal’s and the agent’s preferences. It therefore behaves in a 
straightforward manner: whenever the principal wants more or less innovation than 
the agent, then the same is true for the social planner.

VI.  Extensions

A. Tolerance of Failure

In a recent paper, Manso (2007) investigates how firms can encourage more 
innovation in a dynamic environment. He shows that the optimal dynamic contract 
exhibits tolerance for failure in the short run, but high-powered incentives in the 
long run. While Manso focuses on the case where the agent exerts only innovative 
activities, we consider how incentives for standard tasks interfere with incentives to 
innovate in a multitasking setting. It is therefore not only logical, but also of high 
practical relevance to examine whether adopting a tolerance policy can be optimal 
for firms when exploitation and exploration are two competing objectives.

We will think of the tolerance policy as a choice of organizational culture, and 
assume that the organization either tolerates failure or not. We also use a very sim-
ple specification where tolerance means that the firm can soften the impact of an 
employee’s failure to either produce an innovation, or to generate a positive signal 
for the standard task.18 Specifically, we assume that tolerance of failure means that 
the agent obtains ε > 0 instead of 0 in case of failure. For simplicity, we further 
assume that the provision of ε is costless to the principal. What we have in mind is a 
corporate culture where unsuccessful agents are protected and, e.g., not humiliated 
in front of coworkers, which, in turn, provides them with a higher utility level as 
compared to the most severe punishment strategy.19 By allowing for tolerance, the 
agent’s first-order conditions (2) and (6) change to 

(19)	 β  −  ε  = ​ c′​ (​e​S​),

(20)	 (1  −  λ)Yμ  −  με  = ​ c′​ (​e​I​).

For simplicity, suppose that ε is sufficiently small such that the agent still wants to 
implement effort under either tasks, i.e., ​e​ S​ *​, ​e​ I​ *​ > 0. Clearly, tolerance for failure 
curbs effort incentives for both tasks, which constitutes indirect costs of a tolerance 
policy for the principal. However, the benefit of adopting a tolerance policy lies in 
the motivation of innovative activities, as exposed by the next lemma.

18 An alternative modeling strategy would be to assume that the firm has fine-grained control over tolerance 
for failure, so that it could distinguish between the failures of employees that attempted to innovate, versus the 
failures of employees that worked on their standard tasks. Allowing the firm to have such a fine-grained control 
over tolerance for failure would make the policy clearly more powerful. We focus on the case where tolerance for 
failure occurs at a coarser level of corporate culture, which appears to be closer to the empirical phenomenon we 
are trying to model here.

19 A large sociology literature discusses how corporate culture can encourage or discourage innovation. See, for 
instance, the influential work of March (1991).
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Lemma 5: Whenever the agent is sufficiently less likely to succeed in innovation 
than in standard tasks, a tolerance policy induces more innovation. Formally, there 
exists a threshold ​μ​*​ > 0 such that tolerance for failure leads to more innovation if 
μ < ​μ​*​. 

Tolerance for failure encourages more exploration whenever the agent is less 
likely to succeed in innovation as compared to standard tasks. In this case, a toler-
ance policy is a viable means to promote innovative activities inside firms. Indeed, 
Xuan Tian and Tracy Y. Wang (2009) provide empirical evidence that tolerance for 
failure leads to more innovation inside firm. However, a tolerance policy is clearly 
a two-edged sword: while it may promote innovation, it also impairs the agent’s 
incentives to implement effort for exploitation and exploration. The next proposition 
clarifies that although adopting a tolerance policy can induce the agent to be more 
innovative, it is not always optimal for the principal to do so.

Proposition 8: Suppose that tolerance for failure encourages more innova-
tion (i.e., μ < ​μ​*​). Then, there exists a threshold innovation appropriability level ​  λ​,
with ​  λ​ ≥ ​λ​**​, such that the principal should never be tolerant towards failure for 
λ ≤ ​  λ​, but should always be tolerant for λ > ​  λ​.

Our previous observations indicate that the agent is already too innovative for 
low levels of innovation appropriability. A tolerance policy would only induce more 
innovation at the expense of the standard task, and can thus not be optimal. For 
λ > ​λ​**​, however, the principal clearly wants the agent to be more innovative (see 
Proposition 6). Then, the principal faces a trade off between encouraging more inno-
vations and, concurrently, mitigating effort incentives for both tasks. According to 
Proposition 8, adopting a tolerance policy is only optimal for the principal if inno-
vations are highly firm specific (i.e., λ > ​  λ​). Only in this case, the pursuit of more 
innovative ideas compensates the principal for lower effort.

B. Investing in Employee Innovation

Employment contracts are not the only tool for the principal to influence the 
agent’s choice between exploitation and exploration. For instance, the principal 
can invest in human capital, in order to improve the agent’s ability to successfully 
develop innovation, thus making exploration more attractive. In the same vein, the 
principal can provide access to physical assets and infrastructure in order to facili-
tate the pursuit of promising ideas. For instance, Google cultivates a creative envi-
ronment by allowing its employees to dedicate one day every week to pursuing their 
potentially innovative ideas.

To capture potential investments in employee innovation, we now endogenize 
the likelihood of successfully bringing an innovative idea to fruition. Technically, 
suppose the principal can affect the innovation process by choosing μ ∈ ​[ ​μ _​, ​_ μ ​ ]​, 
where 0 < ​μ _​ < ​_ μ ​ < 1. Improving the agent’s ability to successfully develop an 
innovation imposes convex costs c(μ), where c(​μ _​) = 0 and c(​_ μ ​) = ∞. Intuitively, 
investing in employee innovation has two effects (see the Appendix for a formal 
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proof). First, it makes exploration more attractive to the agent such that he becomes 
more innovative (specialization effect). Technically, the agent’s threshold ​Y​ A​ 
decreases in μ. Second, once pursuing a promising idea, the agent is motivated to 
work harder in order to turn this idea into an exploitable innovation (incentive effect). 
Technically, the agent’s innovation effort ​e​ I​ *​ increases in μ for all λ < 1. Thus, 
investing in employee innovation is a viable means to promote exploration activities 
within firms. Clearly, according to our previous observations, this might not always 
be desirable from the principal’s perspective. The next proposition exposes a condi-
tion for investing in employee innovation being profitable for the principal.

Proposition 9: There exists a threshold level of the innovation appropriability ​
λ​***​, with ​λ​***​ < ​λ​**​, such that it is optimal for the principal to invest in employee 
innovation for ​λ​***​ < λ < 1 (i.e., ​μ​*​(λ) > ​μ _​ ). Otherwise, the principal never invests 
in employee innovation (i.e., ​μ​*​(λ) = ​μ _​ ).

The most important insight is that for sufficiently low appropriability levels (λ ≤ ​
λ​***​), the principal refuses to invest in innovation, even though innovation does 
occur in equilibrium. Put differently, the principal deliberately keeps the return to 
innovation down, in order to discourage the agent from pursuing innovation. Such a 
behavior is clearly socially inefficient. This insight further explains why some com-
panies lack innovation: their strategy is to focus on their core business where tasks 
are measurable, so that innovation becomes a distraction.

For high levels of innovation appropriability (i.e., ​λ​**​ < λ < 1), we know from 
Proposition 6 that the agent is not innovative enough. In this case, it is intuitively 
clear that the principal finds it optimal to invest in employee innovation, in order to 
encourage more innovation. An interesting observation can be made for intermedi-
ate values of λ (i.e., ​λ​***​ < λ < ​λ​**​). Although the agent is already too innovative, 
the principal still finds it optimal to invest in employee innovation. This observation 
is rooted in the incentive effect emphasized above, which has a positive effect on 
the principal’s expected payoff from innovation. Here, the incentive effect clearly 
outweighs the specialization effect, such that it is optimal for the principal to sup-
port innovative activities despite distracting the agent even more from exploitation.

C. Allocation of Intellectual Property Rights

One interesting implication from our model concerns the allocation of intellec-
tual property rights (IPR, henceforth). If one models the allocation of IPR—see 
Aghion and Tirole (1994) or Hellmann (2007) for two examples—then one invari-
ably obtains the result that allocating IPR to the agent increases his share of the 
surplus from innovation. In other words, if ​λ​P​ (​λ​A​) denotes the division of rents 
when the principal (agent) owns the IPR, then one can expect that ​λ​P​ > ​λ​A​ (​λ​P​ < ​
λ​A​). Figure 5 illustrates the principal’s expected profit for the optimal menu of con-
tracts ​Ω​*​(λ) ∈ {{0, ​β​ *​(λ)}, {​α​**​(λ), 0}}, and thus provides a simple visualization for 
evaluating the principal’s decision on whether to relinquish IPR to the agent. For 
example, for ​λ​P​ > ​λ​*​, the principal might want to relinquish IPR, whereas for ​λ​P​ < ​
λ​*​, she would never want to do so. Another interesting special case is where IPR 
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convey absolute bargaining power, so that either ​λ​P​ = 1 or ​λ​P​ = 0. In this case, 
Figure 5 reveals that the principal would never relinquish IPR.

D. Continuous Task Choice

The fundamental insight from our discrete task choice model is that the incen-
tive bonus for the standard task lies above the unconstrained level (i.e., ​β​ *​(λ) > ​β​0​)
for a low innovation appropriability (0 ≤ λ < ​λ​**​), and below the unconstrained 
level (i.e., ​β​ *​(λ) < ​β​0​) for high appropriability levels (​λ​**​ < λ < 1). In this sec-
tion, we demonstrate that this result even holds in a more general setting where the 
agent’s task choice is continuous.

In an environment with a continuous task choice and private information about 
Y, it is optimal for the principal to offer the agent a menu consisting of a continuum 
of contracts. To keep the subsequent analysis tractable, however, assume that Y can 
also be observed by the principal, but she needs the agent to bring the idea to frui-
tion. This, in turn, allows us to focus exclusively on a single contract which aims at 
balancing effort incentives and the agent’s effort allocation.

To ensure that the agent makes a continuous task choice, we relax our initial 
assumption of constant marginal benefits for the standard task and innovation. In 
particular, let Pr[ S = 1 | ​e​s​] = ρ(​e​s​) be the conditional probability that S = 1, with ​
ρ′​ (​e​S​) > 0 and ​ρ″​ (​e​S​) < 0. Moreover, the conditional probability of the innova-
tion process being successful is Pr[ Y > 0 | ​e​I​ ] = μ(​e​I​ ), with ​μ′​ (​e​I​) > 0 and ​μ″​ (​e​I​)
< 0. To ensure interior solutions, we also assume that ​ρ′​ (0) = ​μ′​ (0) = ∞.

Given a bonus contract (α, β), the agent chooses his effort levels ​e​S​ and ​e​I​ to 
maximize his expected utility 

(21)	U (​e​S​, ​e​I​)  =  α  +  βρ(​e​S​)  +  (1  −  λ)μ(e)  −  c(​e​S​  + ​ e​I​).

Figure 5. Menu of Contracts and Expected Profits 
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It can be deduced from the first-order conditions that the agent’s second-best effort 
levels ​e​ S​ *​ and ​e​ I​ *​ are implicitly characterized by 

(22)	 β​ρ′​ (​e​S​)  = ​ c′​ (e),

(23)	 (1  −  λ)​μ′​ (​e​I​)  = ​ c′​ (e).

The next lemma summarizes important comparative statics results.

Lemma 6: In the continuous task choice model, the agent’s

	 (i)	 effort for the standard task ​e​ S​ *​ is increasing in the incentive bonus β and in the 
innovation appropriability λ (i.e., d​e​ S​ *​/dβ > 0 and d​e​ S​ *​/dλ > 0); 

	 (ii)	 innovation effort ​e​ I​ *​ is decreasing in the incentive bonus β and in the innova-
tion appropriability λ (i.e., d​e​ I​ *​/dβ < 0 and d​e​ I​ *​/dλ < 0); 

	 (iii)	 total effort ​e​*​ = ​e​ S​ *​ + ​e​ I​ *​ is increasing in the incentive bonus β and decreas-
ing in the innovation appropriability λ (i.e., d​e​*​/dβ > 0 and d​e​*​/dλ < 0).

It is intuitively clear that more standard incentives alter the agent’s effort alloca-
tion towards a stronger focus on the standard task. The opposite observation can be 
made for the agent’s incentives to innovate, which is (reversely) captured by the 
appropriability parameter λ.

To illustrate potential conflicts of interests with respect to the agent’s effort allo-
cation, we now identify the effort allocation desired by the principal. For a given 
innovation appropriability λ, the principal prefers the effort levels ​e​S​ and ​e​I​ which 
maximize 

(24)	 Π(​e​S​, ​e​I​)  =  V(​e​S​)  +  λYμ(​e​I​)  −  c(​e​S​  + ​ e​I​).

The effort levels desired by the principal, denoted ​e​ S​ P​ and ​e​ I​ P​, are implicitly charac-
terized by the following first-order conditions: 

(25)	​ V ′​ (​e​S​)  = ​ c′​ (e),

(26)	 λY​μ′​ (​e​I​)  = ​ c′​ (e).

The next lemma contrasts the principal’s with the agent’s preferences for innova-
tion, and thus provides an intuitive rationale for the subsequently investigated con-
tract adjustments.

 Lemma 7: There exists a threshold level of the innovation appropriability ​λ​**​ such 
that the agent focuses too much on innovation for λ ≤ ​λ​**​ (i.e., ​e​ I​ *​ ≥ ​e​ I​ P​ ), and too 
little for λ > ​λ​**​ (i.e., ​e​ I​ *​ < ​e​ I​ P​ ).
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As for the discrete task choice model, the conflict of interests between the prin-
cipal and the agent is determined by the appropriability of innovation opportuni-
ties. In particular, low levels of innovation appropriability induce the agent to be 
too innovative from the principal’s perspective, while the opposite is true for high 
appropriability levels.

It remains to characterize the optimal bonus contract (​α​*​, ​β​ *​). The principal’s 
problem can be stated as follows: 

(27)	​    
 
  max    

α,β
 ​Π(α, β)  =  V(​e​ S​ *​)  −  α  −  ρ(​e​ S​ *​)β  +  λYμ(​e​ I​ *​),

where α ≥ 0 and α + β ≥ 0. Note, first, that the agent’s liability limit implies ​
α​*​ = 0.20 For convenience, let ​Π​ S​ ≡ V(​e​ S​ *​) − ρ(​e​ S​ *​)β and ​Π​ I​ ≡ λYμ(​e​ I​ *​). 
Accordingly, the optimal bonus ​β​ *​(λ) is implicitly characterized by the following 
first-order condition: 

(28)  ​   d Π(β) _ 
dβ ​   = ​  d​Π​ S​ _ 

dβ ​  + ​  d​Π​ I​ _ 
dβ ​  =  0

(29)	 = ​ [​V ′​(​e​ S​ *​)  −  β​ρ′​ (​e​ S​ *​)]​​ d​e​ S​ *​
 _ 

dβ ​  −  ρ(​e​ S​ *​)  +  λY​μ′​ (​e​ I​ *​)​ 
d​e​ I​ *​ _ 
dβ ​  =  0.

The first term on the right-hand side of (28) represents the effect of increasing β 
on the principal’s net payoff from the standard task. The second term captures the 
decline in her expected net payoff from innovation when enhancing incentives for 
the standard task, and hence, distracting the agent from pursuing identified innova-
tion opportunities. As in the previous discrete task choice model, the optimal bonus ​
β​ *​(λ) thus needs to balance incentives for the standard task and the agent’s motiva-
tion to develop innovation. To evaluate the optimal bonus ​β​ *​(λ) for different values 
of λ, it is essential to first characterize the optimal bonus in the absence of innova-
tion opportunities, i.e., the unconstrained bonus ​β​0​. To do so, suppose for a moment 
that Y = 0. Then, the first-order condition (28) simplifies to 

(30)	​  d​Π​ S​ _ 
dβ ​  =  0.

Clearly, in the absence of innovation opportunities, we obtain the same uncon-
strained incentive payment ​β​0​ as in the discrete task choice model. We are now 
equipped to characterize the optimal bonus ​β​ *​(λ) for different levels of the innova-
tion appropriability λ.

Proposition 10: For sufficiently low levels of innovation appropriability λ, the 
optimal bonus ​β​ *​(λ) lies above the unconstrained level (i.e., ​β​ *​(λ) > ​β​0​). In con-
trast, for sufficiently high levels of innovation appropriability λ, with λ < 1, the 
optimal bonus ​β​ *​(λ) lies below the unconstrained level (i.e., ​β​ *​(λ) < ​β​0​).

20 See Proof of Proposition 1 for a formal derivation.



Vol. 3 No. 1� 105Hellmann and Thiele: Incentives and Innovation

According to Proposition 10, our main insight from the discrete task choice 
model—namely that low innovation appropriability levels are accompanied with 
higher-powered incentives for the standard task, and high innovation appropriability 
levels with lower-powered incentives—also holds in a more general continuous task 
choice framework.

E. Stock-Based Compensation

Our analysis rests on a fundamental assumption that innovations are not con-
tractible. This is an intuitive assumption: the outcome of certain tasks cannot be 
specified in advance, and we define these tasks as innovation. One interesting 
objection to this line of reasoning is that even if innovations cannot be specified 
in advance, it may still be possible to design incentive contracts for them. On a 
purely theoretical basis, Maskin and Tirole (1999) propose a mechanism design 
solution to this problem, showing how the problem of unspecified contingencies 
can be solved by playing a revelation game that is based on utilities implied by 
these unspecified contingencies. The mechanism proposed by Maskin and Tirole 
(1999), however, has been criticized for being too abstract to be of any practical 
use. In addition we note that their mechanism relies on risk-averse agents and the 
absence of any wealth constraints.

A more practical solution to the non-contractibility problem seems to be the use 
of stocks or stock options. Indeed, it is often argued that employee stock options are 
a useful way of motivating employees in innovative firms. In this section, we exam-
ine whether stock options can solve the multitasking problem between planned and 
unplanned activities.

Stock options clearly rely on a company either being listed on a stock exchange, 
or else having clear expectations of going public or being acquired in the foreseeable 
future. Stock options are therefore not a solution for the vast majority of privately 
held firms. Even if a company is publicly listed, there are many problems with using 
stock options to compensate unplanned activities. First, the firm must have a good 
understanding of the timing of the innovation in order to set an appropriate maturity 
date for the stock option. Second, the firm must be able to prevent the employee 
from hedging his financial position in the company. Third, it is rarely possible to 
price employee stock options in a manner that actually provides efficient incentives.

Let us elaborate on the latter point. If the only uncertainty about the firm’s value 
is due to one employee’s choice of the assigned versus the unplanned task, then it is 
theoretically possible to set a strike price of the option such that this employee cap-
tures enough of the appreciation value to face efficient incentives. However, as soon 
as we allow for other uncertainty in the value of the firm, setting a strike price to 
provide efficient incentives becomes more problematic. With a stochastic firm value, 
stock options are either in the money, in which case employee incentive to create 
innovations are severely diluted; or stock options are under water, in which case they 
have no incentive effect at all. Moreover, awarding stock options is expensive for the 
firm as it requires a transfer of rents to employees.

To illustrate our last argument, let us consider a simple extension of our base 
model which allows the principal to award stock options to the agent. For simplicity, 
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suppose the firm exists only for two periods, and profits are paid out in the last 
period. The firm’s total profit in the last period, denoted Π, is 

(31)	 Π  = ​ ~ Π​  + ​ Π​ A​(​e​S​, ​e​I​, Y, λ),

where ​Π​ A​(​e​S​, ​e​I​, Y, λ) denotes the agent’s contribution to firm value, and ​
~ Π​ as the 

value which stems from other assets and agents. Assuming a perfect capital market, 
the stock price p in t = 1 is 

(32)	 p  = ​  1 _ n ​Π  = ​  1 _ n ​​[​~ Π​  + ​ Π​ A​(​e​S​, ​e​I​, Y, λ)]​,

where n denotes the number of stocks.
From an ex ante perspective, the firm’s total profit—and thus the stock price p—is 

a continuous random variable with Π ∈ [0, ∞) and standard deviation σ. Assuming 
zero discounting and letting ​

_
 p ​ denote the strike price, the expected value φ of one 

stock option is 

(33)	 φ​(​_ p ​, n)​  =  E​[max​{ p  − ​
_
 p ​, 0}​]​  =  E[max​{​ 1 _ n ​ ​∏  ​  ​  ​− ​ _ p ​, 0}​].

Recall that Π = ​~ Π​ + ​Π​ A​(​e​S​, ​e​I​, Y, λ), where ​
~ Π​ and ​Π​ A​ are assumed to be indepen-

dent random variables. Let Ψ(Π | ​e​S​, ​e​I​, Y ) denote the cumulative distribution func-
tion of Π conditional on the agent effort levels ​e​S​ and ​e​I​, and the (privately) observed 
innovation value Y. The value of one stock option therefore is 

(34)	 φ(​e​S​, ​e​I​, Y, λ, ​
_
 p ​, n)  = ​ ∫ 

n​
_
 p ​
​ 

∞

​ ​(​ 1 _ n ​ Π  − ​ _ p ​)​​d Ψ(Π | ​e​S​, ​e​I​, Y ),

where the lower bound (n​
_
 p ​) follows from the fact that the stock option will only be 

exercised if Π/n ≥ ​_ p ​.
To illustrate the rationale behind the subsequent analysis, suppose there are sev-

eral homogenous agents in the firm, all conducting the same standard and innovative 
tasks as in our base model. From the perspective of one agent, the future stock price 
p has a low variability (i.e., σ is low) in case very few agents are employed. If, on the 
other hand, many agents are employed, individual agents perceive the future stock 
price as highly uncertain as their relative impact is only very small (i.e., σ is large). 
We can thus utilize the standard deviation σ as a natural measure of an individual 
agent’s relative contribution to firm value.21 Moreover, as well known, the value of a 
stock option φ( ⋅ ) is increasing in the standard deviation σ for a given exercise price ​_
 p ​, i.e., ∂φ( ⋅ )/∂σ > 0 with li​m​ σ→∞ ​     ​φ( ⋅ ) = ∞. This is also very intuitive as the 

agent is protected from downside risks (due to the lower bound n​
_
 p ​), but can clearly 

benefit from higher stock prices.

21 Alternatively, one can use σ as an indicator of an agent’s relative position in the corporate hierarchy, where a 
low σ corresponds to agents on lower hierarchy levels, and vice versa.
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We can now analyze how the agent’s specialization decision responds to the 
provision of stock options for a given strike price ​

_
 p ​. To do so, suppose the agent 

receives m stock options, where m is measured in infinitesimally small units so that 
is becomes a continuous variable. For the sake of consistency with our base model, 
we focus on the provision of stock options in addition to the incentive bonus β.22 
The next lemma emphasizes the task choice effect which stems from the provision 
of stock options.23

Lemma 8: Providing the agent with a small number of stock options makes him less 
innovative for λ ≤ ​λ​**​, and more innovative for λ > ​λ​**​ (i.e., ​Y​ A​(⋅, m) is increasing 
in m, with m→0, for λ ≤ ​λ​**​; and decreasing in m for λ > ​λ​**​).

Clearly, stock options can be used to mitigate the task choice conflict between 
the principal and the agent. This is a very intuitive result: by awarding stock options 
to the agent, his compensation becomes more sensitive to the firm’s actual profits, 
which, in turn, aligns the agent’s with the principal’s preferences for the choice 
between the standard task and innovation.

So far, we have ignored the costs for the principal associated with stock 
options. We complete our analysis by characterizing the optimal provision of 
stock options. Let C(m, ⋅ ) denote the principal’s costs of awarding m stock options 
to the agent, with C(m, ⋅ ) = mφ( ⋅ ). By accounting for these costs, and using 
the agent’s adjusted optimal effort levels ​e​ S​ *​(β, m) and ​e​ I​ *​(λ, Y, m), the principal’s 
expected profit becomes 

(35)	 Π( ⋅ , m)  = ​ ∫ 
0
​ 
​Y ​A​

​ ​[V(​e​ S​ *​)  −  β​e​ S​ *​]​​dΦ(Y )  + ​ ∫ 
​Y​ A​

​ 
∞

​ ​[λY μ​e​ I​ *​]​​dΦ(Y )  −  C(m, ⋅ ).

We are now interested to see whether the optimal provision of stock options can 
indeed eliminate the task choice conflict between the principal and the agent. From 
the first-order condition, the optimal number of stock options ​m​*​ is implicitly char-
acterized by 

(36)	​ [​Π​ S​  − ​ Π​ I​ ]​ϕ​(​Y​  A​)​​ d​Y ​A​ _ 
dm

 ​  = ​  ∂C( ⋅ ) _ ∂m
 ​  .

Consider first the principal’s marginal benefit of using stock options reflected by the 
left-hand side of (36).24 By drawing on Lemma 8, one can immediately infer that the 
marginal benefit is positive because (i) d​Y​ A​/dm > 0 whenever ​Π​ S​ > ​Π​  I​ (which is true 

22 By letting β = 0 throughout the subsequent analysis, one could easily obtain the case where the principal 
awards only stock options to the agent. As will become clear, however, this would not effect the qualitative nature 
of our results in this section.

23 Besides this task choice effect, we demonstrate in the Appendix that the provision of stock options has also 
an incentive effect. In particular, for a given incentive bonus β, with β ≤ ​β​ *​, providing the agent with more stock 
options induces more effort for the standard task as well as for the innovative task (i.e., ​e​ S​ 

*​ and ​e​ I​ 
*​ increase).

24 Note that the first-order condition (36) for ​m​*​ implicitly interacts with the first-order condition for the optimal 
incentive bonus ​β​ *​, which we have omitted for parsimony purposes. To derive our main results for this section, 
however, it is sufficient to restrict our attention to (36).
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for λ < ​λ​**​); and (ii), d​Y ​A​/dm < 0 whenever ​Π​ S​ < ​Π​ I​ (which is true for λ > ​λ​**​). 
Moreover, the marginal benefit is clearly zero if ​Π​ S​ = ​Π​ I​ (which is true for λ = ​λ​**​).
In the latter case, the principal and the agent already have congruent preferences, 
and thus, there is no need to award stock options to the agent with the aim of improv-
ing his task choice.

The next proposition emphasizes that—although it can improve his task choice 
as pointed out by Lemma 8—providing the agent with stock options is not always 
beneficial for the principal.

Proposition 11: If the agent’s relative contribution to firm value is sufficiently 
small (i.e., ​σ​​~ Π​​ is sufficiently large), it is optimal for the principal to refrain from 
providing the agent with stock options (i.e., ​m​*​ = 0).

The main insight from Proposition 11 is that while stock options can be used 
to manipulate the agent’s innovation decision, there are considerable costs to the 
principal. Indeed, if stock prices are influenced by many other factors, it is optimal 
for the principal to forgo the use of stock options entirely. Even if the principal uses 
stock options, the optimal level of stock options never eliminates the task choice 
conflict between the principal and the agent. Thus, in equilibrium, the agent is still 
either too innovative (for λ < ​λ​**​), or not innovative enough (for λ > ​λ​**​) from the 
principal’s perspective.

While stock options might seem like a theoretically attractive solution to the con-
flict between standard tasks and innovation, our analysis suggests that they are likely 
to be of limited practical use. For many smaller firms that never plan to go public or 
get acquired, there is no stock price or related firm performance metric that can be 
used to base the option on. For fast-growing or larger companies that are either pub-
lic or expect to be sold, or go public, in the foreseeable future, our analysis shows 
that stock options are an expensive and imperfect solution. Indeed, if the impact 
of an individual employee on the overall firm performance is small, as we would 
expect for line-of-business employees in these types of companies, we showed that 
the optimal firm policy may well be not to issue any stock options at all. Moreover, if 
firms still issue stock options, we should not expect them to fully resolve the conflict 
between standard tasks and innovation.

VII.  Empirical Implications

Our theoretical analysis already provides an explanation of several commonly 
observed firm behaviors with respect to employee innovation. We now turn to a more 
systematic evaluation of the empirical predictions that emanate from our theory.

One central prediction concerns the relationship between the appropriability 
of innovation and employees’ compensations. In particular, our model predicts 
a U-shaped relationship between the appropriability and the strength of incen-
tive payments for (noninnovative) core tasks. At the same time, it also predicts an 
inverted U-shaped relationship between the appropriability of innovation and the 
base pay for employees. To the best of our knowledge, these non-linear predictions 
are unique in the literature.
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The model also generates a number of auxiliary empirical predictions. It predicts 
that tolerance for failure should be seen mostly in environments where employees 
have difficulty obtaining rents from their innovation. Moreover, firms devote more 
resources to supporting their employees to innovate if these innovations are easily 
appropriable by the firms.

These predictions are quite intuitive. Examples of industries with low levels of 
appropriability might include software and design, where much of the value of an 
innovation is tied to the human capital of the employee. In such industries, we pre-
dict high-powered incentives for core tasks, little support by firms for innovation, no 
tolerance for failure, and also a significant number of spinoffs. For intermediate lev-
els of innovation appropriability, we expect both lower-powered incentives and also 
fewer spinoffs. This might describe industries such as hardware or simple manufac-
turing. A high level of innovation appropriability is typically due to the presence of 
strong complementary assets, such as in the airline industry, or in branded consumer 
goods industries. In such industries we would expect very few spinoffs, yet some 
intermediate use of performance pay.

These predictions naturally await careful econometric testing. We recognize sev-
eral empirical challenges. There is a nontrivial measurement problem around the 
appropriability of employee innovation. The seminal work of Richard C. Levin et al. 
(1987) uses survey-based measures of industry appropriability. The work of Steven 
Klepper and Sally Sleeper (2005) suggests using spinoffs as an alternative measure, 
although one should note that this measure might be partially affected by endoge-
nous firm choices (Hellmann 2007). Another empirical challenge concerns correctly 
identifying the direction of causal relationships, and controlling for unobserved het-
erogeneity. Subramanian (2005), for example, finds evidence that stock options and 
spinoffs are positively correlated in a cross section. However, such a correlation 
does not prove causality. Probably the most promising identification strategy would 
be to use panel data and identify an exogenous shock to appropriability of innova-
tion, such as a change in the allocation of IPR between employers and employees 
(Robert P. Merges 1999).

VIII.  Conclusion

We provide a theory that integrates complete and incomplete contracting in the 
context of employment relationships. Incentive contracts are feasible for those tasks 
that are well understood and measurable ex ante. Innovation, however, involve tasks 
that, by definition, cannot be anticipated ahead of time. This paper analyzes how the 
presence of such unplanned activities interacts with the provision of optimal incen-
tives for planned activities.

The appropriability of employee innovation is found to play a pivotal role. When 
firms can appropriate most of the value of their employees’ innovation, employees 
are discouraged from innovation. In such situations, firms want to reduce incentives 
for planned activities, in order to create some “elbow room” for innovation. This 
changes dramatically if employees can capture most of the value of their innovation. 
In this case, firms use stronger performance pay to keep their employees focused on 
their assigned core tasks.
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Our theory is framed within a principal-agent framework with symmetric ex 
ante information. It abstracts from questions such as which kinds of employees 
are attracted to more or less innovative firms. One fruitful area of future research 
therefore concerns the interaction between the incentive effects discussed in this 
paper, and the self-selection process by which innovative employees choose their 
employers. Closely related to this, we note that our model takes a somewhat simpli-
fied view of the innovation process, where employees generate innovations in isola-
tion. Yet, innovations appear to rely on interactions among employees, often with 
diverse backgrounds. Thinking about how employees interact in their planned and 
unplanned activities is therefore another topic worthy of future research.

Mathematical Appendix

Proof of Lemma 1:
From an inspection of the agent’s utility function ​U​ S​( ⋅ ), it becomes clear that ​

U​ S​( ⋅ ) is strictly increasing α. Next, note that β = 0 leads to U (​e​S​ (0), 0) = 0. 
Moreover, applying the Envelope Theorem yields dU( ⋅ )/dβ = ​e​ S​ *​(β) > 0. Hence, 
the agent extracts a rent for all β > 0, which is increasing in β.

Observe further that ​Π​ S​(α, β) is strictly decreasing in α. Moreover, due to con-
cavity of V (​e​S​) and convexity of c(e), ​Π​ S​(α, β ) must be concave in β. To derive the 
optimal incentive contract (​α​0​, ​β​0​ ), note, first, that ​e​S​ > 0 requires β > 0. Thus, 
α + β ≥ 0 is satisfied if α ≥ 0 holds. Consequently, we can ignore the former 
limited liability constraint. Let γ and ξ denote Lagrange multipliers for the agent’s 
participation constraint, and for his liability limit constraint respectively. Then, the 
Lagrangian is 

(A1)	 ℒ(α, β)  =  V (​e​ S​ *​)  −  α  −  β​e​ S​ *​  +  γ ​[α  +  β​e​ S​ *​  −  c(​e​ S​ *​)]​  +  ξα.

 The first-order conditions with respect to α and β are 

(A2)	 − 1  +  γ  +  ξ  =  0,

(A3)	​ [​V ′​(​e​ S​ *​)  −  β ]​​ d​e​ S​ *​
 _ 

dβ ​  − ​ e​ S​ *​  +  γ​[​e​ S​ *​  + ​ (β  − ​ c′​(​e​ S​ *​))​​ d​e​ S​ *​
 _ 

dβ ​]​  =  0.

Suppose γ > 0. Then, α + β​e​ S​ *​ − c(​e​ S​ *​) = 0 due to complementary slackness. 
Since α ≥ 0, this would imply that β​e​ S​ *​ ≤ c(​e​ S​ *​), and hence ​e​S​ = 0. Thus, γ > 0 
cannot be a solution such that γ = 0. We can then infer from (A2) that ξ = 1. 
Consequently, ​α​0​ = 0 due to complementary slackness. Since γ = 0, it follows 
from (A3) that ​β​ *​ solves 

(A4)	​ [​V ′​(​e​ S​ *​)  −  β]​​ d​e​ S​ *​
 _ 

dβ ​  − ​ e​ S​ *​  =  0,

which is equivalent to d​ Π​S​( ⋅ )/dβ = 0.
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Proof of Lemma 2:
Given the agent’s effort choice ​e​ I​ *​, the principal’s expected profit from innovation 

is 

(A5)	​ Π​ I​(​e​ I​ *​, λ, Y )  =  λYμ​e​ I​ *​.

Taking the first derivative with respect to λ yields 

(A6)	​ 
d​Π​ I​( ⋅ ) _ 

dλ ​   =  Yμ​e​ I​ *​  +  λYμ​ d​e​ I​ *​ _ 
dλ ​.

Recall that d​e​ I​ *​/dλ < 0. Thus, for λ ∈ (0, 1), the first term on the right side of (A6) 
is always positive while the second term is always negative. Moreover, it can be eas-
ily shown that the first term is decreasing in λ, and that the second term is increas-
ing in λ. This, in turn, implies that there exists a unique threshold ​λ​*​ such that 
d ​Π​ I​( ⋅ )/dλ​ | ​λ=​λ​*​​ = 0. To identify the sign of (A6) for all λ ≠ ​λ​*​, suppose for a 
moment that λ→0. Then, the second term goes to zero while the first term is strictly 
positive. Hence, d ​Π​ I​( ⋅ )/dλ ≥ 0 for λ ≤ ​λ​*​. For λ → 1, the first term goes to 
zero (because ​e​ I​ *​ = 0 for λ = 1) while the second term is strictly negative. Thus, 
d ​Π​ I​( ⋅ )/dλ < 0 for λ > ​λ​*​.

Proof of Lemma 3:
Note, first, that the agent’s marginal expected benefit from standard tasks is β, 

and from innovation (1 − λ)Yμ. Thus, both tasks are characterized by constant mar-
ginal expected benefits. Moreover, recall that the agent’s cost of effort is convex in 
total effort e. These observations imply that the agent maximizes his expected utility 
by choosing only one of the two tasks, i.e., he either implements {​e​ S​ *​ > 0, ​e​ I​ *​ = 0} 
or {​e​ S​ *​ = 0, ​e​ I​ *​ > 0}.

Next, observe that the agent’s expected payoff from standard task is strictly posi-
tive for β > 0 and constant in Y. In contrast, one can show, by applying the Envelope 
Theorem, that the agent’s expected payoff from innovation is zero for Y = 0 and 
strictly increasing in Y. Thus, we can infer that there exists a unique threshold inno-
vation value ​Y ​A​ such that for Y < ​Y ​A​, the agent implements {​e​ S​ *​ > 0, ​e​ I​ *​ = 0}, and 
{​e​ S​ *​ = 0, ​e​ I​ *​ > 0} for Y > ​Y ​A​, respectively.

Proof of Proposition 1:
Recall that ​Y ​A​(β, λ) is implicitly defined by ​U​ S​(​e​ S​ *​, β) = ​U​I​(​e​ I​ *​, λ, ​Y​ A​). First, we 

show that d​Y ​A​/dβ > 0. Implicitly differentiating ​Y ​A​ with respect to β yields 

(A7)	​  d​Y ​A​ _ 
dβ ​  = ​ 

​ d​U​ S​( ⋅ ) _ 
dβ ​
 _  

​ d​U​ I​( ⋅ ) _ 
dY

 ​​ |​ 
Y=​Y ​ A​

​ 

 ​ .
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As previously shown, d​U​ S​( ⋅ )/dβ > 0. Moreover, applying the Envelope Theorem 
gives 

(A8)	​ 
d​U​I​( ⋅ ) _ 

dY
 ​​ |​

Y=​Y ​A​
​  =  (1  −  λ)μ​e​ I​ *​  >  0.

Thus, d​Y ​A​/dβ > 0. Next, we demonstrate that d​Y ​A​/dλ > 0. By implicitly differen-
tiating ​Y ​A​ with respect to λ one gets 

(A9)	​  d​Y ​A​ _ 
dλ ​  =  −​ 

 ​ d ​U​ I​( ⋅ ) _ 
dλ ​
 _  

​ d ​U​ I​( ⋅ ) _ 
dY

 ​​ |​
Y=​Y ​A​

​

 ​ .

Again, d ​U​I​( ⋅ )/dY​ | ​Y=​Y ​A​​ > 0. Furthermore, applying the Envelope Theorem yields 

(A10)	​ 
d ​U​I​( ⋅ ) _ 

dλ ​   =  − μ​e​ I​ *​  <  0.

Thus, d​Y ​A​/dλ > 0.

Proof of Lemma 4:
Recall that ​Y​ P​(​β​0​, λ) is implicitly characterized by ​Π​ S​(​e​ S​ *​, β) = ​Π​ I​(​e​ I​ *​, λ, ​Y​ P​ ). 

Implicitly differentiating ​Y​ P​ with respect to λ yields 

(A11)	​  d​Y​ P​ _ 
dλ ​  =  − ​ 

​ d ​Π​ I​( ⋅ ) _ 
dλ ​
 _  

​​ d ​Π​ I​( ⋅ ) _ 
dY

 ​ |​
Y=​Y​ P​

​

 ​ .

Observe that 

(A12)	​​ 
d ​Π​ I​( ⋅ ) _ 

dY
 ​ |​

Y=​Y​ P​
​  =  λμ​e​ I​ *​  +  λ​Y​ P​μ​​ d​e​ I​ *​ _ 

dY
 ​|​ 

Y=​Y​ P​
​.

Since d​e​ I​ *​/dY​ | ​Y=​Y​ P​​ > 0, we have d​ Π​ I​( ⋅ )/dY​ | ​Y=​Y​ P​​ > 0. Moreover, recall from 
Lemma 2 that d​ Π​ I​( ⋅ )/dλ ≥ 0 for λ ≤ ​λ​*​, and d ​Π​ I​( ⋅ )/dλ < 0 for λ > ​λ​*​, respec-
tively. Consequently, d​Y​ P​/dλ ≤ 0 for λ ≤ ​λ​*​, and d​Y​ P​/dλ > 0 for λ > ​λ​*​.

Proof of Proposition 2:
First, to prove existence of a unique threshold ​λ​**​ such that ​Y ​A​(​β​0​) = ​Y​ P​(​β​0​) for 

λ = ​λ​**​, it is necessary to characterize ​Y ​A​ and ​Y​ P​ for the extreme values of λ, i.e., 
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λ = 0, 1. Recall that ​Y​ P​ is implicitly characterized by ​Π​ S​(​e​ S​ *​, β) = ​Π​ I​(​e​ I​ *​, λ, ​Y​ P ​),
which is equivalent to 

(A13)	 V(​e​ S​ *​)  − ​ β​0​​e​ S​ *​  =  λ​Y​ P​μ​e​ I​ *​.

Suppose that λ → 0. In this case, the right-hand side of (A13) goes to zero while 
the left-hand side is strictly positive. Thus, (A13) requires that ​Y​ P​ → ∞ for λ → 0. 
Now suppose that λ → 1. In this case, ​e​I​( ⋅ ) → 0, implying that the right-hand side 
of (A13) goes to zero while the left-hand side is strictly positive. Again, to ensure 
that (A13) is satisfied, ​Y​ P​ → ∞. Next, recall that ​Y ​A​ is implicitly characterized by ​
U​ S​(​e​ S​ *​, β) = ​U​ I​(​e​ I​ *​, λ, ​Y​ A​), which is equivalent to 

(A14)	​ β​0​​e​ S​ *​  −  c(​e​ S​ *​)  =  (1  −  λ)​Y ​A​μ​e​ I​ *​  −  c(​e​ I​ *​).

Again, suppose for a moment that λ → 0. In this case, both sides of (A14) are strictly 
positive, implying that ​Y ​A​ ∈ (0, ∞). Now suppose that λ → 1. Then, the right-hand 
side of (A14) goes to zero while the left-hand side is strictly positive. This, in turn, 
requires that ​Y ​A​ → ∞. Next, we need to verify that ​Y ​A​ > ​Y​ P​ for λ → 1. We prove 
that d​Y​ A​/dλ > d​Y​ P​/λ for all λ. We can infer from Proof of Proposition 1 and Proof 
of Lemma 4 that d​Y​ A​/dλ > d​Y​ P​/λ is equivalent to 

	 −  ​ 
​ d​U​ I​( ⋅ ) _ 

dλ ​
 _  (1  −  λ)μ​e​ I​ *​

 ​  >  −  ​ 
​ d ​Π​ I​( ⋅ ) _ 

dλ ​
 _ λμ​e​ I​ *​

 ​

	 ⇔ ​ 
− Yμ​e​ I​ *​  +  (1  −  λ)Yμ ​ d​e​ I​ *​ _ 

dλ ​
   __  (1  −  λ)μ​e​ I​ *​

 ​   < ​ 
Yμ​e​ I​ *​  +  λYμ ​ d​e​ I​ *​ _ 

dλ ​
  __  λμ​e​ I​ *​

 ​

	 ⇔	 0  <  Yμ​e​ I​ *​,

which is clearly satisfied for all λ > 0. Hence, ​Y​ A​ > ​Y​ P​ for λ → 1. By combining 
the previous observations, we can infer that there exists a unique threshold ​λ​**​ such 
that ​Y​ A​(​β​0​, λ) ≤ ​Y​ P​(​β​0​, λ) for λ ≤ ​λ​**​, and ​Y​ A​(​β​0​) > ​Y​ P​(​β​0​) otherwise.

Finally, it remains to demonstrate that ​λ​**​ < ​λ​*​. For this purpose, we need to 
draw on the optimal bonus ​β​ *​(λ) which will be derived in Section IVA. As will be 
shown in Proof of Proposition 3, d​β​ *​(λ)/dλ ≤ 0 for λ ≤ ​λ​*​, where ​β​ *​(0) > ​β​0​ and ​
β​ *​(​λ​*​) < ​β​0​. Since ​Y​ A​( ⋅ ) = ​Y​ P​( ⋅ ) at λ = ​λ​**​, it must hold that ​β​ *​(​λ​**​) = ​β​0​. This 
in turn implies that ​λ​**​ < ​λ​*​.

Proof of Proposition 3:
First, we characterize the optimal bonus ​β​ *​(λ) for the extreme values of λ: 

λ = 0, 1. Suppose for a moment that λ = 0. Since ​Π​ I​(λ = 0) = 0, the first-order 
condition (12) then becomes 

(A15)	​  d​Π​ S​ _ 
dβ ​  =  − ​Π​ S​ ​ 

ϕ(​Y​ A​) _ 
Φ(​Y​ A​) ​ ​ 

d​Y​ A​ _ 
dβ ​.
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Note that the right-hand side of (A15) is strictly negative, implying that d ​Π​ S​/dβ​ | ​β=​β​ *​​ 
< 0. Since ​Π​ S​( ⋅ ) is concave in β with its maximum at β = ​β​0​, we have 
d ​Π​ S​( ⋅ )/dβ​ | ​β<​β​0​​ > 0, and d ​Π​ S​( ⋅ )/dβ​ | ​β>​β​0​​ < 0. Thus, we can infer that ​β​ *​(0) > ​β​0​.
Now suppose that λ = 1. Then, the agent chooses ​e​ I​ *​(λ = 1) = 0, and the first-
order condition (12) simplifies to 

(A16)	​  d ​Π​ S​ _ 
dβ ​   =  0,

which is equivalent to the first-order condition characterizing ​β​0​, see (Lemma 
1). Hence, ​β​ *​(1) = ​β​0​. Now consider the case λ = ​λ​**​. Recall from Proposition 
2 that λ = ​λ​**​ implies ​Y​ A​ = ​Y​ P​, i.e., preferences are perfectly aligned. In this 
case, the first-order condition (12) simplifies to (A16). Consequently, ​β​ *​(λ = ​λ​**​) 
= ​β​0​. Next, we investigate whether ​β​ *​(λ) lies below or above the unconstrained level ​
β​0​ for λ ≠ 0, 1. According to Proposition 2, ​Y​ P​(​β​0​) > ​Y​ A​(​β​0​) for λ < ​λ​**​. Since 
d​Y​ A​(β)/dβ > 0, it must hold that ​β​ *​(λ) > ​β​0​ for λ < ​λ​**​. The opposite observa-
tion can be made for λ > ​λ​**​. Next, we identify how ​β​ *​(λ) responds to a change of 
λ. First define 

(A17)	​ F​​β​  *​​  ≡ ​ U​ I​( ⋅ )  − ​ U​ S​( ⋅ )

(A18)	​ G​​β​  *​​  ≡ ​  d ​Π​ S​ _ 
dβ ​   − ​ [​Π​ I​  − ​ Π​ S​ ]​​ ϕ(​Y​ A​) _ 

Φ(​Y​ A​) ​ ​ 
d​Y​ A​ _ 
dβ ​.

Applying Cramer’s rule yields 

(A19)	​ 
d​β​ *​(λ) _ 

dλ ​   = ​  det(A) _ 
det(B) ​ ,

where 

	 − ​ ∂​F​​β​  *​​
 _ ∂λ ​ ​  ∂​F​​β​  *​​

 _ 
∂​Y​ A​

 ​	​ 
∂​F​​β​  *​​

 _ ∂β ​ ​  ∂​F​​β​  *​​
 _ 

∂​Y​ A​
 ​

	 A  ≡ (	 )	 B  ≡ (	 ).

	 − ​ ∂​G​​β​  *​​
 _ ∂λ  ​ ​  ∂​G​​β​  *​​

 _ 
∂​Y​ A​

 ​	​ 
∂​G​​β​  *​​

 _ ∂β  ​ ​  ∂​G​​β​  *​​
 _ 

∂​Y​ A​
 ​

Since Π( ⋅ ) is concave, B must be negative definite. Hence, det(B) > 0. Therefore, 
d​β​ *​(λ)/dλ > 0 if 

(A20)	 det (A)  =  − ​ 
∂​F​​β​  *​​ _ ∂λ ​ ​ 

∂​G​​β​  *​​ _ 
∂​Y​ A​

 ​  + ​ 
∂​G​​β​  *​​ _ ∂λ ​ ​ 

∂​F​​β​  *​​ _ 
∂​Y​ A​

 ​  >  0.
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By applying the Envelope Theorem, one gets 

(A21)	​ 
∂​F​​β​  *​​ _ ∂λ ​   =  − ​Y​ A​μ​e​ I​ *​

(A22)	​ 
∂​F​​β​  *​​ _ 
∂​Y​ A​

 ​  =  (1  −  λ)μ​e​ I​ *​.

Moreover, 

(A23)	​ 
∂​G​​β​  *​​ _ 
∂​Y​ A​

 ​  =  − ​[​Π​ I​  − ​ Π​ S​ ]​ ​  ∂ _ 
∂​Y​ A​

 ​ ​(​ 
ϕ​(​Y​ A​)​

 _ 
Φ​(​Y​ A​)​

 ​)​​ d​Y​ A​ _ 
dβ ​

(A24)	​ 
∂​G​​β​  *​​ _ ∂λ ​   =  − ​ d ​Π​ I​ _ 

dλ ​ ​ 
ϕ(​Y​ A​) _ 
Φ(​Y​ A​)

 ​ ​ d​Y​ A​ _ 
dβ ​.

Therefore, d​β​ *​(λ)/dλ > 0 if det(A) > 0, which, after eliminating μ​e​ I​ *​, is equivalent 
to 

(A25)	​Y ​ A​​[​Π​ I​  − ​ Π​ S​ ]​ ​  ∂ _ 
∂​Y​ A​

 ​​(​ 
ϕ​(​Y​ A​)​

 _ 
Φ​(​Y​ A​)​

 ​)​​ d​Y​ A​ _ 
dβ ​  +  (1  −  λ)​ d​ Π​ I​ _ 

dλ ​ ​ 
ϕ​(​Y​ A​)​

 _ 
Φ​(​Y​ A​)​

 ​ ​ d​Y​ A​ _ 
dβ ​  <  0.

Now we need to consider three different intervals: (i) 0 < λ < ​λ​**​; (ii) ​λ​**​ < λ < ​λ​*​;
and, (iii) ​λ​*​ < λ < 1. Consider, first, the interval 0 < λ < ​λ​**​. As shown, ​β​ *​(λ) > ​β​0​ 
for this interval. Observe that ​β​ *​(λ) > ​β​0​ implies that the right-hand side of the first-
order condition (12) must be strictly negative. Hence, ​Π​ I​ − ​Π​ S​ < 0. Next, we need 
to identify the sign of det(A). It can be easily verified that ∂/∂​Y​ A​​(ϕ(​Y​ A​)/Φ(​Y​ A​))​ < 0. 
Moreover, recall from Lemma 2 that d ​Π​ I​/dλ > 0 for 0 < λ < ​λ​*​, where ​λ​**​ < ​λ​*​.
Consequently, both terms on the left-hand side of (A25) are strictly positive, imply-
ing that det(A) < 0. Thus, d​β​ *​(λ)/dλ < 0 for 0 < λ < ​λ​**​. Next, consider the 
interval ​λ​**​ < λ < ​λ​*​. Here, ​β​ *​(λ) > ​β​0​ would be a contradiction to Proposition 
2. Therefore, we can infer from Proposition 2 that ​β​ *​(λ) < ​β​0​ for ​λ​**​ < λ < ​
λ​*​. Moreover, recall that d ​Π​ I​/dλ > 0 for λ ≤ ​λ​*​, and ​Y​ P​( ⋅ ) < ​Y​ A​( ⋅ ) with 
d​Y​ P​( ⋅ )/dλ < 0 for ​λ​**​ < λ < ​λ​*​ (see Lemmas 2 and 4, and Proposition 2). Thus, 
d​β​ *​(λ)/dλ > 0 would be a contradiction. Consequently, it must hold that 
d​β​ *​(λ)/dλ < 0 for ​λ​**​ < λ < ​λ​*​. At λ = ​λ​*​, ​Π​ I​ is maximized (see Lemma 
2). As will be subsequently shown, d​β​ *​(λ)/dλ > 0 for λ > ​λ​*​. This, in turn, 
implies that d​Y​ A​/dβ​ | ​λ=​λ​ *​​ = 0. Moreover, d ​Π​ I​/dλ​ | ​λ=​λ​ *​​ = 0. Thus, both 
terms on the left-hand side of (A25) become zero, implying that ​β​ *​(λ) is mini-
mized at λ = ​λ​*​. Finally, consider the interval ​λ​*​ < λ < 1. Here again, 
​β​ *​(λ) > ​β​0​ would contradict Proposition 2. Therefore, we can infer from 
Proposition 2 that ​β​ *​(λ) < ​β​0​ for ​λ​*​ < λ < 1. This implicates  that  the right-
hand side of (12) must be strictly positive, which requires that ​Π​ I​ − ​Π​ S​ > 0.
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Next, we need to identify the sign det(A). Recall that d ​Π​ I​/dλ < 0 for ​λ​*​ < λ < 1 
(see Lemma 2). Hence, both terms on the lhs of (A25) are strictly negative, imply-
ing that det(A) > 0. Consequently, d​β​ *​(λ)/dλ > 0 for ​λ​*​ < λ < 1.

Proof of Proposition 4:
First, we need to investigate how ​Y​ A​(​α​**​, ​β​ *​(λ), λ) responds to a change of ​α​**​,

everything else equal. Recall that ​Y​ A​ is implicitly characterized by ​U​ S​(​e​ S​ *​, ​β​ *​(λ)) 
= ​U​ I​(​e​ I​ *​, ​α​**​, λ, ​Y​ A​). Implicitly differentiating ​Y​ A​ with respect ​α​**​ yields 

(A26)	​  d​Y​ A​ _ 
d​α​**​

 ​  =  − ​ 
​ d​U​ I​( ⋅ ) _ 

d​α​**​
 ​
 _  

​​ d​U​ I​( ⋅ ) _ 
dY

 ​ |​
Y=​Y​ A​

​

 ​ .

As shown, d​U​ I​( ⋅ )/dY​ | ​ Y=​Y​ A​​ > 0 (see Proof of Proposition 1). Moreover, observe 
that d​U​ I​( ⋅ )/d​α​**​ = 1 > 0. Consequently, d​Y​ A​/d​α​**​ < 0. Next, recall from 
Proposition 2 that ​Y​ A​(​β​0​, λ) ≤ ​Y​ P​(​β​0​, λ) for λ ≤ ​λ​**​. Because d​Y​ A​/d​α​**​ < 0, it 
would be optimal to set ​α​**​(λ) ≤ 0 to distract the agent from innovation. However, 
since this would violate the agent’s liability limit, the principal sets ​α​**​(λ) = 0 for 
λ ≤ ​λ​**​. Moreover, recall from Proposition 2 that ​Y​ A​(​β​0​ , λ) > ​Y​ P​(​β​0​ , λ) for λ > ​
λ​**​. Therefore, to encourage more innovation, it is optimal to set ​α​**​(λ) > 0 for 
all ​λ​**​ < λ < 1. For λ = 1, note that the principal’s objective function is equiva-
lent to (II) in Section III because ​e​ I​ *​(λ = 1) = 0. Hence, according to Lemma 1,
​α​**​(0) = 0. 

Finally, it remains to identify the relationship between ​α​**​(λ) and λ for ​
λ​**​ < λ < 1. To do so, define 

(A27)	​ F​​α​ **​​  ≡ ​ U​ I​( ⋅ )  − ​ U​ S​( ⋅ )

(A28)	​ G​​α​ **​​  ≡  − ​ [​Π​ I​  − ​ Π​S​ ]​​ ϕ​(​Y​ A​)​
 _ 

Φ​(​Y​ A​)​
 ​ ​ d​Y​ A​ _ 
d​α​**​

 ​  −  1.

Applying Cramer’s rule yields 

(A29)	​ 
d​α​**​(λ) _ 

dλ ​   = ​  det(A) _ 
det(B) ​,

where 

	 − ​ ∂​F​​α​ **​​ _ ∂λ  ​ ​  ∂​F​​α​ **​​ _ 
∂​Y​ A​

  ​	​ 
∂​F​​α​ **​​ _ ∂α  ​ ​  ∂​F​​α​ **​​ _ 

∂​Y​ A​
  ​

	 A  ≡ (	 )	 B  ≡ (	 ).

	 − ​ ∂​G​​α​ **​​ _ ∂λ  ​ ​  ∂​G​​α​ **​​ _ 
∂​Y​ A​

  ​	​ 
∂​G​​α​ **​​ _ ∂​α​**​

 ​ ​  ∂​G​​α​ **​​ _ 
∂​Y​ A​

  ​
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Since Π( ⋅ ) is concave, B must be negative definite. Hence, det(B) > 0. Therefore, 
d​α​**​(λ)/dλ > 0 if 

(A30)	  det (A)  =  − ​ ∂​F​​α​ **​​ _ ∂λ ​ ​  ∂​G​​α​ **​​ _ 
∂​Y​ A​

 ​   + ​  ∂​G​​α​ **​​ _ ∂λ ​ ​  ∂​F​​α​ **​​ _ 
∂​Y​ A​

 ​   >  0.

Now observe that ∂​F​​α​ **​​/∂λ = ∂​F​​β​  *​​/∂λ and ∂​F​​α​ **​​/∂​Y​ A​ = ∂​F​​β​  *​​/∂​Y​ A​ (see Proof of 
Proposition 3). Moreover, 

(A31)	​  ∂​G​​α​ **​​ _ 
∂​Y​ A​

 ​   =  − ​[​Π​ I​  − ​ Π​ S ​]​​  ∂ _ 
∂​Y​ A​

 ​​(​ 
ϕ(​Y​ A​) _ 
Φ(​Y​ A​) ​)​​ d​Y​ A​ _ 

d​α​**​
 ​

(A32)	​  ∂​ G​​α​**​​ _ ∂λ ​   =  − ​ ∂​ Π​ I​ _ ∂λ ​ ​ 
ϕ(​Y​ A​) _ 
Φ(​Y​ A​)

 ​ ​ d​Y​ A​ _ 
d​α​**​

 ​.

Hence, sign​(∂​G​​α​ **​​/∂​Y​ A​) ​ =  − sign​(∂​G​​β​  *​​/∂​Y​ A​) ​ and sign​(∂​G​​α​ **​​/∂λ  )​ 
= − sign​(∂​G​​β​  *​​/∂λ)​. By combining the previous observations, we can infer that 

(A33)	 sign​(​ 
d​α​**​(λ) _ 

dλ ​ )​  =  −  sign​(​ 
d​β​ *​(λ) _ 

dλ ​ )​​λ​**​ < λ < 1.

Therefore, we can infer from Proposition 3 that d​α​**​(λ)/dλ > 0 for ​λ​**​ < λ < ​λ​*​, 
and d​α​**​(λ)/dλ < 0 for ​λ​*​ < λ < 1.

Proof of Proposition 6:
First, we demonstrate, in general, how the menu of contracts affects the agent’s 

specialization decision. Recall that d​Y​ A​/d​α​ **​ < 0 and d​Y​ A​/d​β​ *​ > 0. Since ​β​ *​ > ​β​0​ 
for 0 < λ < ​λ​**​, we can infer that ​Y​ A​(​Ω​*​(λ), λ) > ​Y​ A​(​β​0​ , λ) for λ < ​λ​**​. Moreover, 
since ​α​**​ > ​α​0​ = 0 and ​β​ *​ < ​β​0​ for λ > ​λ​**​, it must hold that ​Y​ A​(​Ω​*​(λ), λ) 
< ​Y​ A​(​β​0​ , λ) for λ > ​λ​**​, independent of which contract the agent chooses.

Next, we show, in general, how the menu of contracts affects the principal’s pref-
erence ​Y​ P​. To do so, we first need to identify how ​Y​ P​ responds to a change of ​α​**​ 
and ​β​ *​ respectively. Recall that ​Y​ P​(α, β, λ) is implicitly characterized by ​Π​ S​(​e​ S​ *​ , β) 
= ​Π​ I​(​e​ I​ *​, α, λ, ​Y​ P​ ). We first implicitly differentiate ​Y​ P​ with respect to β and get 

(A34)	​  d​Y​ P​ _ 
dβ ​  = ​ 

​ d ​Π​ S​( ⋅ ) _ 
dβ ​
 _  

​ d​ Π​ I​( ⋅ ) _ 
dY

 ​​ |​
Y=​Y​ P​

​

 ​.

Since ​Π​ S​( ⋅ ) is concave in β with its maximum at β = ​β​0​, we have d ​Π​ S​( ⋅ )/dβ > 0 
for β < ​β​0​, and d ​Π​ S​( ⋅ )/dβ < 0 for β > ​β​0​. Using our results from Proposition 3, 
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we can infer that d​Y​ P​/dβ < 0 for λ < ​λ​**​, and d​Y​ P​/dβ > 0 for λ > ​λ​**​. Since ​
β​ *​ > ​β​0​ for 0 < λ < ​λ​**​, it must hold that ​Y​ P​(​β​ *​, λ) < ​Y​ P​(​β​0 ​, λ). For ​λ​**​ < λ < 1 
however, we have ​β​ *​ < ​β​0​ . Consequently, ​Y​ P​(​β​ *​, λ) < ​Y​ P​(​β​0 ​, λ) for ​λ​**​ < λ < 1, 
provided the agent has chosen the contract ​{0, ​β​ *​}​. Implicitly differentiating ​Y​ P​ with 
respect to α yields 

(A35)	​  d​Y​ P​ _ 
dα ​  = ​ 

​ d ​Π​ I​( ⋅ ) _ 
dα ​
 _  

​ d​Π​ I​( ⋅ ) _ 
dY

 ​​ |​
Y=​Y​ P​

​

 ​.

As previously shown, d ​Π​ I​( ⋅ )/dY​ | ​Y=​Y​ P​​ > 0 (see Proof of Lemma 4). Furthermore, 
observe that d​ Π​ I​( ⋅ )/dα = − 1 < 0. Consequently, d​Y​ P​/dα > 0. Since ​α​**​ > 0 for ​
λ​**​ < λ < 1, this would imply that ​Y​ P​(​α​**​, ​β​0​, λ) > ​Y​ P​(0, ​β​0​, λ) at β = ​β​0​. Note, 
however, that the contract {​α​**​, 0} consists of a zero incentive payment, which, 
according to the previous observations, would lower ​Y​ P​. Thus, the net effect of 
{​α​**​, 0} on ​Y​ P​ is ambiguous.

Finally note that the principal can always find a menu of contracts, denoted by ​Ω′​(λ), 
which ensures perfect alignment of preferences, i.e., ​Y​ A​(​Ω′​(λ), λ) = ​Y​ P​(​Ω′​(λ), λ).
However, since the required contract adjustments would sacrifice the efficiency of 
standard tasks (adjusting ​β​ *​) and innovations (adjusting ​α​**​), it cannot be optimal 
for the principal to do so. Thus, ​Y​ A​(​Ω​*​(λ), λ) ≠ ​Y​ P​(​Ω​*​(λ), λ) for all λ ≠ ​λ​**​.

Proof of Proposition 7:
First, recall that the first-best social benchmark ​Y​ FB​ is implicitly characterized by 

(A36)	 V​(​e​ S​ FB​)​  −  c​(​e​ S​ FB​)​  = ​ Y​ FB​​�e​ I​ FB​  −  c​(​e​ I​ FB​)​.
	 8	 8
	 ≡ ​S​ S​	 ≡ ​S​ I​

Now suppose that λ → 1. As shown, ​Y​ A​( ⋅ ), ​̂  Y ​( ⋅ ), ​Y​ P​( ⋅ ) → ∞ for λ → 1, where ​
Y​ P​( ⋅ ) < ​  Y ​( ⋅ ) < ​Y​ A​( ⋅ ). Since ​Y​ FB​ ∈ (0, ∞), it follows that ​Y​ FB​ < ​Y​ P​( ⋅ ) < ​  Y ​( ⋅ ) 
< ​Y​ A​( ⋅ ). Next, suppose that λ → 0. As demonstrated, ​Y​ P​( ⋅ ), ​̂  Y ​( ⋅ ) → ∞. Hence, it 
remains to compare ​Y​ FB​ and ​Y​ A​( ⋅ ) for λ → 0. Note, first, that ​e​ I​ *​ = ​e​ I​ FB​ for λ = 0. 
Therefore, ​U​ I​ = ​S​ I​ for λ = 0. Moreover, the first-best surplus ​S​ S​ constitutes the upper 
bound for all potential surpluses from standard tasks. As is well known, ​S​ S​ = ​U​ S​
can only be achieved in a principal-agent relationship if the agent is the residual 
claimant and thus implements ​e​ S​ FB​ ≠ ​e​ S​ FB​. This, however, would require that ​α​*​ < 0, 
which violates the agent’s liability limit. Because under any second-best incen-
tive scheme with ​α​*​ ≥ 0, the agent implements ​e​ S​ *​ ≠ ​e​ S​ FB​ and total surplus is split 
between principal and agent, it must hold that ​S​ S​ > ​U​ S​. Hence, we can infer from 
(A37) and (A36) that ​Y​ FB​ > ​Y​ A​( ⋅ ) at λ = 0. In sum, this implies that ​Y​ A​( ⋅ ) < ​​  Y ​​ FB​ 
for sufficiently low λ, and ​Y​ A​( ⋅ ) > ​​  Y ​​ FB​ otherwise.
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Next, we investigate the second-best benchmark ​​  Y ​​ SB​( ⋅ ). To do so, recall that 
​Y​ A​( ⋅ ) and ​Y​ P​( ⋅ ) are implicitly characterized by 

(A37)	​ β​ *​​e​ S​ *​  −  c​(​e​ S​ *​)​  = ​ (1  −  λ)​​Y​ A​�​e​ I​ *​  −  c​(​e​ I​ *​)​,	 5	 8
	 ≡ ​U​ S​	 ≡ ​U​ I​

(A38)	 V​(​e​ S​ *​)​  − ​ β​ *​​e​ S​ *​  =  λ​Y​ P​�​e​ I​ *​ .	 5	 3
	 ≡ ​Π​ S​	 ≡ ​Π​ I​

For λ = ​λ​**​, we have ​Y​ A​( ⋅ ) = ​Y​ P​( ⋅ ) since ​β​ *​ = ​β​0 ​ (see Propositions 2 and 3). 
Therefore, we can add (A37) and (A38) and obtain 

(A39)	 V(​e​ S​ *​)  −  c(​e​ S​ *​)  = ​​   Y ​​ SB​μ​e​ I​ *​.

Note that this is the condition which implicitly characterizes ​​  Y ​​ SB​( ⋅ ). Consequently,
​​  Y ​​ SB​( ⋅ ) = ​Y​ A​( ⋅ ) = ​Y​ P​( ⋅ ) for λ = ​λ​**​. Next, we characterize ​​  Y ​​ SB​( ⋅ ) for the extreme 
values of λ: λ = 0, 1. First, suppose that λ → 0. For an arbitrary Y, the right-hand 
side of (A39) is identical to the right-hand side of (A37). Note however, that under 
any second-best incentive scheme it must hold that ​S​ S​ > ​U​ S​. Hence, the left-hand 
side of (A39) must be strictly greater than the left-hand side of (A37). This, in 
turn, implies that ​​  Y ​​ SB​( ⋅ ) > ​Y​ A​( ⋅ ) for λ→0. Moreover, since ​​  Y ​​ SB​( ⋅ ) ∈ (0, ∞) and ​
Y​ P​( ⋅ ) → ∞ for λ → 0, we have ​​  Y ​​ SB​( ⋅ ) < ​Y​ P​( ⋅ ) for λ → 0. Now suppose that 
λ → 1. Because in this case ​e​ I​ *​ → 0, the right-hand side of (A39) goes to zero for 
an arbitrary Y, while the left-hand side remains strictly positive. This in turn requires 
that ​​  Y ​​ SB​( ⋅ )→∞ for λ → 1. Furthermore, note that for λ → 1, the right-hand side of 
both (A39) and (A37) go to zero. Nevertheless, the left-hand side of (A39) is strictly 
greater than the left-hand side  of (A38). Thus, for λ→1, we have ​​  Y ​​ SB​( ⋅ ) > ​Y​ P​( ⋅ ). 
Finally, because ​​  Y ​​SB​( ⋅ ) is a weighted average of ​Y​ P​( ⋅ ) and ​Y​ P​( ⋅ ), we can infer that 
​​  Y ​​ SB​( ⋅ ) < ​Y​ A​( ⋅ ) for λ → 1. Combining our previous observations, we have 
​Y​ A​( ⋅ ) < ​​  Y ​​ SB​( ⋅ ) for λ < ​λ​**​, and ​Y​ A​( ⋅ ) > ​​  Y ​​ SB​( ⋅ ) for λ > ​λ​**​.

Proof of Lemma 5:
Recall that ​Y​ A​ is implicitly defined by ​U​ S​(​e​ S​ *​, β, ε) = ​U​ I ​(​e​ I​ *​, λ, ​Y​ A​, ε). Implicitly 

differentiating ​Y​ A​ with respect to ε yields 

(A40)	​  d​Y​ A​ _ 
dε ​   = ​   μ​e​ I​ *​  − ​ e​ S​ *​

 _  (1  −  λ)μ​e​ I​ *​
 ​.

Thus, d​Y​ A​/dε < 0 if μ​e​ I​ *​ < ​e​ S​ *​, which is equivalent to Pr​[Y > 0 | ​e​ I​ *​]​ < Pr​[S = 1 | ​e​ S​ *​]​.
Recall that d​e​ I​ *​/dμ > 0. Hence, the fraction on the right-hand side of (A40) is 



120	 American Economic Journal: Microeconomics� February 2011

negative for sufficiently low values of μ, and positive for sufficiently high values of 
μ. Moreover, one can show that 

(A41)	​   d _ 
dμ ​(​  μ​e​ I​ *​  − ​ e​ S​ *​

 _  (1  −  λ)μ​e​ I​ *​
 ​)  = ​ 

​e​ S​ *​(1  −  λ)​[​e​ I​ *​  +  μ ​ d​e​ I​ *​ _ 
dμ ​]​
   __  

​​[(1  −  λ)μ​e​ I​ *​]​​2​
 ​   >  0.

Accordingly, the right-hand side of (A40) is increasing in μ. Consequently, there exists 
a threshold ​μ​*​ > 0 satisfying d​Y​ A​/dε​ | ​μ=​μ​ *​​ = 0 such that d​Y​ A​/dε < 0 for μ < ​μ​*​, and 
d​Y​ A​/dε ≥ 0 otherwise.

Proof of Proposition 8:
First, recall from Lemma 5 that d​Y​ A​/dε < 0 if μ < ​μ​*​. Moreover, Proposition 6 

implies that ​Y​ P​( ⋅ ) > ​Y​ A​( ⋅ ) for λ < ​λ​**​. Thus, offering the agent ε > 0 cannot be 
optimal for λ < ​λ​**​.

Next, we demonstrate that tolerance for failure is optimal for sufficiently high 
values of λ. Recall that offering the agent ε > 0 does not impose direct costs on the 
principal, but indirectly affects ​e​ S​ *​, ​e​ I​ *​, and ​Y​ A​. By applying the Envelope Theorem, 
one gets 

(A42)	​ 
d Π( ⋅ ) _ 

dε ​   = ​  ∂ Π( ⋅ ) _ ∂​e​ S​ *​
 ​ ​ 

d​e​ S​ *​
 _ 

dε ​  + ​  ∂ Π( ⋅ ) _ ∂​e​ I​ *​
 ​ ​ 

d​e​ I​ *​ _ 
dε ​  + ​  ∂ Π( ⋅ ) _ 

∂​Y​ A​
 ​ ​  d​Y​ A​ _ 

dε ​ .

To demonstrate that d Π( ⋅ )/dε > 0 for sufficiently high values of λ, suppose for a 
moment that λ → 1. Because in this case ​e​ I​ *​ → 0, (A42) simplifies to 

(A43)	​ 
d Π( ⋅ ) _ 

dε ​   = ​  ∂ Π( ⋅ ) _ ∂​e​ S​ *​
 ​ ​ 

d​e​ S​ *​
 _ 

dε ​  + ​  ∂ Π( ⋅ ) _ 
∂​Y​ A​

 ​ ​  d​Y​ A​ _ 
dε ​  .

	 3	 3
	 ≡ A	 ≡ B

Since ∂ Π( ⋅ )/∂​e​ S​ *​ > 0 and d​e​ S​ *​/dε < 0, A is strictly negative and clearly finite. 
Moreover, Proposition 6 implies that d Π( ⋅ )/d​Y​ A​ < 0 for λ → 1. From Proof of 
Lemma 5 we know that 

(A44)	​  d​Y​ A​ _ 
dε ​   = ​   μ​e​ I​ *​  − ​ e​ S​ *​

 _  (1  −  λ)μ​e​ I​ *​
 ​.

Since ​e​ I​ *​ → 0 for λ → 1, it follows that ​lim​λ→1​d​Y​ A​/dε = − ∞, implying that B → ∞. 
Hence, B > − A for λ → 1. This, in turn, implies that d Π( ⋅ )/dε > 0 for suffic-
iently high values of λ. To summarize the previous observations, there exists a thresh-
old ​  λ​, with 1 > ​  λ​ ≥ ​λ​**​, such that a tolerance policy is never optimal for λ ≤ ​  λ​, 
and optimal for λ > ​  λ​.
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Comparative Statics Investing in Employee Innovation:
First, consider the agent’s innovation effort ​e​ I​ *​ which is implicitly characterized by 

(A45)	 (1  −  λ)Yμ  = ​ c′​ (​e​I​).

Implicitly differentiating ​e​ I​ *​ with respect to μ gives 

(A46)	​ 
d​e​ I​ *​ _ 
dμ ​  = ​  (1  −  λ)Y

 _ ​c″​ (​e​I​)
 ​  ,

which is strictly positive. Next, recall that ​Y​ A​ is implicitly defined by ​U​ S​(​e​ S​ *​, β) 
= ​U ​I​(​e​ I​ *​, λ, ​Y​ A​, μ). Implicitly differentiating ​Y​ A​ with respect to μ yields 

(A47)	​  d​Y​ A​ _ 
dμ ​  =  − ​ (1  −  λ)​Y​ A​​e​ I​ *​  _  (1  −  λ)μ​e​ I​ *​

 ​   =  − ​ ​Y​ A​ _ μ ​ ,

which is strictly negative.

Proof of Proposition 9:
By endogenizing μ, the principal’s expected profit can be written as 

(A48)	 Π(​e​ S​ *​, ​e​ I​ *​, β, ​Y​ A​, μ)  = ​ ∫ 
0
​ 
​Y​ A​

​ ​Π​ S​​ dΦ(Y )  + ​ ∫ 
​Y​ A​

​ 
∞

​ ​Π ​ I​​ dΦ(Y )  −  c(μ).

The optimal investment level ​μ​*​(λ) is implicitly characterized by the following first-
order condition: 

(A49)	​  d​ Π​ I​ _ 
dμ ​  + ​ [​Π​ S​  − ​ Π​ I​ ]​​ ϕ(​Y​ A​) _ 

Φ(​Y​ A​) ​ ​ 
d​Y​ A​ _ 
dμ ​  = ​   ​c′​ (μ) _ 

Φ(​Y​ A​)
 ​ .

Notice that the first term on the left-hand side captures the incentive effect, and the 
second term the specialization effect. Suppose for a moment that either λ = 0 or 
λ = 1. Recall that in both cases ​Π​ I​ = 0. Hence, (A49) simplifies to 

(A50)	​ Π​ S​ϕ(​Y​ A​)​ d​Y​ A​ _ 
dμ ​  = ​ c′​ (μ).

Since d​Y​ A​/dμ < 0 (see Appendix: Comparative Statics Investing in Employee 
Innovation), the left-hand side is strictly negative. Hence, the principal sets ​μ​*​(λ) = ​
μ _​ for λ = 0, 1. Next, consider the interval ​λ​**​ < λ < 1. Proposition 2 implies that 
the second term on the left-hand side of (A49) is strictly positive. Moreover, it can 
be easily shown that d ​Π​ I​/dμ > 0. Consequently, ​μ​*​(λ) > ​μ _​ for ​λ​**​ < λ < 1. Now 
consider the threshold ​λ​**​. Recall from Proposition 2 that ​Y​ A​ = ​Y​ P​ for λ = ​λ​**​. 
This implies that under the optimal menu of contracts ​Ω​*​(​λ​**​), ​Π​ S​ = ​Π​ I​. Therefore, 
(A49) simplifies to 

(A51)	​  d ​Π​ I​ _ 
dμ ​Φ(​Y​ A​)  = ​ c′​ (μ).
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Because the left-hand side is strictly positive, we have ​μ​*​(​λ​**​) > ​μ _​. Finally, con-
sider the interval 0 < λ < ​λ​**​. Note that d​ Π​ I​/dμ > 0. Moreover, Proposition 6, in 
conjunction with Proposition 1 and Lemma 4, implies that the second term on the 
lhs of (A49) is strictly negative, and its absolute value is diminishing in λ. Since ​μ​*​
(0) = ​μ _​ and ​μ​*​(​λ​**​) > ​μ _​, we can thus infer that there exists a threshold ​λ​***​ such 
that ​μ​*​(λ) = ​μ _​ for all λ ≤ ​λ​***​, and ​μ​*​(λ) > ​μ _​ for all ​λ​***​ < λ < 1.

Proof of Lemma 6:
First, define 

(A52)	 F  ≡  β​ρ′​ (​e​S​)  − ​ c′​ (e),

(A53)	 G  ≡  (1  −  λ)​μ′​ (​e​I​)  − ​ c′​ (e).

Totally differentiating yields 

 (d​e​S​)	 (	(1  −  λ)​μ″​ (​e​I​)  − ​ c″​ (e)	​ c″​(e)	 )(	​ρ′​(​e​S​)dβ  )      d​e​I​ 
  = 

​ 
1
 

_
 − det(Δ) ​
		

​c″​ (e)	 β​ρ″​(​e​S​)  − ​ c″​(e)		 − ​μ′​(​e​I​)dλ    
,

where 

(A54)	 Δ  ≡ (​ ∂F
 

_
 

∂​e​S​

 ​
 ​ ∂F

 _ ∂​e​I​
 ​ ).

		​   ∂G
 _ ∂​e​S​
 ​ ​ ∂G

 _ ∂​e​I​
 ​

Since U(​e​S​, ​e​I​) is concave in ​e​S​ and ​e​I​, Δ must be negative definite. Hence, 
det(Δ) > 0. Thus, we obtain 

	​  d​e​ S​ *​
 _ 

dβ ​  =  − ​  1 _ 
det(Δ) ​​ρ′​ (​e​S​) ​[(1  −  λ)Y​μ″​ (​e​I​)  −  c″ (e)]​  >  0

		  8
		  < 0 due to s.o.c.

	​ 
d​e​ S​ *​

 _ 
dλ ​  = ​   1 _ 

det(Δ) ​​ c″​ (e)Y​μ′​ (​e​I​)  >  0

	​ 
d​e​ I​ *​ _ 
dβ ​  =  − ​  1 _ 

det(Δ) ​​ρ′​ (​e​S​)​c″​(e)  <  0

	​ 
d​e​ I​ *​ _ 
dλ ​  = ​   1 _ 

det(Δ) ​Y​μ′​ (​e​I​) ​ [β​ p″​ (​e​S​)  −  c″ (e)]​  <  0
		  5
		  < 0 due to s.o.c.

	​  d​e​*​ _ 
dβ ​  = ​  d​e​ S​ *​

 _ 
dβ ​  + ​  d​e​ I​ *​ _ 

dβ ​  =  − ​  1 _ 
det(Δ) ​ ​[​ ρ′​ (​e​S​)(1  −  λ)Y​μ″​ (​e​I​)]​  >  0

	​  d​e​*​ _ 
dλ ​  = ​  d​e​ S​ *​

 _ 
dλ ​  + ​  d​e​ I​ *​ _ 

dλ ​  = ​   1 _ 
det(Δ) ​ ​[Y​μ′​ (​e​I​)β​ρ″​ (​e​S​)]​  <  0.
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Note that the signs of the latter two derivatives follow from ​μ″​ (​e​I​) < 0 and ​ρ″​ (​e​S​)
< 0.

Proof of Lemma 7:
Recall from Proposition 6 that d​e​ I​ *​/dλ < 0. Moreover, one can show that 

d​e​ I​ P​/dλ > 0, where ​e​ I​ P​(λ = 0) = 0. Thus, ​e​ I​ *​ is decreasing, while ​e​ I​ P​ is increasing in 
λ. Hence, there exists a threshold ​λ​**​ satisfying ​e​ I​ *​(​λ​**​) = ​e​ I​ P​(​λ​**​), such that ​e​ I​ *​ ≥ ​e​ I​ P​
for λ ≤ ​λ​**​, and ​e​ I​ *​ < ​e​ I​ P​ otherwise.

Proof of Proposition 10:
First, we characterize ​β​ *​(λ) for λ = 1. Since ​e​ I​ *​(λ = 1) = 0, the first-order 

condition (28) simplifies to d ​Π​ S​/dβ​ | ​λ=1​ = 0. Hence, ​β​ *​(1) = ​β​0​. Next, we dem-
onstrate that ​β​ *​(0) > ​β​ *​(1) = ​β​0​. To do so, we need to express the first-order condi-
tion (29) for λ = 0 and λ = 1: 

(A55)  ​ d ​Π​ S​ _ 
dβ ​​ |​

λ=0

​ = ​[V​(​e​ S​ *​ ​(β​0​, 0))​ − ​ β​0​ρ′​(​e​ S​ *​​(β​0​ , 0))​]​ ​ d​e​ S​ *​
 _ 

dβ ​​|​
λ=0

​ − ρ′ ​(​e​ S​ *​ ​(β​0​, 0))​  =  0
		  8	 3
		  ≡A1	 ≡B1

(A56)   ​ d ​Π​ S​ _ 
dβ ​​ |​

λ=1

​ = ​[​V ′​ (​e​ S​ *​(​β​ *​, 1)) − ​β​ *​​ρ′​ (​e​ S​ *​(​β​ *​, 1))]​​ d​e​ S​ *​
 _ 

dβ ​​|​
λ=1

​ − ρ(​e​ S​ *​(​β​ *​, 1))  =  0.

To prove that ​β​ *​(0) > ​β​ *​(1) = ​β​0​, we need to verify that at β = ​β​0​, 

(A57)	​  d​Π​ S​ _ 
dβ ​​|​

λ=1, β=​β​0​
​  = ​ [V ′ ​(​e​ S​ *​ ​(β​0​, 1))​  − ​ β​0​ρ′ ​(​e​ S​ *​ ​(β​0​, 1))​]​ ​ d​e​ S​ *​

 _ 
dβ ​​|​

λ=1, β=​β​0​
​

		  8
		  ≡A2

		  −  ρ(​e​ S​ *​(​β​0​ , 1))  >  0.
	 	 3
	 	 ≡B2

We can infer from Proposition 6 that ​e​ S​ *​(​β​0 ​, λ = 0) > ​e​ S​ *​ (​β​0​ , λ = 1). Hence, 
B1 > B2. Because d​e​ S​ *​/dβ > 0 and d​e​ I​ *​/dβ < 0 (see Proposition 6), we can 
deduce from (29) that ​V ′​(​e​ S​ *​ (​β​0​ , 0)) − ​β​0​ ​ρ′​(​e​ S​ *​ (​β​0​ , 0)) > 0. Moreover, since 
​e​ S​ *​ (​β​0​ , λ = 0) > ​e​ S​ *​ (​β​0​ , λ = 1), we can conclude that A1 < A2. Finally, it remains 
to demonstrate that 

(A58)	​ 
d​e​ S​ *​

 _ 
dβ ​​|​

λ=0
​  < ​  d​e​ S​ *​

 _ 
dβ ​​|​

λ=1
​.

It can be shown that ​e​ S​ *​ is concave increasing in β. From concavity of ​e​ S​ *​ in β and ​
e​ S​ *​(​β​0​, λ = 0) > ​e​ S​ *​(​β​0​, λ = 1), it follows immediately that (A58) must hold. 
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Consequently, d ​Π​ S​/dβ​ | ​λ=1, β = ​β​0​​ > 0, which implies that ​β​ *​(0) > ​β​ *​(1) = ​β​0​. 
Next, we demonstrate that ​β​ *​(λ) < ​β​0​ for sufficiently high values of λ, with λ < 1. 
To do so, we express the first-order condition (28) in a more general fashion: 

(A59)	​  d Π _ 
dβ ​  = ​  ∂ ​Π​ S​ _ ∂​e​ S​ *​

 ​  ​ 
∂​e​ S​ *​

 _ ∂β ​  + ​  ∂ ​Π​ S​ _ ∂β ​   + ​  ∂ ​Π​ I​ _ ∂​e​ I​ *​
 ​  ​ ∂​e​ I​ *​ _ ∂β ​.

		  5	 3
		  ≡A	 ≡B

First, observe that ∂ Π/∂​e​ I​ *​ > 0, and recall from Proposition 6 that ∂​e​ I​ *​/∂β < 0. 
Thus, (A59) implies that A > 0. Now suppose for a moment that λ → 1. Then, ​
e​ I​ *​ → 0, and as a result B → 0. Hence, d Π/dβ​ | ​β=​β​ *​(λ), λ→1​ > 0, implying that 
​β​ *​(λ) < ​β​0​ for λ → 1. To summarize, ​β​ *​(λ) > ​β​0​ for sufficiently low λ, and 
​β​ *​(λ) < ​β​0​ for sufficiently high λ.

Proof of Lemma 8:
Let ​e​ S​ *​(β, m) and ​e​ I​ *​(λ, Y, m) denote the agent’s optimal effort levels for a given 

incentive bonus β and a given number of stock options m. The agent’s expected util-
ity then becomes 

(A60)    U( ⋅ )  = ​ ∫ 
0
​ 
​Y​ A​

​ ​[β​e​ S​ *​  +  mφ( ⋅ , ​e​ S​ *​, 0)  −  c(​e​ S​ *​)]​​ dΦ(Y )

(A61)	 + ​∫ 
​Y​ A​

​ 
∞

​ ​[(1  −  λ)Yμ​e​ I​ *​  +  mφ( ⋅ , 0, ​e​ I​ *​)  −  c(​e​ I​ *​)]​​ dΦ(Y ).

From the first-order condition with respect to ​Y​ A​, the agent’s threshold innovation 
value ​Y​ A​(β, λ, m) is now implicitly characterized by 

(A62)    β​e​ S​ *​  +  mφ( ⋅ , ​e​ S​ *​, 0)  −  c(​e​ S​ *​)  =  (1  −  λ)​Y​ A​μ​e​ I​ *​ 

	 +  mφ( ⋅ , 0, ​e​ I​ *​)  −  c(​e​ I​ *​),

which is equivalent to ​U​ S​(​e​ S​ *​, β, m) = ​U​ I​(​e​ I​ *​, λ, m, ​Y​ A​). Implicitly differentiating ​Y​ A​ 
with respect to m yields 

(A63)	​  d​Y​ A​ _ 
dm

 ​  = ​ 
​  d _ 
dm

 ​​[​U​ S​( ⋅ )  − ​ U ​I ​( ⋅ )]​
  __  

​​ d​U​ I ​( ⋅ ) _ 
dY

 ​ |​
Y=​Y​ A​

​

 ​ .

We know from Proposition 1 that d​U​I​( ⋅ )/dY ​| ​Y=​Y​ A​​ > 0. Moreover, applying the 
Envelope Theorem and letting m → 0 yield 

(A64)	​   d _ 
dm

 ​​[​U​ S​( ⋅ )  − ​ U​ I​( ⋅ )]​ ​|​
m=0

​  =  φ( ⋅ , ​e​ S​ *​, 0)  −  φ( ⋅ , 0, ​e​ I​ *​).
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Consider, first, the interval λ ∈ (0, ​λ​**​]. For any λ ∈ (0, ​λ​**​] and Y ∈ (​Y​ A​( ⋅ ), 
​Y​ P​( ⋅ )], we can infer from Proposition 2 that ​Π​ A​( ⋅ , ​e​ S​ *​, 0) ≥ ​Π​ A​( ⋅ , 0, ​e​ I​ *​). Since 
∂φ( ⋅ )/∂​Π​A​ > 0, this implies that φ(⋅, ​e​ S​ *​, 0) ≥ φ( ⋅ , 0, ​e​ I​ *​) for m > 0, with m→0, 
and λ ≤ ​λ​**​. Thus, d ​Y​ A​/dm​ | ​m=0​ ≥ 0 for λ ≤ ​λ​**​. Likewise, one can show that 
d​Y​ A​/dm​ | ​m=0​ < 0 for λ > ​λ​**​.

Incentive Effect of Stock Options:
Let Θ( ⋅ ) ≡ mφ( ⋅ ) denote the agent’s expected compensation from stock options. 

First, suppose that the agent focuses exclusively on the standard task. For a given 
number of stock options m, the first-order condition characterizing the agent’s opti-
mal effort level ​e​ S​ *​(β, m) for the standard task becomes 

(A65)	 β  + ​  ∂Θ( ⋅ ) _ 
∂​e​S​

 ​   = ​ c′​ (​e​S​).

Implicitly differentiating ​e​ S​ *​(β, m) with respect to m yields 

(A66)	​ 
d​e​ S​ *​

 _ 
dm

 ​  =  −  ​ 
​ ​∂​ 2​Θ( ⋅ ) _ ∂​e​S​ ∂m

 ​
  ___   

​  ∂ _ ∂​e​S​
 ​​[β  + ​  ∂Θ(Π | ⋅ ) _ 

∂​e​S​
 ​   − ​ c′​ (​e​S​)]​

 ​ 

	 =  −  ​ 
​ ∂φ( ⋅ ) _ ∂​e​S​

 ​
  ___   

​  ∂ _ ∂​e​S​
 ​​[β  + ​  ∂Θ(Π | ⋅) _ 

∂​e​S​
 ​   − ​ c′​ (​e​S​)]​

 ​,

where the denominator is strictly negative due to the second-order condition (SOC). 
Moreover, notice that ∂ E​[​Π​ A​]​/∂​e​S​ > 0 for all β ≤ ​β​ *​ and m ≤ ​m​*​, implying that 
∂φ( ⋅ )/∂​e​S​ > 0. Thus, d​e​ S​ *​/dm > 0.

Next, suppose the agent focuses on innovation. For a given number of stock 
options m, the first-order condition, which characterizes the agent’s optimal effort 
level ​e​ I​ *​(λ, Y, m), becomes 

(A67)	 (1  −  λ)Yμ  + ​  ∂Θ( ⋅ ) _ ∂​e​I​
 ​   = ​ c′​ (​e​I​).

Implicitly differentiating ​e​ I​ *​(λ, Y, m) with respect to m gives 
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(A68)	​ 
d​e​ I​ *​ _ 
dm

 ​  =  −  ​ 
​ ​∂​ 2​Θ( ⋅ ) _ ∂​e​I​ ∂m

 ​
  ___    

​  d _ 
dm

 ​​[(1  −  λ)Yμ  + ​  ∂Θ( ⋅ ) _ ∂​e​I​
 ​   − ​ c′​(​e​I​)]​

 ​ 

	 =  −  ​ 
​ ∂φ( ⋅ ) _ ∂​e​I​

 ​
  ___    

​  d _ 
dm

 ​​[(1  −  λ)Yμ  + ​  ∂Θ( ⋅ ) _ ∂​e​I​
 ​   − ​ c′​(​e​I​)]​

 ​ ,

where the denominator is strictly negative due to the second-order condi-
tion. Furthermore, ∂ E​[​Π​ A​]​/∂​e​I​ > 0 for all m ≤ ​m​*​ and λ > 0, implying that 
∂φ( ⋅ )/∂​e​I​ > 0. As a result, d​e​ I​ *​/dm > 0.

Proof of Proposition 11:
To show that ​m​*​ = 0 for σ → ∞, it is sufficient to demonstrate that for σ → ∞ 

with m → 0, (i) the marginal costs of providing the agent with stock options go to 
infinity; and (ii), the marginal benefit goes to zero. In this case, two essential Inada 
conditions are violated, which, in turn, leads to a corner solution with ​m​*​ = 0. First, 
one can easily verify that 

(A69)	​ 
 
 
 

 lim    
σ→∞

​​ ∂C( ⋅ ) _ ∂m
 ​​ |​

m=0
​  = ​ 

 
 
 

 lim    
σ→∞

​φ( ⋅ )  =  ∞.

Next, consider the principal’s marginal benefit, denoted ​B​m​, of providing the agent 
with stock options: 

(A70)	​ B​m​  = ​ [​Π​ S​  − ​ Π​ I​ ]​ϕ(​Y​ A​) ​ d​Y​ A​ _ 
dm

 ​.

We can infer from (A64) (see Proof of Lemma 8) that 

(A71)	​​  d​Y​ A​ _ 
dm

 ​|​
m=0

​  = ​  φ(⋅, ​e​ S​ *​, 0)  −  φ(⋅, 0, ​e​ I​ *​)   __  
​​ d​U​ I​( ⋅ ) _ 

dY
 ​ |​

Y=​Y​ A​
​

 ​  ,

where ​d​U​I​( ⋅ )/dY |​Y=​Y​ A​​ > 0 (see Proof of Proposition 1). Because ​lim​σ→∞​φ( ⋅ ) = ∞, 
it follows that 

(A72)	​ 
 
 
 

 lim    
σ→∞

​​ ​ d​Y​ A​ _ 
dm

 ​|​
m=0

​  =  0,

and hence, li​m​ σ→∞​    ​​  B​m​​ | ​m=0​ = 0. Thus, ​m​*​ = 0 for σ→∞.
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