

**U.S. Department** of Transportation

**Federal Highway Administration** 

# Highway ministration Life Cycle Cost Analysis (LCCA)

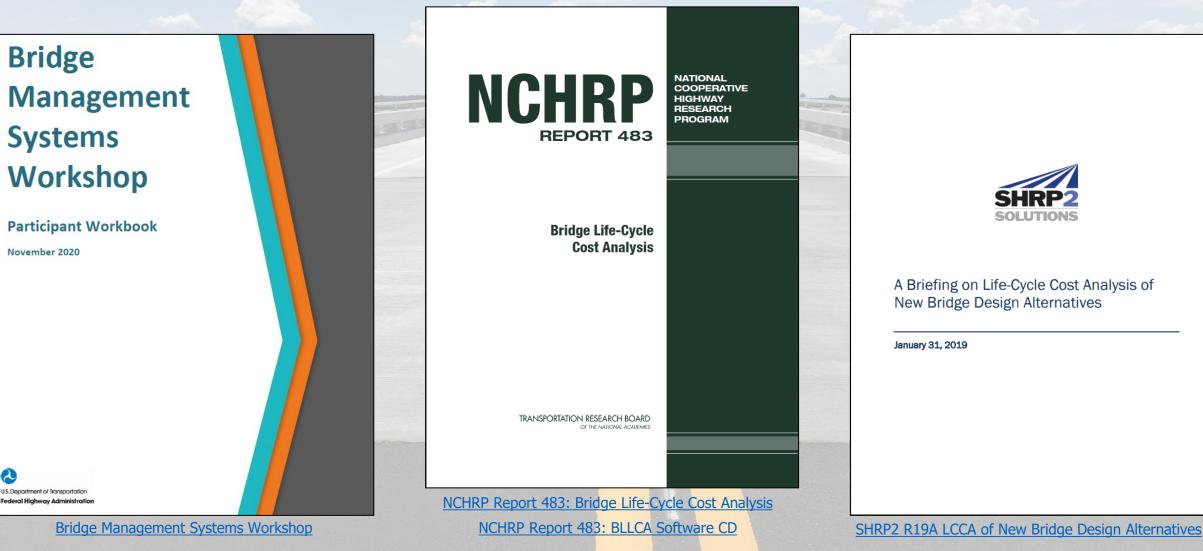
Robert Hinman, P.E. 12 June 2023

### **FHWA Disclaimer**

The U.S. Government assumes no liability for the use of the information contained in this document.

The views and opinions expressed in this presentation are the presenters' and do not necessarily reflect those of FHWA or the U.S. Department of Transportation (USDOT). The contents do not necessarily reflect the official policy of the USDOT or FHWA. Except for any statutes or regulations cited, the content of this presentation and slides do not have the force and effect of law and are not meant to bind the public in any way. This presentation and slides are intended only to provide information to the public regarding existing requirements under the law or agency policies.

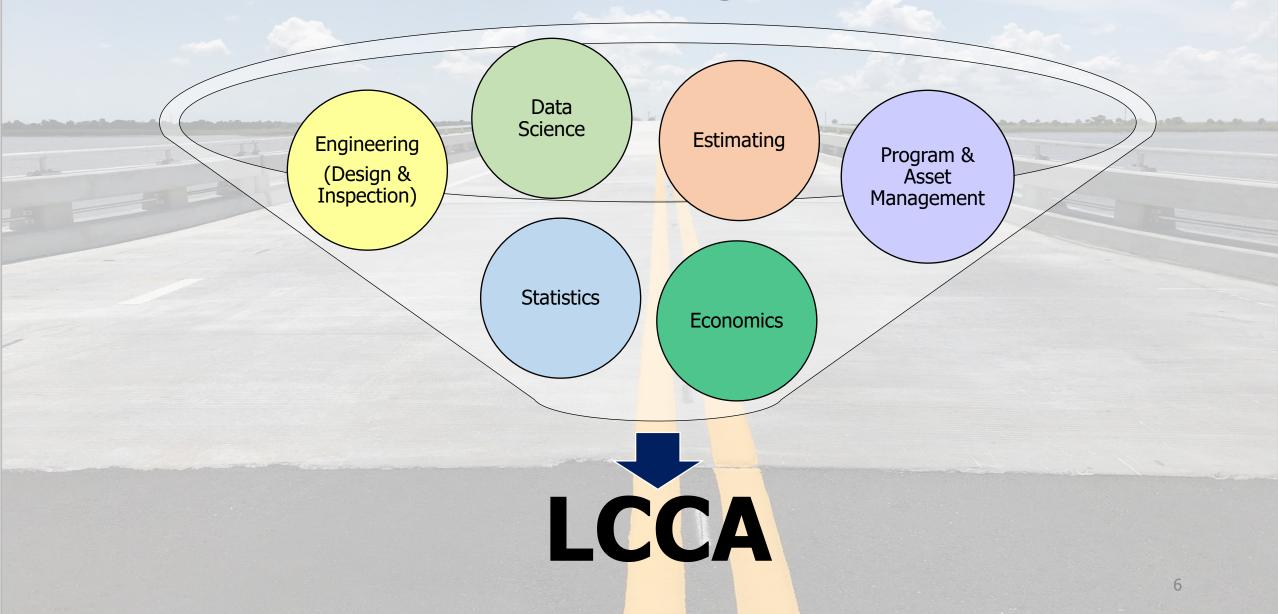
The U.S. Government does not endorse products, manufacturers, or outside entities. Trademarks, names, or logos appear in this presentation and slides only because they are considered essential to the objective of the presentation. They are included for informational purposes only and are not intended to reflect a preference, approval, or endorsement of any one product or entity.


Bridge management software and deterioration modeling software are largely proprietary. Content pertaining to proprietary software is included only to illustrate concepts and how analyses are applied in practice. The included content shall not be construed as promotion or endorsement of specific software.

### Acronyms

**ADE:** Agency Defined or Developed Elements **BLCCA:** Bridge Life Cycle Cost Analysis **BCA:** Benefit-to-Cost Analysis **BME**: Bridge Management Elements **BMS**: Bridge Management System BrM: AASHTOWare Bridge Management System [Software] **BrR**: AASHTOWare Bridge Rating [Software] C: Cost **CFR**: Code of Federal Regulation **CFRP**: Carbon Fiber Reinforced Polymer **CRR**: Corrosion Resistant Reinforcing steel **CSF:** Critical Success Factor **DR**: Discount Rate **ECR**: Element Condition Ratings **EUAC:** Equivalent Uniform Annual Cost **FV**: Future Value **GCR**: General Condition Rating **HI**: Health Index LCC: Life Cycle Cost LCCA: Life Cycle Cost Analysis

LRFD: Load and Resistance Factor Design **MBEI**: Manual for Bridge Element Inspection **MMFX**: corrosion resistant alloy steel **NCHRP:** National Cooperative Highway Research Program **NEPA:** National Environmental Policy Act **NBE**: National Bridge Element **NBI**: National Bridge Inventory **PV**: Present Value **ROW**: Right-of-Way **RUC:** Road User Costs **SCM**: Supplemental Cementitious Materials **SCR**: Special Contract Requirements **SDCL:** Simple for Dead load and Continuous for Live load **SHRP:** Strategic Highway Research Program SL: Service Life **SLD**: Service Life Design (durability design) **TAM:** Transportation Asset Management **TAMP**: Transportation Asset Management Plan **TPM**: Transportation Performance Management


### **Key Resources**



# **Learning Objectives**

- Understand the principles of a LCCA for bridges
- Understand the basic steps in performing a LCCA
- Understand factors & inputs into performing a bridge LCCA and why they are important
  - Design Life vs. Service Life
  - Deterioration, Exposure Zones, and Durability
  - Timing of Maintenance, Preservation, and Rehabilitation Actions
  - Cost Types and Estimates
  - Forecasting, Modeling Uncertainty, Optimization
  - Time Value of Money, Present Value, Discount Rate

### **LCCA** is an Amalgamation of



### Life-Cycle Cost Analysis (LCCA) Basics

- Used to compare / select the most cost-effective alternative and timing of activities (design with associated preservation and maintenance strategies) over the same time period (e.g., 75 or 100 years).
- Compares total costs of competing project implementation alternatives at the same level of service and benefits (*these must be equal among project alternatives being considered*) by finding the right balance between initial costs, maintenance costs, and the desired condition of the bridge.
- Time value of money: Money in the future is worth less than its present value so must be discounted to its present value.

### LCCA Basics, cont.

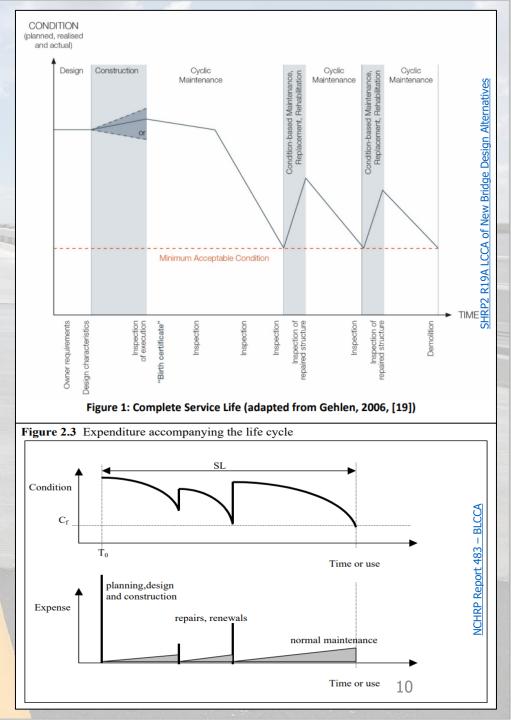
- Maintenance costs (assuming proper regular maintenance) are typically less than the costs of prematurely replacing a bridge.
- Maintenance of bridge components greatly influences the rate of their deterioration.
- Planned maintenance tasks of different bridge components are closely related to the exposure zones and level of expected deterioration of the components. Based on these factors, the necessary maintenance precautions can be planned.
- Carefully identify maintenance tasks, timing of tasks, and related unit costs since they greatly influence the outcome of LCCA.

### LCCA Basics, cont.

- Since constructing and managing a bridge covers a timeframe of 75 or more years, those costs need to be converted to a form that allows them to be compared.
- Economists distinguish the value between a dollar today and one in the future (time value of money) through a process called **discounting**.
- **Discounting** involves calculating the range of values of a dollar over a time horizon to find their **present value**.

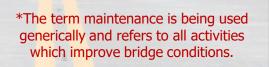
### **Basic Steps in a LCCA**

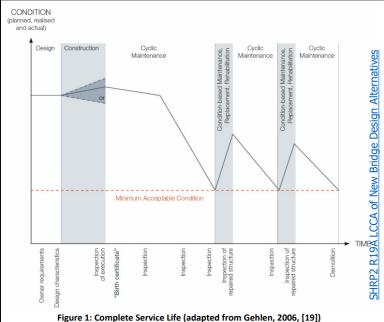
1. Establish Design Alternatives

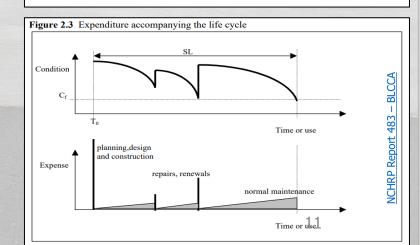

2. Determine Activity Timing

3. Estimate Costs

4. Compute Life-Cycle Costs


Life-Cycle Cost Analysis Primer


5. Analyze Results

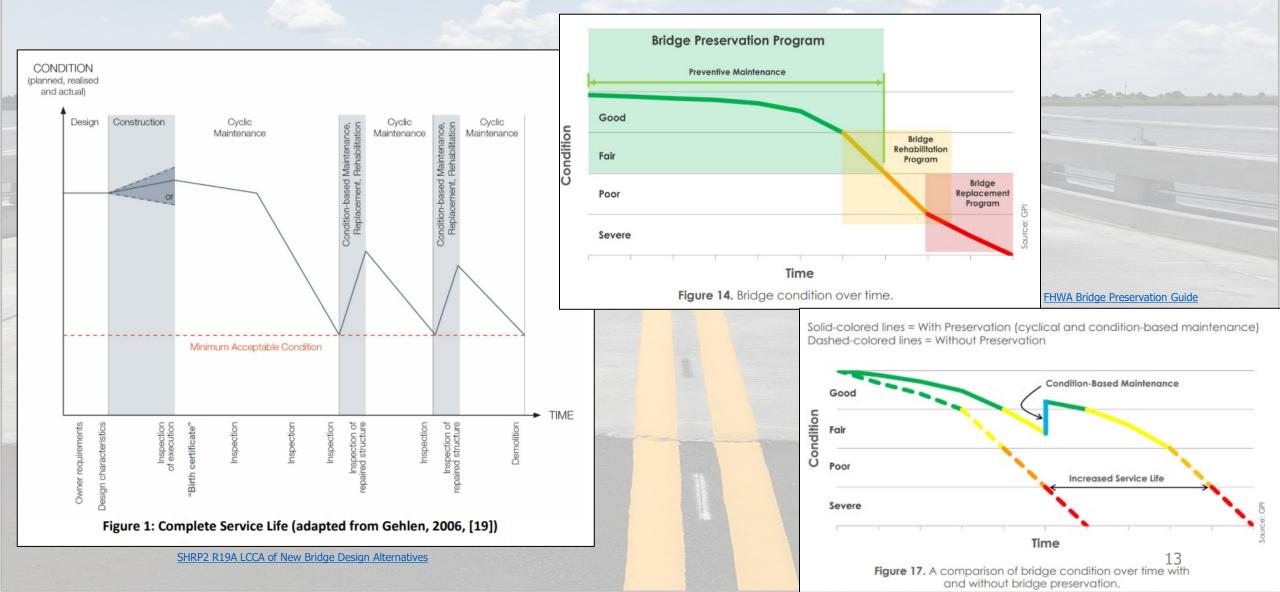



### **Expanded Steps in a LCCA**

- 1. Identify Bridge, Components, &/or Elements &/or Service Life Alternatives
- 2. Identify Exposure Zone(s) for Components & Elements
- 3. Determine Deterioration for Each Component & Element
- 4. Establish Maintenance\* Tasks for Each Component & Element
- 5. Determine Frequency of Each Maintenance\* Task
- 6. Determine Quantities of Each Component & Element
- 7. Determine Unit Costs of Maintenance\* Tasks
- 8. Calculate Activity Task Cost per Time for Each Maintenance\* Action (Unit Cost x Quantity)
- 9. Determine the Real Discount Rate & which Engineering Economics Formulas to Use
- 10. Calculate the Present Value Cost for Each Task Over Service Life
- 11. Calculate Total Present Value Cost
- \*\* Perform Simulations & Sensitivity Analyses to Optimize Costs, Design, & Maintenance Activities \*\*







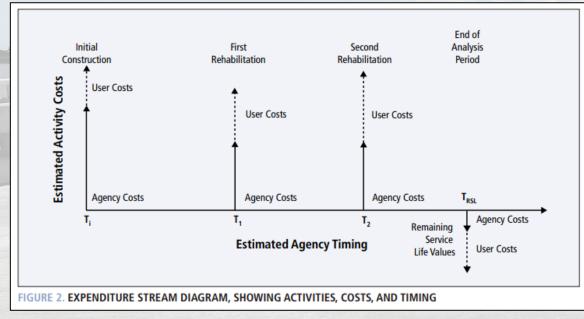

### **Design Alternative Considerations**

### **Design Life ≠ Service Life**



### **Activity Timing is Crucial**



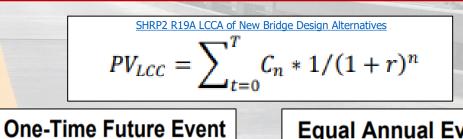

### **Typical LCCA Costs**

 Agency Costs (construction, operation (including inspections), maintenance, preservation, rehabilitation, demolition, residual value);

User Costs (congestion, detours, accidents, etc.); and

Vulnerability Costs (seismic, scour, floods, overloads, collisions, fires, etc.)

### **Computing LCCA**



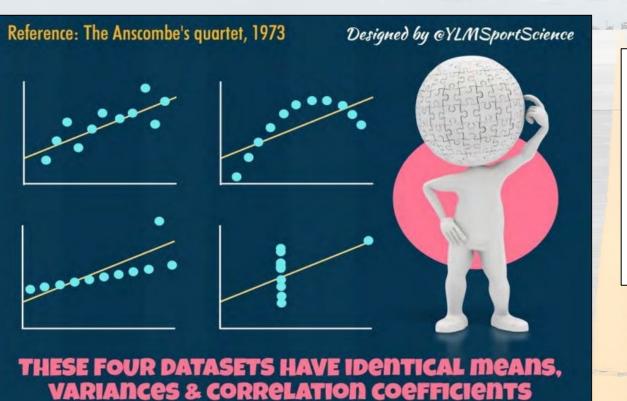

Life-Cycle Cost Analysis Primer

|                |                 | Alternative A              |                          | Alternative B              |                          |
|----------------|-----------------|----------------------------|--------------------------|----------------------------|--------------------------|
| Year           | Discount Factor | Discounted<br>Agency Costs | Discounted<br>User Costs | Discounted<br>Agency Costs | Discounted<br>User Costs |
| 0              | 1.0000          | \$26,000,000               | \$11,000,000             | \$20,000,000               | \$8,000,000              |
| 12             | 0.6246          |                            |                          | 3,747,582                  | 6,245,970                |
| 20             | 0.4564          | 6,845,804                  | 13,691,608               | 2,738,322                  | 7,302,191                |
| 28             | 0.3335          |                            |                          | 2,000,865                  | 9,337,369                |
| 35             | 0.2534          | (950,308)                  | (1,900,616)              | (190,062)                  | (886,954)                |
| tal Costs (PV) |                 | 31,895,496                 | 22,790,992               | 28,296,707                 | 29,998,576               |

 $PV = \frac{FV_N}{\left(1 + DR\right)^N}$ 

Money in the future is worth less than its present value so must be discounted to its present value.




**Equal Annual Events**  $PV = C \frac{(1 + DR)^{N} - 1}{DR(1 + DR)^{N}}$ NCHRP Report 483 - BLCCA

## **Analyzing Results**

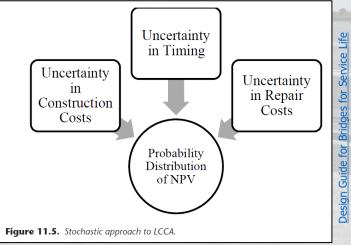
- Lowest Cost Alternative
- Sensitivity Analyses and Simulation
- Benefit-to-Cost Analysis (BCA)
  - Considers the benefits of an improvement as well as its costs
  - Use for different levels of service, utility, objectives, or duration (e.g., 75 years and 100 years)
  - Goal is to maximize benefits
    - Area-Under-the-Curve Method

| LCCA | BCA                     |
|------|-------------------------|
| Yes  | Yes                     |
| Yes  | Yes                     |
| Yes  | Yes                     |
| No   | Yes                     |
| No   | Yes                     |
|      | Yes<br>Yes<br>Yes<br>No |

# **Be Aware & Beware of Your Data**



Slide from: Use of IDT Testing for Asphalt Mixture Performance – Design and QC/QA (Bennett, 2019)




Garbage data image: New Course: Learn Advanced Data Cleaning in R | R-bloggers (accessed 6.08.2023)

## **Variability and Uncertainty**

To address variability and uncertainty associated with input factors, utilize either or both computational approaches:

- Deterministic: (most used) uses fixed discreet values
  - Extrapolation
  - Regression
  - Curve-fitting techniques



- Stochastic (probabilistic): defines input variables by a probability distribution
  - Markov-Chains & Markov-Chain Monte Carlo
    - Markov Transition Probability models are often used in deterioration modeling
  - Time-in-Condition Rating (TICR) for bridge deterioration models
- **Other**: Bayesian-based statistical models, neural networks, machine learning, deep learning, Artificial Intelligence

# **Variability and Uncertainty**

#### **Simulation and Sensitivity Analyses**

- Helps reveal which variables have greater uncertainty and influence LCCA results
- Ideally, the "best" alternative will have the lowest present value in the most likely of "what-if" situations
- Determine acceptable risk levels
- Re-evaluate parameters and alternatives as needed

#### **Remember Other Influences**

- Location: urban / rural and proximity of source materials to site
- Trucking routes and bridge load ratings leading to the project
- Economy of scale
- Bidding and contract methodology and requirements
- Designer and contractor risk

Schedule

- Work hour or noise restrictions
- Sequencing of activities
- Construction considerations, staging, hoisting
- Permitting (NEPA, oversized and superloads, etc.)
- Detours, lane closures, and traffic control
- Labor / technical expertise shortages

### **Bridge Parts Definitions**

**Bridge Element**: Individual bridge member (e.g., girder, beam, bent, stem, bearing, railing, etc.).

**Bridge Component**: A combination of bridge elements forming one of the three major portions of a bridge that makes up the entire structure. The three major components of a bridge system are substructure, superstructure, and deck.

**Bridge Subsystem**: A combination of two or more bridge elements acting together to serve a common structural purpose (e.g., such as a composite girder which could consist of girder, reinforcement, and concrete).

**Bridge System**: The three major components of the bridge combined to form a complete bridge.

### **Step 1: Establish Design Alternatives**

- Establish Required Design Criteria & Factors of Initial Design
  - Spans, Loads, Geometric, Geotechnical, Layout, Clearances, ROW, NEPA, Economics of Design, etc.
- Determine Design Alternatives
  - Bridge type, span ranges, span configurations, materials
    - e.g., *Concrete options*: prestressed box beams, prestressed AASHTO beams, prestress bulb-tees Steel options: steel beams, steel plate girders, folded plate beams, SDCL
- Identify required activities throughout the structure's service life for each alternative
  - e.g., maintenance, preservation, rehabilitation, or element replacement for each element, subsystem, and/or within a system

### Step 1. Cont.:

 How do / will resiliency and sustainability considerations change designs and LCCA?

- Resiliency considerations will likely focus on durability and high risk / vulnerability factors.
- Sustainability considerations will likely require additional benefit-to-cost analyses to capture benefits of sustainability.

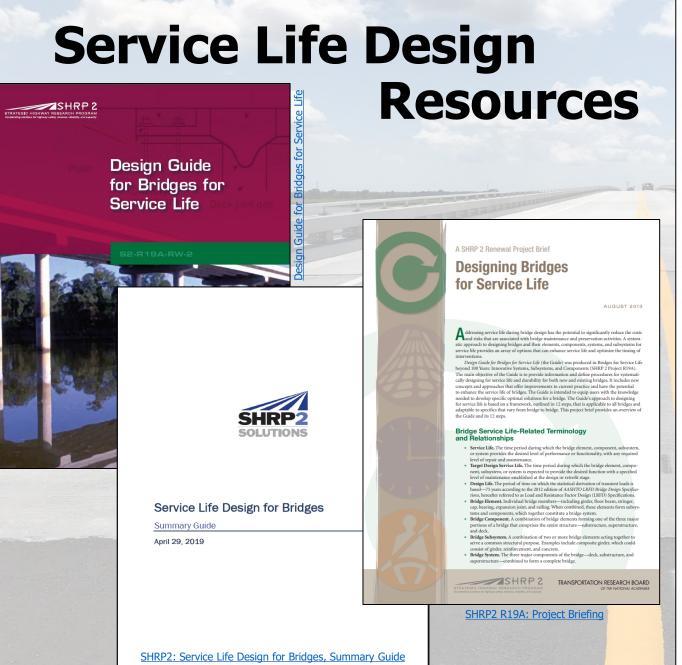
### **Durability & Service Life Considerations**

- Ideally design(s) incorporate durability (Service Life Design)
  - ~ for each bridge element, component, subsystem, and system
- Service life design is beyond the structural load carrying capabilities and LRFD 3.4 Service Limit States I, II, and III
- All materials deteriorate with time and at unique / individual rates, even a different locations within the same element
- Typically, when a structure reaches the end of its life the cause is primarily from material deterioration due to environmental exposure conditions
  - e.g., chlorides, chemicals, wet-dry cycles, freeze-thaw cycles, temperature and humidity factors, and even abrasion

### **Durability & Service Life Considerations, Cont.**

- Need to understand mechanisms of deterioration for each design and element, component, subsystem
- Designing for Service Life is similar to strength design to resist structural failure caused by external loads
  - External loads ↔ Environmental factors
  - Material strength ↔ Durability properties
- Ideally develop deterioration models and service life models from inspections, testing, & historical data
  - Based on environmental exposure conditions for each element
- Develop durability metrics and serviceability limit states to trigger actions (e.g., maintenance activities)

### **Service Life Durability Strategies**


#### • Avoidance approach:

- Eliminating the environmental exposure actions
  - e.g., Use of non-reactive aggregates, stainless steel, barrier systems
- Using materials with resistance well beyond the requirements needed
  - e.g., Corrosion resistant reinforcement, CCR (stainless steel, MMFX, CFRP, etc.) ~ see ASTM A1035 & AASHTO M 334
  - e.g., Concrete with increased cover and SCMs (e.g., slag, fly ash, silica fume) and / or corrosion inhibitors
  - Not always the most cost-effective solution
- Design to resist approach
  - Full probabilistic method
  - Partial safety factor method
  - Deemed-to-satisfy method
- Multiple strategies may be needed on a single bridge

### **Obsolescence Awareness**

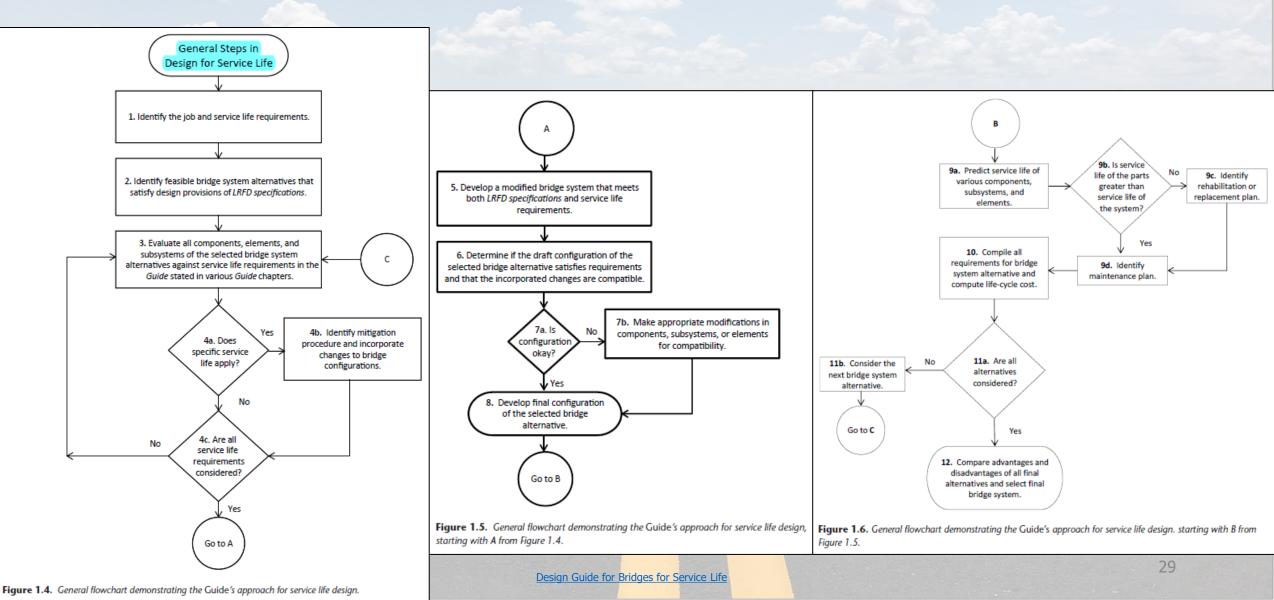
"Factors that can cause obsolescence:

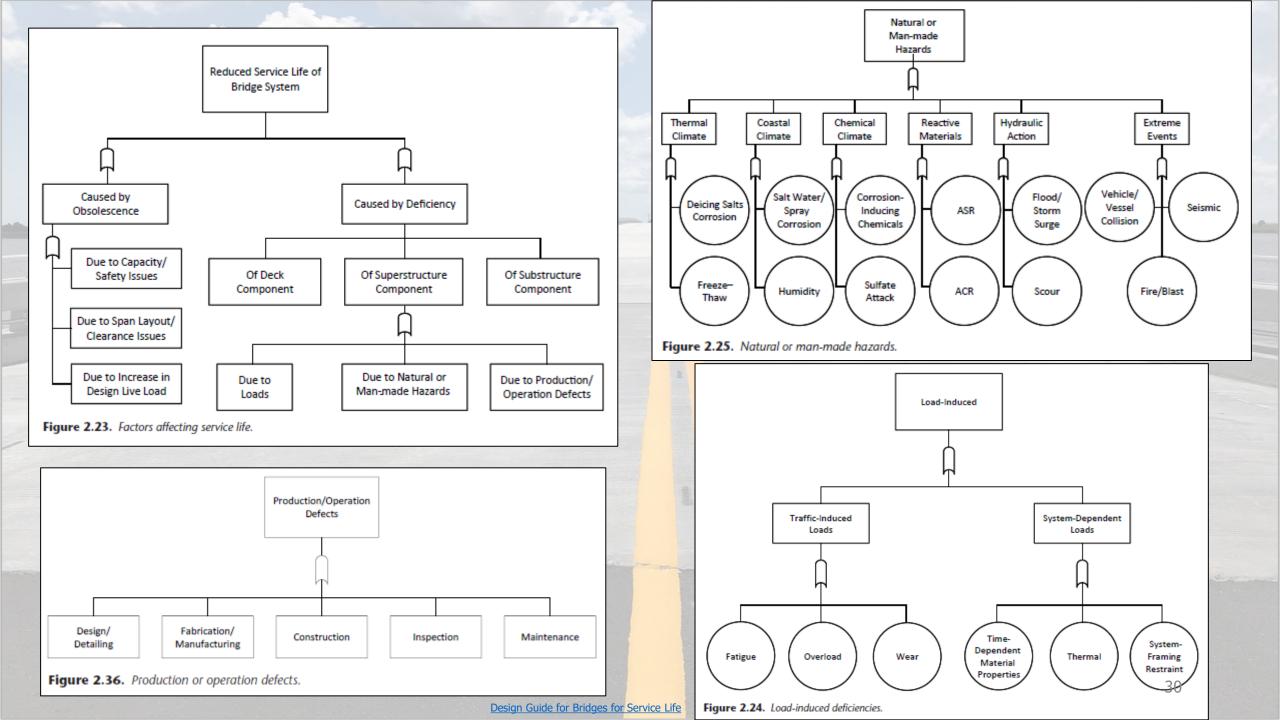
- Technological changes influence the scope or levels of services a bridge is to provide
  - e.g., when heavier loads are permitted than those loads for which the bridge was initially designed
- Regulatory changes impose new requirements on infrastructure
  - *e.g.,* when safety requirements change the lane or shoulder widths required
- Economic or social changes can alter the demands placed on infrastructure
  - e.g., when development generates traffic substantially above levels envisioned in design
- Changes in values or behavior can similarly alter demands but are more difficult to foresee"
  - e.g., equitable community access

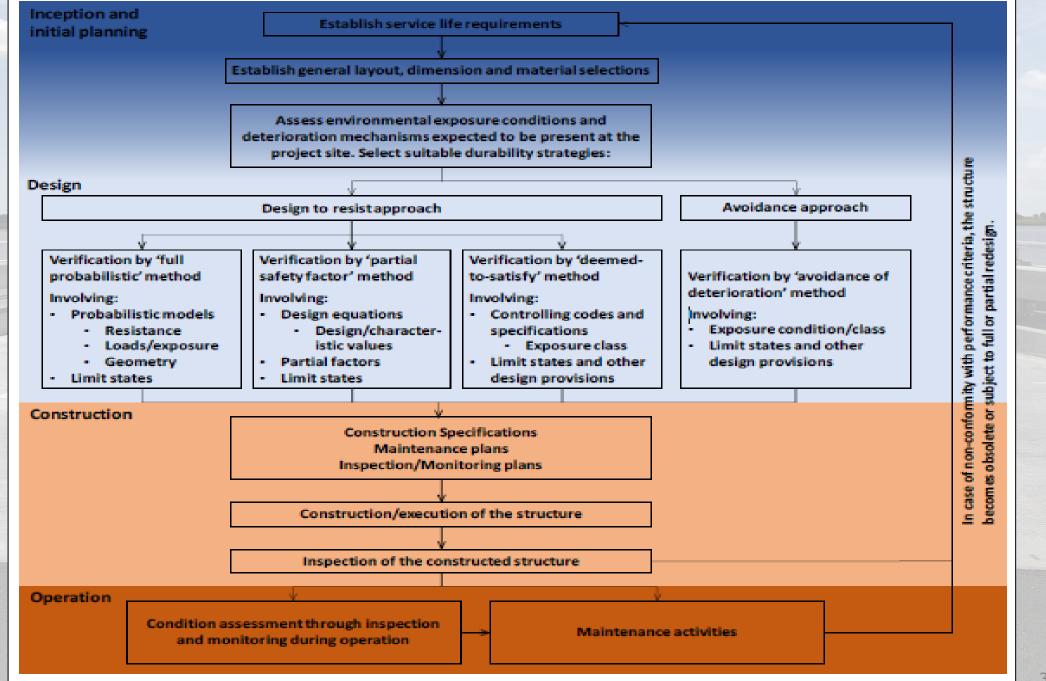


#### Table 1. 12 Steps to Design Bridges for Service Life

|   | Step 1.  | Identify the project requirements, particularly those that will influence the service life.                                                                                                                                                                                                                                    |
|---|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | Step 2.  | Identify feasible bridge systems capable of meeting the project<br>demand.                                                                                                                                                                                                                                                     |
|   | Step 3.  | Select each feasible bridge system and complete Steps 4 through 10.                                                                                                                                                                                                                                                            |
|   | Step 4.  | Identify the factors that influence service life of bridge elements, com-<br>ponents, and subsystems, such as traffic and environmental factors.                                                                                                                                                                               |
|   | Step 5.  | Identify modes of failures and consequences. For instance, the corro-<br>sion of reinforcement causing corrosion-induced cracking and loss of<br>strength.                                                                                                                                                                     |
|   | Step 6.  | Identify suitable approaches for miligating the failure modes or assess-<br>ing risk of damage, through life-cycle cost analysis. For example, use<br>better-performing materials for sliding surfaces in bearings.                                                                                                            |
|   | Step 7.  | Modify the element, component, or subsystem under consideration,<br>using the selected strategy and ensure compatibility of different strate-<br>gies used for various bridge elements, components, or subsystems.<br>This step may involve the need to develop several alternatives.                                          |
|   | Step 8.  | For each modified alternative, estimate the service life of the bridge element, component, or subsystem using finite or target service life design approaches.                                                                                                                                                                 |
|   | Step 9.  | For each modified alternative, compare the service life of the bridge<br>element, component, or subsystem to the service life of the bridge<br>system and develop appropriate maintenance, retrofit, and/or replace-<br>ment plan.                                                                                             |
|   | Step 10. | For each modified alternative, develop design, fabrication, construc-<br>tion, operation, maintenance, replacement, and management plans for<br>achieving the specified design life for the bridge system.                                                                                                                     |
|   | Step 11. | For each modified alternative, conduct life-cycle cost analysis for each feasible bridge system meeting strength and service life requirements, and select the optimum bridge system.                                                                                                                                          |
|   | Step 12. | When specified by the owner or in cases of major and complex bridges, document the entire design for service life process in a document called the Owner's Manual. Conduct an independent review of the document and provide it to the bridge owner at the time of opening the bridge to traffic. SHRP2 R19A: Project Briefing |
| 4 |          |                                                                                                                                                                                                                                                                                                                                |


### **Service Life Design Resources**



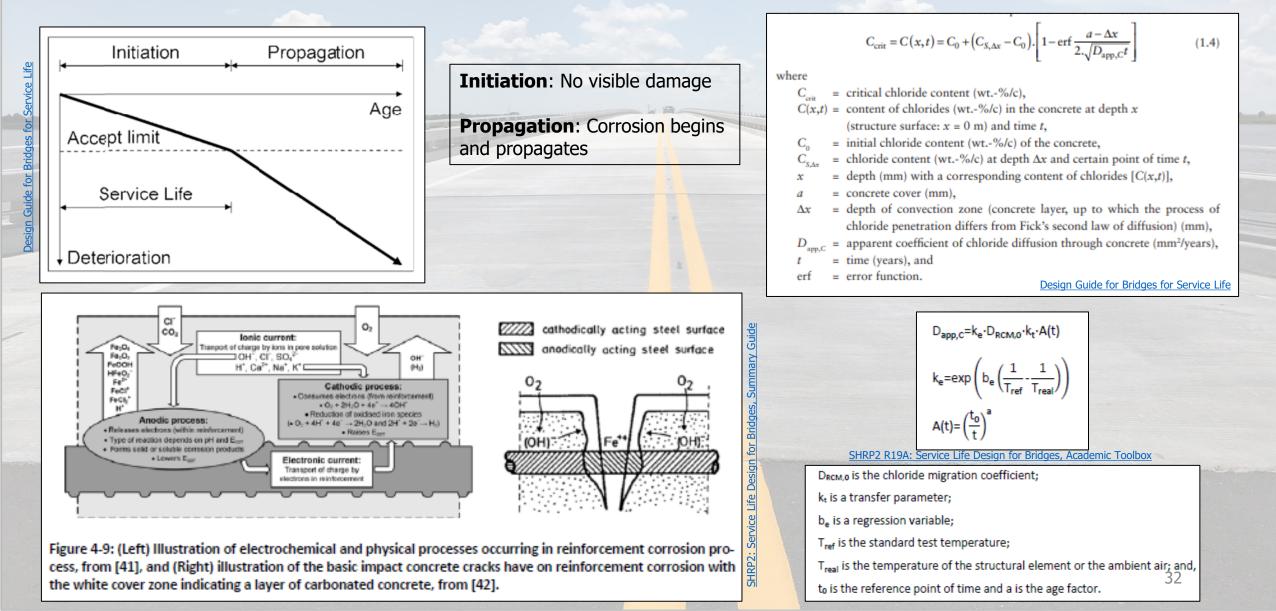


| //shrp2.transportation.org/Pages/ServiceLifeDesignforBridges.aspx 📰 A 🍳 🏠                                                                                        | G I Same and the state of the second |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tools and Technologies                                                                                                                                           | AASHTO - Strategic Highway Res 🗙 🕂                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Design Tools                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Service Life Design – Graphical Solution     Chloride Migration Coefficient Charts                                                                               | ) 🔂 https://shrp2.transportation.org/Pages/ServiceLifeDesignforBridges.aspx 📰 A <sup>N</sup> 🔍                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Service Life Design – Full Probabilistic Tools     Material Testing Recommendations                                                                              | Concentration, Andrew Blower and Ray Bottenberg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Chloride Tests                                                                                                                                                   | <ul> <li>Service Life Design Tools for Chloride Ingress, Anne-Marie Langlois</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Chloride Diffusion Coefficient Calculation                                                                                                                       | <ul> <li>Ochoco Creek Bridge – Service Life Design and Birth Certificate<br/>Documentation Paul Strauser, Mike Bartholomew</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Final IAP State Workshops                                                                                                                                        | <ul> <li>Service Life Design Specifications for Alternative Delivery Projects,<br/>Craig Shike, Anne-Marie Langlois</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Virginia     Final Report                                                                                                                                        | <ul> <li>Service Life Design for Steel Bridges, Anne-Marie Langlois</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <ul> <li>Final Report</li> <li>VDOT Bridge Deck Service Life Design Aid</li> </ul>                                                                               | <ul> <li>Summary of Other R19A Agency Projects, Mike Bartholomew<br/>Lessons Learned and Questions</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <ul> <li>Workshop Materials</li> <li>Virginia Workshop Agenda October 4, 2017</li> </ul>                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <ul> <li>Introduction to Service Life Design, Mike Bartholomew</li> </ul>                                                                                        | Implementation Assistance Program Updates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <ul> <li>Implementing Service Life Design for Concrete Structures Using the<br/>fib Bulletin 34 Methodology, Anne-Marie Langlois</li> </ul>                      | <ul> <li>Service Life Design for Bridges was implemented in Hawaii, Iowa, Maine,<br/>Oregon, Pennsylvania and Virginia through the Implementation Assistance</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <ul> <li>VDOT Specifications for Corrosion Resistant Reinforcement, Prasad</li> </ul>                                                                            | Program.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Nallapaneni Chloride Penetration Resistance and Link to Service Life Design of                                                                                   | National Conferences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Virginia Bridge Decks, Madeleine Flint<br>Service Life of Bridge Decks – Concrete Cracks, Soundar                                                                | National Association of Corrosion Engineers (NACE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Balakumaran                                                                                                                                                      | <ul> <li>March 17, 2015</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <ul> <li>Development of a Specification for Low Cracking Bridge Deck<br/>Concrete, Harikrishnan Nair</li> </ul>                                                  | AASHTO Committee on Bridges (COB)     April 21, 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Calculation Tool for Service Life Design Developed by VDOT, Kyle                                                                                                 | <ul> <li>June 28, 2016</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Haber<br>Service Life Design on Alternative Delivery Projects, Anne-Marie                                                                                        | <ul> <li>June 13, 2017</li> <li>June 28, 2018</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Langlois                                                                                                                                                         | <ul> <li>International Bridge Conference (IBC) Workshop, June 7, 2016</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <ul> <li>Overview of SHRP2 R19A and Activities Done by Other States, Mike<br/>Bartholomew</li> </ul>                                                             | Workshop Introduction     R19A Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Pennsylvania                                                                                                                                                     | <ul> <li>Service Life Design and Engineering of Bridges</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <ul> <li>Final Report</li> <li>Penn DOT 100 Year Service Life Study Chloride Migration Coefficient</li> </ul>                                                    | Service Life – Testing & Documentation     Virginia's Implementation of Service Life Design Concepts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Evaluation                                                                                                                                                       | <ul> <li>Virginia DOT Bridge Durability, Replacement Costs, and Preservation</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <ul> <li>Penn DOT Tutorial For Probabilistic Chloride Ingress Model ProCIM<br/>Full-Probabilistic Design Tool Report</li> </ul>                                  | Strategies  Oregon DOT Service Life Design Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| PennDOT Tool     Workshop Materials                                                                                                                              | <ul> <li>International Bridge Conference (BC) Workshop, June 14, 2018</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <ul> <li>Pennsylvania Workshop Agenda August 16, 2016</li> </ul>                                                                                                 | Workshop Introduction     R19A Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <ul> <li>Overview of Service Life Design for Bridges, Mike Bartholomew</li> <li>Chloride Induced Corrosion Modeling, Anne-Marie Langlois</li> </ul>              | <ul> <li>Implementing Service Life Design Using the fib Bulletin 34 Methodology</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <ul> <li>Concrete Deterioration Mechanisms, Anne-Marie Langlois</li> </ul>                                                                                       | <ul> <li>Design Criteria and Exposure Zones</li> <li>Service Life Design of Concrete Elements</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <ul> <li>Implications of Cracks in Concrete on Service Life, Mike<br/>Bartholomew</li> </ul>                                                                     | <ul> <li>Service Life Design of Steel Elements</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <ul> <li>Service Life Design Requirements for RFPs and Steel Structures,</li> </ul>                                                                              | Service Life Design During Construction     Documenting Durability Design & Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Anne-Marie Langlois  Oregon                                                                                                                                      | Worked Design Example                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <ul> <li>Final Report</li> </ul>                                                                                                                                 | <ul> <li>American Segmental Bridge Institute (ASBI) Annual Meetings (non-sponsored)</li> <li>November 2-3, 2015</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Oregon Workshop Summary Report     Oregon Implementation of SHRP2 R19A Final Report                                                                              | • November 8-9, 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <ul> <li>Workshop Materials</li> <li>Oregon Workshop Agenda January 17, 2018</li> </ul>                                                                          | Related Materials and Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <ul> <li>Introduction to Service Life Design, Mike Bartholomew</li> </ul>                                                                                        | Service Life Design for Bridges (R19A) Fact Sheet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <ul> <li>Implementing Service Life Design Using the fib Bulletin 34<br/>Methodology, Anne-Marie Langlois</li> </ul>                                              | Service Life Design for Bridges (R19A) Final Implementation Report     SHRP2 Bridge Products Brochure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <ul> <li>Overview of Material Testing for Service Life Design, Mike</li> </ul>                                                                                   | <ul> <li>Service Limit State Design for Bridges – Enhanced bridge design guidance tool</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Bartholomew <ul> <li>Testing and Evaluation of Existing Bridge Decks for Chloride</li> </ul>                                                                     | (R19B) Innovative Bridge Designs for Rapid Renewal – Tool kits and standard designs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Concentration, Andrew Blower and Ray Bottenberg                                                                                                                  | <ul> <li>Innovative Bindge Designs for Kapid Kenewal – Iool kits and standard designs<br/>for bridges that can be built more quickly and efficiently (R04)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <ul> <li>Service Life Design Tools for Chloride Ingress, Anne-Marie Langlois</li> <li>Ochoco Creek Bridge – Service Life Design and Birth Certificate</li> </ul> | Contacts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Documentation Paul Strauser, Mike Bartholomew                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <ul> <li>Service Life Design Specifications for Alternative Delivery Projects,<br/>Craig Shike, Anne-Marie Langlois</li> </ul>                                   | Raj Ailaney (FHWA) Raj.Ailaney@dot.gov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <ul> <li>Service Life Design for Steel Bridges, Anne-Marie Langlois</li> <li>Summary of Other R19A Agency Projects, Mike Bartholomew</li> </ul>                  | Related Links                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Lessons Learned and Questions                                                                                                                                    | FHWA Service Life Designs for Bridges Web Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Implementation Assistance Program Updates                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <ul> <li>Service Life Design for Bridges was implemented in Hawaii, Iowa, Maine,</li> </ul>                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Oregon, Pennsylvania and Virginia through the Implementation Assistance<br>Program.                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

About AASHTO | Legal Information | Privacy Policy | Copyright Notice

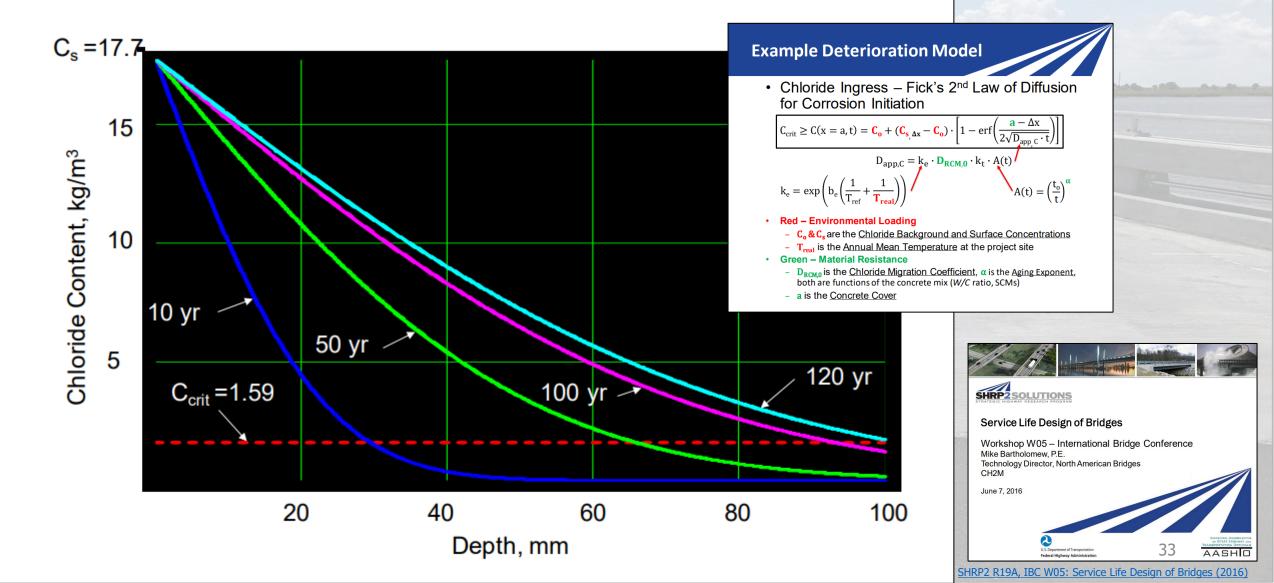
### **Service Life Design Process**





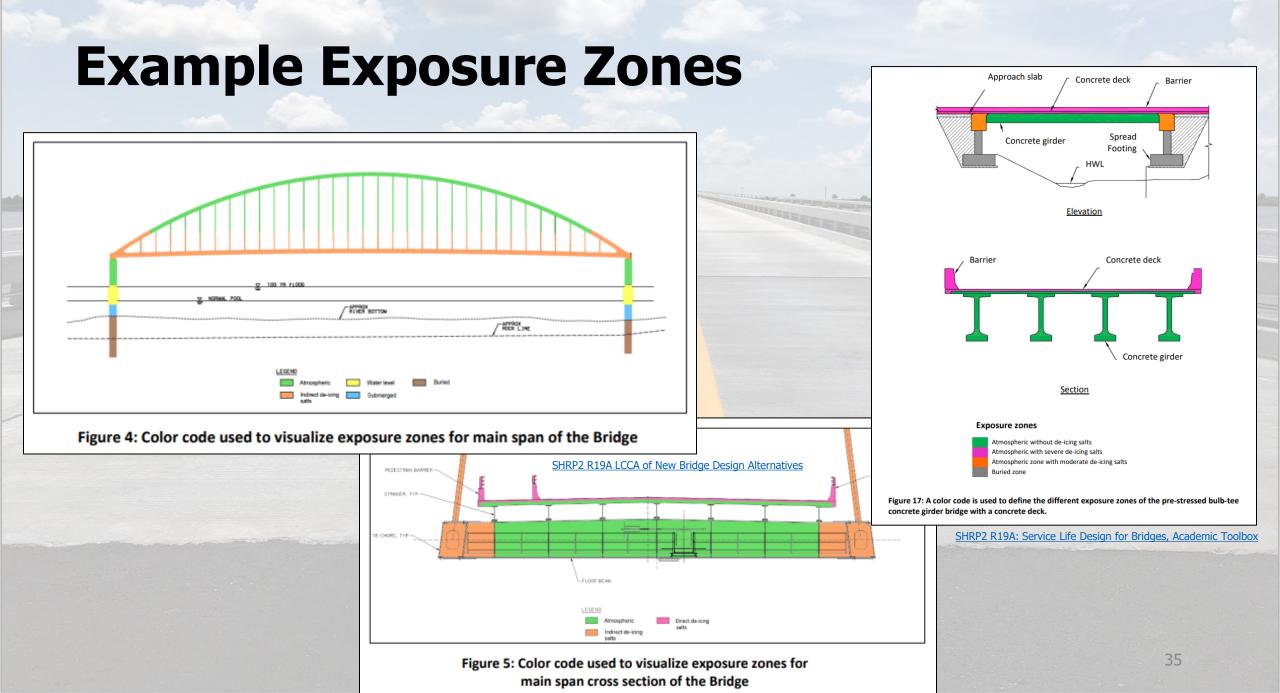



#### Figure 2-1: Flowchart for Service Life Design Process, after [4] and [7]


SHRP2: Service Life Design for Bridges, Summary Guide

31

### **Reinforced Concrete Corrosion**

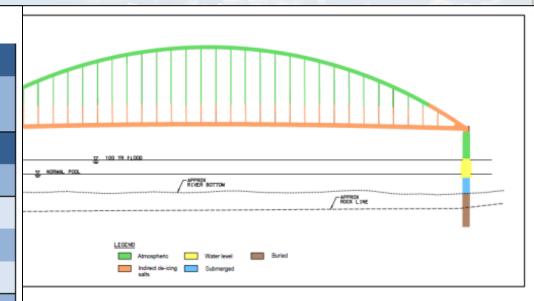



#### Chloride Profiles vs. Age constant D<sub>app,c</sub> = 15.1 mm<sup>2</sup>/yr

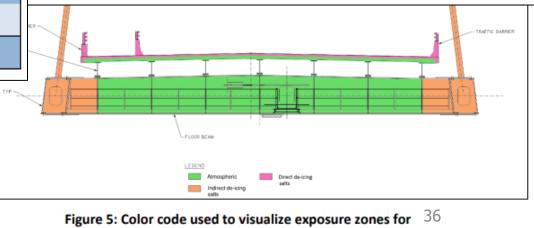


### **Typical Exposure Zones**

- Atmospheric: Exposed to airborne chlorides. Temperature and humidity variations, including freeze-thaw
- Direct de-icing salts: Exposed to alternating wetting and drying, freeze/thaw with direct exposure to de-icing salts, and temperature variations
- Indirect de-icing salts: Exposed to alternating wetting and drying, freeze/thaw with indirect exposure to de-icing salts, leakage from deck joints, and temperature variations
- Water level or tidal zone: Exposed to atmospheric conditions and alternating wetting and drying from a body of water (could be fresh water or salted water), temperature variations, possibly ice abrasion
- Submerged: Permanently submerged in water
- Buried: Permanently buried in soil

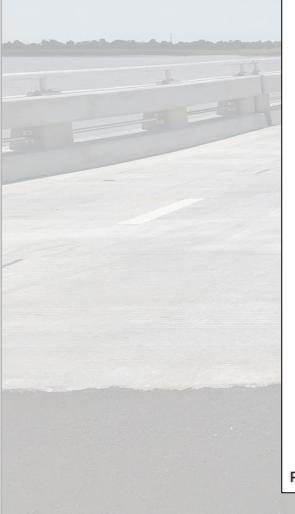


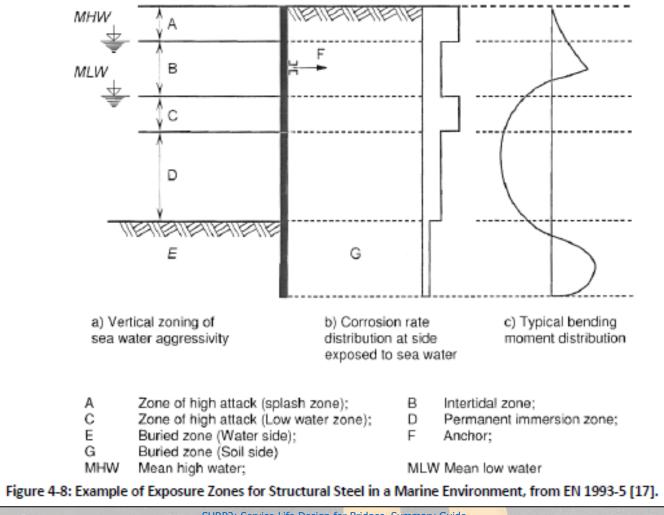

### **Example Service Life by Component**


#### Table 2: Summary of Minimum Service Life Requirements of Bridge Components

| Non-Replaceable Components                                   | Minimum Service Life (years) |
|--------------------------------------------------------------|------------------------------|
| Foundations, abutments, piers, structural steel,<br>and deck | 100                          |
| Replaceable Components                                       | Minimum Service Life (years) |
| Bridge bearings                                              | 50                           |
| Expansion joints                                             | 30                           |
| Bridge barriers                                              | 60                           |
| Drainage system                                              | 75                           |
| Access: access ladders, platforms, and lifts                 | 60                           |
| Painting                                                     | 25                           |
| Cables and hangers                                           | 60                           |

SHRP2 R19A LCCA of New Bridge Design Alternatives





#### code used to visualize exposure zones for main span of the Bridge



main span cross section of the Bridge

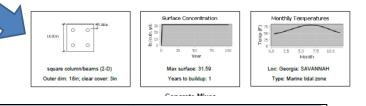
## **Example of Steel Exposure in Marine Zone:**







## Service Life Example (using Life-365)

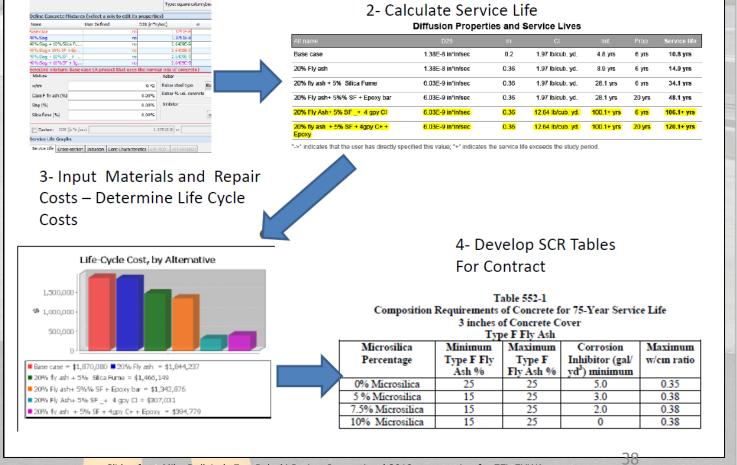

Innovations to Meet 100 Year Service Life Requirement

- LIFE 365 Software Modelled Service Life of Concrete Elements
  - Develop Contract Requirements for Various Structural Elements (Constructible , Economical)

Example of Process – Design Prestress Pile With 3" of Cover for 100 Year Service Life



Worse Chloride Loading is The Marine Splash Zone – Maximum Surface Concentration of 31.6 pcy of Chloride After 1 Year






Amalysis Default Settings and Parameters Online Help

#### DESIGN PRESTRESS PILE FOR 100 YEAR SERVICE LIFE

#### 1- INPUT MIX DESIGN PARAMETERS and STEEL TYPE



### **Condition Forecasting (using InfoBridge)**

| 1                                                  |           |           |             |         |            |           |         | Stru<br>065 | 62                    | umber (i | 8):     |       |       |       |      |         |          |                  |         |                    |                 |          |           |          |           |          |        |       |            |        |         |              |           |            |
|----------------------------------------------------|-----------|-----------|-------------|---------|------------|-----------|---------|-------------|-----------------------|----------|---------|-------|-------|-------|------|---------|----------|------------------|---------|--------------------|-----------------|----------|-----------|----------|-----------|----------|--------|-------|------------|--------|---------|--------------|-----------|------------|
| <ul> <li>Not all br</li> <li>Historical</li> </ul> |           | ave mode  | els associa |         |            |           |         |             |                       |          |         |       |       |       |      | tome br | idaes Er | v datai          | refer t | the H              | etorical        | NBI Car  | adition G | Sranh" u | nder Brid | ae infor | mation | URI . |            |        |         |              |           |            |
| <ul> <li>Forecast</li> <li>Deck</li> </ul>         | models v  | were ge   |             | ing NBI |            | at were s |         |             | and the second second |          |         |       |       |       |      |         |          |                  |         |                    |                 |          |           |          |           | -        |        |       | reflect th | e 2022 | NBI dat | a in a fut   | ure relea | se of Info |
| Condition F                                        | Forecast  | t Graph   |             |         |            |           |         |             |                       |          |         |       |       |       |      |         |          |                  |         |                    |                 |          |           |          |           |          |        |       |            |        |         |              |           |            |
| listorical Dal                                     | ita       |           |             | Deck    | -          |           |         |             |                       |          |         |       |       |       |      | Sel     | ect Fore | ecast N          | lodels  |                    |                 |          |           |          |           |          |        |       |            |        |         |              |           |            |
| eep Learnir<br>9                                   | ng Models | ls - Deck | 1           | 2 F     | precast \$ | Start Yea | r 🗆 Upp | per Boun    | do 🗆                  | ) Lower  | Bound A | Me Me | san 🛛 | Media | in o |         | Machin   | Time i<br>e Lean | n Cond  | ition M<br>dels (5 | odels<br>0-Year | Horizo   | on)       |          |           |          |        |       |            |        |         |              |           |            |
| 0                                                  |           |           |             |         |            |           |         |             |                       |          |         |       |       |       |      |         | Surviva  |                  |         |                    |                 |          |           |          |           |          |        |       |            |        |         |              |           |            |
| 0                                                  |           |           |             |         |            |           |         |             |                       |          |         |       |       |       |      |         | L        | Propo            | rtional | Hazard             | s Deter         | rioratio | n Mode    | els      |           |          |        |       |            |        |         |              |           |            |
| Condition Rating                                   |           |           |             |         |            |           |         |             |                       |          | Î       | 0-0-1 | 09    | • • • |      | • •     | 0-0-4    |                  |         |                    | 1               |          |           |          |           |          |        |       |            |        |         | <u>≻o-</u> c | 0-0-0     | -0-0       |
| 0                                                  | _         |           | -           | -       |            |           |         |             |                       |          |         |       |       |       |      |         |          |                  |         |                    |                 |          |           |          |           |          |        |       |            |        |         |              |           |            |
| 2001 C + C                                         | 2003      | 2005      | 2007        | 2009    | 2011       | 2013      | 2015    | 2017        | 2019                  | 2021     | 2023    | 2025  | 2027  | 2029  | 2031 | 2033    | 2035     | 2037             | 2039    | 2041               | 2043            | 2045     | 2047      | 2049     | 2051      | 2053     | 2055   | 2057  | 2059       | 2061   | 2063    | 2065         | 2067      | 2069       |

# **Step 2: Determine Activity Timing**

The degree and timing of maintenance and preservation activities of bridge components has a large influence on the rate of deterioration and thus the service life of the structure and total **LCCA results** 

NBIS Metrics 6 to 10 provides requirements for bridge inspection frequencies

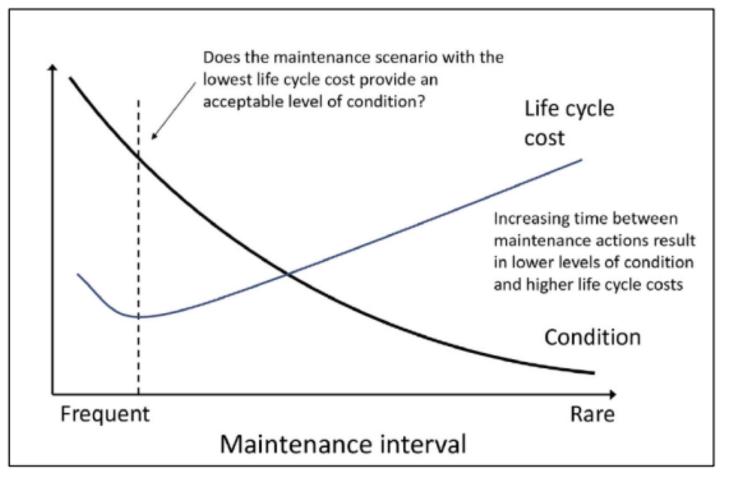



Figure 2: Life Cycle Cost and condition of bridge as a function of maintenance interval [7]

# **Step 2: Determine Activity Timing**

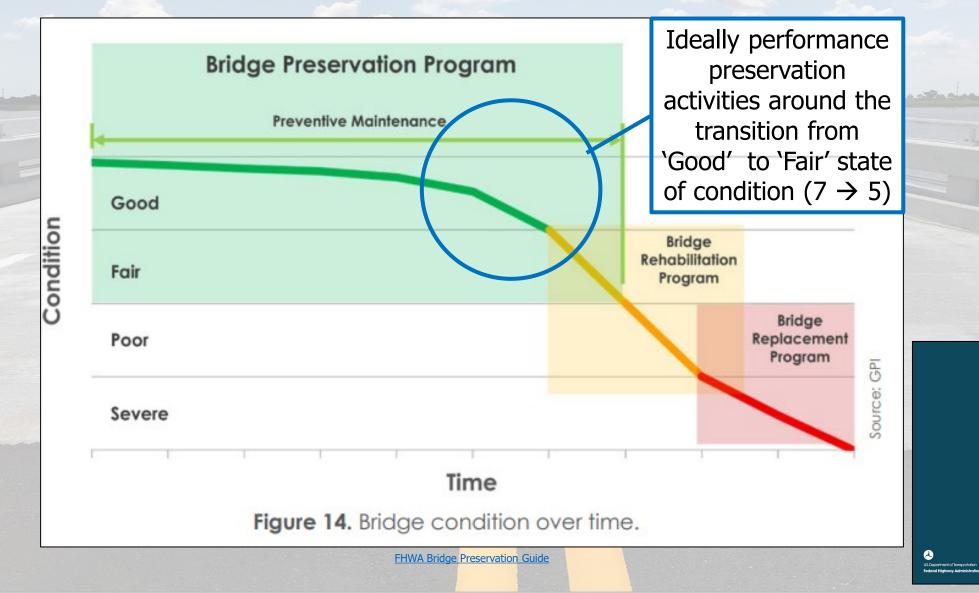
### Determine analysis period (must be the same for all alternatives)

- Use BCA for non-similar duration and other factor comparisons
- The analysis period should include the total duration of cost differences between the alternatives
- Alternatives do not need to have same number of activities during the analysis period

### **Determine activities and timing / frequency of activities**

- e.g., annual, bi-annual, every x years, etc. for each element, component, and/or subsystem
- Ideally base some of the timing of the work from deterioration models, inspections, and experience
- Determine approximate degree of condition improvement

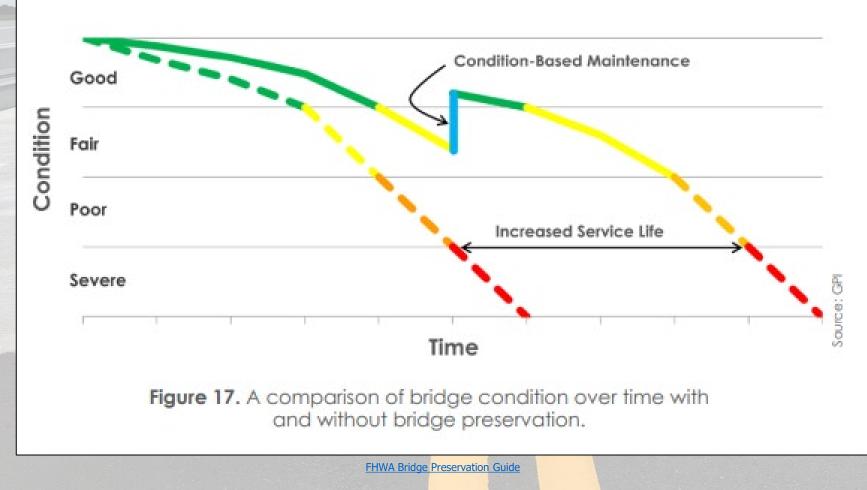
### Discuss with timing with other program areas (is it realistic?):


 Maintenance, Estimating, Program Management, Materials, Bridge Inspection, Construction, Asset Management, District / local offices, Economic and Infrastructure Development, Environmental, etc.

*Optimal interval between maintenance tasks is found by repeating the LCCA for different maintenance schedules (sensitivity analysis and/ or simulation) and predicting the lowest cost-scenario* 

### **Typical LCCA Activity Phases:**

- Design
- Construction
- Maintenance Activities (seasonal routine and preventive, cyclical and condition-based)
- Preservation Activities (every x years)
- Rehabilitation / Replacement Activities (every n years)
- Demolition / Replacement


## **Maintenance & Preservation Timing**



Bridge Preservation Guide Maintaining a Resilient Intrastructure to Preserve Mobility Spring 2018

## **Maintenance & Preservation Timing**

Solid-colored lines = With Preservation (cyclical and condition-based maintenance) Dashed-colored lines = Without Preservation



Bridge Preservation Guide

Spring 2018

## FHWA Activity Definitions\*

**Routine Maintenance**: encompasses work that is performed in reaction to an event, season, or activities that are done for short-term operational need that <u>do not have preservation value</u>. This work requires <u>regular</u> <u>reoccurring</u> attention.

**Bridge Preservation**: actions or strategies that <u>prevent</u>, <u>delay</u>, <u>or reduce deterioration</u> of bridges or bridge elements; <u>restore</u> the function of existing bridges; <u>keep bridges in good or fair condition</u>; and <u>extend their service</u> <u>life</u>. Preservation actions <u>may be cyclic or condition-driven</u>.

**Preventive Maintenance**: a cost-effective means of extending the service life of highway bridges by applying cost-effective treatments to bridge elements, including both cyclical and condition-based activities.

**Cyclical maintenance activities**: performed on <u>pre-determined intervals</u> that aim to preserve and delay deterioration of bridge elements or component conditions.

**Condition-based maintenance activities**: performed on bridge components or elements <u>in response to</u> <u>known defects</u> identified through an inspection process. Improves the condition of that portion of the element, but may or may not result in an increase in the component condition rating.

**Rehabilitation**: involves major work required to restore the structural integrity of a bridge, as well as work necessary to correct major safety defects. Provides complete or nearly complete restoration of bridge elements or components and require significant engineering resources for design, a lengthy completion schedule, and considerable costs.

### \* Important for FHWA Funding Eligibility

## **Maintenance Activity Examples**

Table 2. Examples of cyclical maintenance activities.

Table 3: Examples of condition-based maintenance activities

| Cyclical Maintenance Activity               | Bridge Component               |
|---------------------------------------------|--------------------------------|
| Clean/Wash Bridge                           | Deck and/or Super/Substructure |
| Clean and Flush Drains                      | Deck                           |
| Clean Joints                                | Deck                           |
| Deck/Parapet/Rail Sealing and Crack Sealing | Deck                           |
| Seal Concrete                               | Super/Substructure             |



| Examples of Condition-Based Maintenance Activity                                                          | Bridge<br>Component  |
|-----------------------------------------------------------------------------------------------------------|----------------------|
| Drains, Repair/Replace                                                                                    | Deck                 |
| Joint Seal Replacement                                                                                    | Deck                 |
| Joint Repair/Replace/Elimination                                                                          | Deck                 |
| Electrochemical Extraction (ECE)/Cathodic Protection (CP)                                                 | Deck                 |
| Concrete Deck Repair (see halo effect below) in Conjunction with Overlays, CP<br>Systems or ECE Treatment | Deck                 |
| Deck Overlays (thin polymer epoxy, asphalt with waterproof membrane, rigid overlays)                      | Deck                 |
| Repair/Replace Approach Slabs                                                                             | Approach             |
| Seal/Patch/Repair Superstructure Concrete                                                                 | Superstructure       |
| Protective Coat Concrete/Steel Elements                                                                   | Superstructure       |
| Spot/Zone/Full Painting Steel Elements                                                                    | Superstructure       |
| Steel Member Repair                                                                                       | Superstructure       |
| Fatigue Crack Mitigation (pin-and-hanger replacement, retrofit fracture critical<br>members)              | Superstructure       |
| Bearing Restoration (cleaning, lubrication, resetting, replacement)                                       | Superstructure       |
| Movable Bridge Machinery Cleaning/Lubrication/Repair                                                      | Superstructure       |
| Patch/Repair Substructure Concrete                                                                        | Substructure/Culvert |
| Protective Coat/Concrete/Steel Substructure                                                               | Substructure/Culvert |
| ECE/CP                                                                                                    | Substructure/Culvert |
| Spot/Zone/Full Painting Steel Substructure                                                                | Substructure         |
| Pile Preservation (jackets/wraps/CP)                                                                      | Substructure         |
| Channel Cleaning / Debris Removal                                                                         | Channel              |
| Scour Countermeasure (installation/repair)                                                                | Channel              |

FHWA Bridge Preservation Guide

Figure 3. Bridge washing.

## **Example Activity Rules**

Table 5. Examples of cyclical agency rule.

| NBI Item 58 | Preservation Activity            | Interval Years |
|-------------|----------------------------------|----------------|
|             | Deck Sweeping/Washing            | 1 to 2         |
|             | Crack Sealing                    | 3 to 5         |
| ≥ 7         | Deck Sealing                     | 3 to 5         |
|             | Polymer Overlay                  | 8 to 12        |
|             | Polymer-Modified Asphalt Overlay | 12 to 15       |

Table 6. Example of a condition-based agency rule.

|             | Deck GC     | R, Before      |             |                  | Deck G      | CR, After         |                       |  |
|-------------|-------------|----------------|-------------|------------------|-------------|-------------------|-----------------------|--|
| Top Surface |             | Bottom Surface |             | Repair<br>Option | Top Surface | Bottom<br>Surface | Service<br>Life Years |  |
| BSIR #58a   | Defect Area | BSIR #58b      | Defect Area |                  | BSIR #58a   | BSIR #58b         |                       |  |
| ≥5          | ≤ 5%        | > 5            | ≤ 2%        | Epoxy<br>Overlay | 8, 9        | No<br>Change      | 10 to 15              |  |
| N/A         | ≤ 10%       | N/A            | ≤ 25%       | Deck<br>Patch    | + ]         | No<br>Change      | 3 to 10               |  |

Rules do not account for relative priority and benefit of different action types, or relative priority of bridges, which need to be considered when there are budget constraints.

### **Other Factors of Consideration:**

- Net benefit of an action
- Duration of extension of service life
- Availability of specialty contractors
- Coordination of work along route segments or bridge bundling contracts
- Consideration of traffic operations

## **Bridge Preservation Best Practices**

- A needs identification method that is uniform, specific, and repeatable.
  Can be based on National Bridge Inventory (NBI) major component condition ratings, detailed inspections and scopes, or element-level condition data.
- A commitment by agency management to asset preservation.
- Resource allocation determined by agency network goals and a bridge management system directed to preservation actions.
- A process for categorization and/or prioritization that integrates agency objectives.
- Verification and feedback on work completed.

## **Establishing a Bridge Preservation Program**



Figure 15. Steps for establishing a bridge preservation program.

Owner agency steps toward establishing a bridge preservation program:

- Identify agency goals and objectives.
- Identify bridges to preserve.
- Develop a list of actions for preservation (a list of cyclical and condition-based PM activities are provided in this guide).
- Establish rules for the actions, a combination of either cyclical or condition-based.
- Use the actions to develop life cycle plans.
- Develop performance measures for the effectiveness of the actions, projects, and programs of projects to satisfy agency's goals.
- Develop methods to evaluate benefits of the actions.
- Dedicate funds for preservation actions.
- Implement and evaluate projects.
- Monitor and measure performance of preservation program.
- Report and improve preservation program.



# **Step 3: Estimating Costs**

3 General Cost Types:
1. Agency Costs
2. User Costs
3. Vulnerability Costs

 For simplified LCCA work and analysis, include only the costs that are different between the alternatives
 ~ LCCA does not require that all costs associated with each alternative be calculated

 Determine residual value of components with remaining service life at the end of the bridge's service Life

3. Perform quantity take-offs

52

### 4. Determine cost estimates and calculate unit costs for each activity

- ~ Unit costs have a great influence on the outcome of LCCA and should be decided carefully
- ~ A LCCA can include a cost contingency, added as a separate cost item, if the uncertainty on the different unit costs is deemed too high
- ~ Alternatively, in case of high uncertainty for a specific unit cost, a sensitivity analysis may be completed using minimum, average, and maximum expected unit cost values so that this uncertainty is considered in deciding which solution is most cost-effective
- ~ Don't forget traffic control costs, especially if the alternatives require different traffic control
- 5. From Step 2, for each task frequency time combine costs for each task(s) for that time
- 6. Remember to address variability and uncertainty of inputs

## **Life-Cycle Cost Mathematical Models**

(1)

(2)

#### General Models

A generalized life-cycle cost model can be expressed as the following (12):

 $LCC = C_1 + C_2$ 

where

LCC= life-cycle cost,

 $C_1$  = nonrecurring costs, and

 $C_2$  = recurring costs.

It may be noted that the salvage value or terminal value may be regarded as a nonrecurring cost if the analysis period equals the life of the project.

The risk and vulnerability of a system can be included in a life-cycle cost model, as follows:

LCC = IC + OP + FC

where

LCC =life-cycle cost, IC =initial cost, OP =operating cost, and FC =failure cost. **Bridge Models.** Bridges are unique structures in transportation systems, and they require frequent and substantial maintenance, rehabilitation, and replacement. Consequently, maintenance and rehabilitation costs are a significant part of the total costs in BLCCAs. Similar to the pavement model presented in Equation 3, a bridge life-cycle cost model can be expressed as follows:

$$LCC = DC + CC + MC + RC + UC + SV$$

where

LCC = life-cycle cost, DC = design cost, CC = construction cost, MC = maintenance cost, RC = rehabilitation cost, UC = user cost, andSV = salvage value. DC & UC is often ignored

(6)

NCHRP Report 483 – BLCCA

## **Agency Costs**

### **General Activities:**

- Design (? depends)
- Construction
- Maintenance Activities (seasonal routine and preventive, cyclical and condition-based)
- Preservation Activities (every x years)
- Rehabilitation / Replacement Activities (every n years)
- Demolition / Replacement

### **User Costs**

Associated with reduced traffic capacity in work zones to the User

- Delays (lost time), increased vehicle operating costs, and accidents / crash costs
- Timing, duration, scope, and number of construction, preservation, and replacement work zones should be included in each project alternative
- Very challenging to estimate precisely, but a greater focus on User Costs in recent years
- When calculated, user costs are often so large that they may substantially exceed agency costs, particularly for transportation investments being considered for high-traffic areas

### User Costs, cont.

- Many agencies have been reluctant to incorporate user costs into LCCA because of the difficulty and uncertainty in assigning value to user delay time, or because user costs are not factored into agency budgets, and there's a lack of time-travel market value (for nonbusiness travel)
- See Section 11.3.3 in the <u>Design Guide for Bridges for Service Life</u> for additional approaches for estimating user costs based on traffic volumes and user delays.

### **Vulnerability Costs**

Vulnerability costs are **associated with extraordinary circumstances and risks**, and **often are not included in an LCCA for comparison of service life strategies**. They are useful, however, in evaluating vulnerability of existing bridges that might have a high probability for one or more of these extreme events.

Vulnerability costs often very difficult to quantity due ranges of severity and magnitude of impacts

### **Vulnerability Costs**

### **Typical Vulnerability Considerations:**

- Condition-related reduction in load capacity, service life, or both (due to deterioration if not addressed or conditions change)
- Seismic vulnerability
- •Scour
- Floods
- Overloads
- Collisions
- Blasts

• Fires

•Safety: substandard bridge railing, guiderails, transitions, end treatments

Legislative and Regulatory

# **Partial NCHRP 483 Vulnerability Example**

| Table 3.7 Annual hazard-vulnerability risk |                       |       |           |             |             |
|--------------------------------------------|-----------------------|-------|-----------|-------------|-------------|
| Event                                      | Risk measure (1 year) |       | Estima    | ted risk    |             |
| Load-related structural                    | Probability of event  | 0.95  | 0.03      | 0.01        | 0.01        |
| failure                                    | Cost, per event       | \$0   | \$200,000 | \$1,000,000 | \$3,000,000 |
| Severe traffic accident                    | Probability of event  | 0.989 | 0.010     | 0.001       |             |
| attributable to deck condition             | Cost, per event       | \$0   | \$40,000  | \$1,000,000 |             |
| Seismic damage                             | Probability of event  | 0.91  | 0.05      | 0.03        | 0.01        |
|                                            | Cost, per event       | \$0   | \$400,000 | \$1,500,000 | \$5,000,000 |

| Table 3.9 Best e | stimates of costs of | f deck reconstructi | on         |            |
|------------------|----------------------|---------------------|------------|------------|
| <br>Cost         |                      | Annua               | l costs    |            |
| Cost             | Year 1               | Year 2              | Years 1-25 | Years 3-25 |
| Agency           | 270,000              | 630,000             |            | 4,000      |
| User             |                      | 1,452,000           |            |            |
| Vulnerability    |                      |                     | 119,000    |            |

#### Table 3.8 Expected annual vulnerability cost computation

| Event                                                  | Expected cost calculation                                                                                      | Expected cost |
|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------|
| Load-related structural failure                        | $\begin{array}{c} 0.97 x \$ 0 + 002 x \$ 200,000 + 0.005 x \$ 1,000,000 + \\ 0.001 x \$ 3,000,000 \end{array}$ | \$12,000      |
| Severe traffic accident attributable to deck condition | 0.989x\$0 + 0.010x\$40,000 + 0.001x\$1,600,000                                                                 | 2,000         |
| Seismic damage                                         | $\begin{array}{c} 0.91x\$0 + 0.05x\$400,000 + 0.03x\$1,500,000 + \\ 0.01x\$5,000,000 \end{array}$              | 105,000       |
|                                                        | Expected annual vulnerability cost, base case                                                                  | \$119,000     |



# **NCHRP 483 Example Input Variables**

| LCCA Component                  | Input Variable                 | Source     |
|---------------------------------|--------------------------------|------------|
| Initial and future agency costs | Preliminary engineering        | Estimate   |
|                                 | Construction management        | Estimate   |
|                                 | Construction                   | Estimate   |
|                                 | Maintenance                    | Assumption |
| Timing of costs                 | Bridge deterioration           | Projection |
| User costs                      | Current traffic                | Estimate   |
|                                 | Future traffic                 | Projection |
|                                 | Hourly demand                  | Estimate   |
|                                 | Vehicle distributions          | Estimate   |
|                                 | Value of delay time            | Assumption |
|                                 | Work zone configuration        | Assumption |
|                                 | Work zone hours of operation   | Assumption |
|                                 | Work zone duration             | Assumption |
|                                 | Work zone activity years       | Projection |
|                                 | Crash rates                    | Estimate   |
|                                 | Crash cost rates               | Assumption |
| Vulnerability costs             | Flood probability              | Estimate   |
|                                 | Flood damage distribution      | Estimate   |
|                                 | Earthquake probability         | Estimate   |
|                                 | Earthquake damage              | Estimate   |
|                                 | Load distribution probability  | Estimate   |
|                                 | Load-related structural damage | Estimate   |
| Other parameters                | Discount rate                  | Assumption |
|                                 | •                              | •          |

https://www.dot.state.oh.us/Divisions/ConstructionMgt/Estimating/Pages/...

An Official Site of Ohio.gov

## **Generational ODOT Bid Data**

ODOT / Working / Contracts / Estimating

#### **Bid** Data

#### **Item Search**

- Search for ODOT items and cost history.
- Refreshed regularly with the latest letting information.

#### **Bid Tabs**

- Published after projects are awarded, typically within two weeks after a letting.
- Only published for awarded projects, never published for rejected projects.

#### Summary of Contracts Awarded

• Compiled and published by the end of January of the following year.

#### **Issues Opening Files**

If you experience issues opening files, please try the following:

- 1. Hover your mouse cursor over the file you wish to view.
- 2. Click on the arrow to the right of the file.
- 3. Select "Download a Copy" and note where the file is downloaded locally. You should now be able to open the file on your computer. Excel macros must be enabled for the files to function.

| 2            | Bid Data I         | • |
|--------------|--------------------|---|
| ■ Category : | 1. Item Search (4) |   |
| туре         | Name               |   |

| X.  | Bid Data Item Search 2019-2023 |  |
|-----|--------------------------------|--|
| 21  | Bid Data Item Search 2015-2019 |  |
|     | Bid Data Item Search 2014-2018 |  |
|     | Bid Data Item Search 2010-2013 |  |
| C-1 |                                |  |

#### Gategory: 2. Bid Tabs (24)

| a cacegory | . 2. 510 1055 (24)         |
|------------|----------------------------|
| <b>2</b>   | Bids Summary 2015Q2-2022Q4 |
| 1          | Bid Tabs 2023              |
|            | Bid Tabs 2022              |
| 1          | Bid Tabs 2021              |
|            |                            |

2020

. . .

#### Bid Histories | ODOT (ohio.gov)

62

## Reminder

The total LCCA of a specific bridge component (and of the entire bridge) depends on the chosen maintenance schedule particularly considering that maintenance may require partial closures and incurrence agency costs due to mobilization and maintenance of traffic, and user costs due to delay.

## **Step 4. Compute Life-Cycle Costs**

# Money in the future is worth less than its present value so must be discounted to its present value



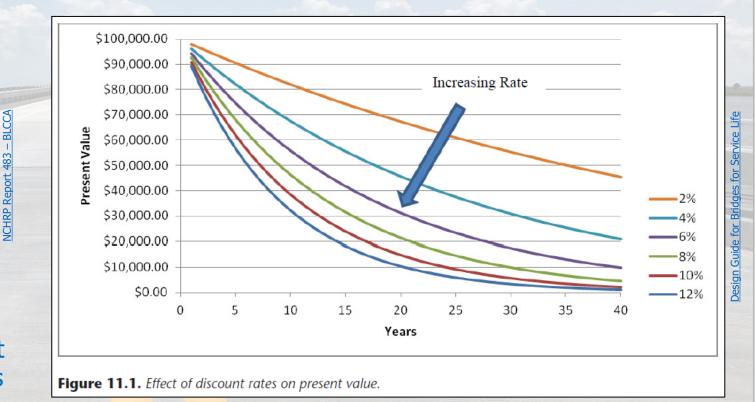
# **Step 4. Compute Life-Cycle Costs**

### 1. Determine real discount rate

~ For LCCA of bridges, typically a real discount rate of 2% to 4% per year is used

- 2. Determine formulas and calculate present value for each cost for each alternative
  - ~ Process translates cashflows over time into common units
  - ~ Analysis period <u>must</u> be the same for all alternatives (ideally its optimal service life)
  - ~ Beginning of first year is traditionally defined as "Time 0"
  - ~ Use BCA for non-similar analysis periods and benefits or other factor comparisons
- 3. Remember to address variability and uncertainty of inputs

## Effect of Discount Rate on Present Value


$$i^* = \frac{(1+i)(1+q)}{(1+f)} \tag{14}$$

where

- $i^* =$  "true" discount rate that incorporates the effect of inflation,
- *i* = prevailing discount rate,
- q = rate of increase in funding, and
- f = expected rate of inflation.

If the rate of increase in funding is expected to keep pace with the rate of inflation, the discount rate can be taken equal to the prevailing discount rate.

Note as the discount rate increases the present value decreases, i.e., your funds are worth less



- Carefully choice the real discount rate since it has a significant influence on the outcome of the LCCA
- Sometimes it is necessary to carry out LCCAs with different real discount rates to assess the sensitivity of the analysis
- Low real discount rates favor current expenditures whereas high rates reduce the present value of future costs and consequently tend to favor options with low capital cost, short life and high recurring cost.

## Step 4. Cont.

### **Basic Net Present Value (NPV, PV) Formulas**

The formula to convert the sum of the initial cost and the present value of future repair and renewal costs into NPV is given by Equation 11.1:

NPV = initial cost + 
$$\sum_{k=1}^{N}$$
 rehab cost<sub>k</sub>  $\left[\frac{1}{(1+r)^{n}k}\right]^{2}$ 

where

r = real discount rate,

- k =order number of a rehabilitation activity undertaken in the future,
- N = total number of rehabilitation activities, and
- $n_k$  = year in the future when the cost will be incurred.

Design Guide for Bridges for Service Life

The term  $\left[\frac{1}{(1+r)^n k}\right]$  is called the discount factor.

always 
$$\leq 1$$

### Each year (period) will have a different discount factor

The relationship between the amount of a future expenditure and its equivalent present value, (PV) is calculated from the following expression using a real discount rate (r) [10].

$$PV = C_n * 1/(1+r)^n$$
(1)

where:

C<sub>n</sub> = Cost of expenditure at year n, (in today's dollars)

r = real discount rate

n = year in the future when cost will be incurred

Additional discussion of discounting and the above equation can be found in the Primer [10].

The LCC is then calculated as the sum of the PVs of accumulated costs (C<sub>n</sub>) incurred at time t, over a period of time (T) as given by the following formula:

$$PV_{LCC} = \sum_{t=0}^{T} C_n * 1/(1+r)^n$$
<sup>67</sup>

wherein each time-step considers costs associated for that year.

## **Step 4. Cont.: Formulas**

\* Some formulas for the same variable in other sources have different terms within the formula

$$SPPWF_{i,n} = \frac{1}{(1+i)^n}$$

$$USPWF_{i,n} = \frac{(1+i)^n - 1}{i(1+i)^n}$$

$$GSPWF_{i,n} = \frac{1}{i(1+i)^n} \begin{bmatrix} (1+i)^n - 1 \\ i \end{bmatrix}$$

$$PV = C \frac{(1+DR)^N - 1}{DR(1+DR)^N}$$

$$PV = C \frac{(1+DR)^N - 1}{DR(1+DR)^N}$$

$$CRF_{i,n} = \frac{i(1+i)^n}{(1+i)^n - 1}$$

$$PSPWF_{i,n} = \frac{(1+i)^n}{(1+i)^n - 1}$$

where

- SPPWF<sub>i,n</sub> = single-payment present worth factor at discount rate *i* (in decimals), for a single payment in year *n*;
- $USPWF_{i,n} =$  uniform series present worth factor at discount rate *i*, over a period of *n* years;
- $GSPWF_{i,n} =$  gradient series present worth factor at discount rate *i*, over a period of *n* years;
  - $CRF_{i,n} =$  capital recovery factor at discount rate *i*, over an analysis period of *n* years; and
- $PSPWF_{i,n} =$  perpetual series present worth factor at discount rate *i*, with *n* equal payment intervals.

 $i^* = \frac{(1+i)(1+q)}{(1+f)}$ 

where

(9)

(10)

(11)

(12)

(13)

- $i^* =$  "true" discount rate that incorporates the effect of inflation,
- i = prevailing discount rate,
- q = rate of increase in funding, and
- f = expected rate of inflation.

If the rate of increase in funding is expected to keep pace with the rate of inflation, the discount rate can be taken equal to the prevailing discount rate.

The equivalent uniform annual cost of an option in perpetuity may be expressed as follows:

$$EUAC_{OC} = \begin{bmatrix} I - E(SPPWF_{i,N}) \\ + G(GSPWF_{i,h+1}) \\ (SPPWF_{i,g-1}) \\ + F(SPPWF_{i,n_1}) \\ + (A(USPWF)_{i,N}) \end{bmatrix} (PSPWF_{i,N}) i$$
(15)

where

- I = initial cost,
- F = future rehabilitation cost,
- A = annual maintenance cost,
- G = gradient series of maintenance cost increase,
- E = salvage value of existing structure,
- g = time passed before the beginning of uniform gradient series of maintenance cost increase,
- h = duration of uniform gradient series maintenance cost increase,

68

- $n_1$  = time passed before the future rehabilitation,
- N = service life of the option, and

|              |                                | Re       | Component:<br>al Discount Ra | te:      |             |          |
|--------------|--------------------------------|----------|------------------------------|----------|-------------|----------|
|              | Condition-based<br>Maintenance |          | Cyclical Maintenance         |          | Replacement |          |
| Year         | Unit Cost PV                   |          | Unit Cost PV                 |          | Unit Cost   | PV       |
|              | (2018\$)                       | (2018\$) | (2018\$)                     | (2018\$) | (2018\$)    | (2018\$) |
| 1            |                                |          |                              |          |             |          |
| 2            |                                |          |                              |          |             |          |
| 3            |                                |          |                              |          |             |          |
| 4            |                                |          |                              |          |             |          |
| 5            |                                |          |                              |          |             |          |
| 6            |                                |          |                              |          |             |          |
| 7            |                                |          |                              |          |             |          |
|              |                                |          |                              |          |             |          |
| :            |                                |          |                              |          |             |          |
|              |                                |          |                              |          |             |          |
|              |                                |          |                              |          |             |          |
| 99           |                                |          |                              |          |             |          |
| 100 (service |                                |          |                              |          |             |          |
| life of      |                                |          |                              |          |             |          |
| bridge)      |                                |          |                              |          |             |          |

SHRP2 R19A LCCA of New Bridge Design Alternatives

# **Step 5. Analyze Results**

- Compare initial and life-cycle costs associated with each alternative
- Determine lowest cost or optimal cost-effective solution
  - Consider anticipated funding and staffing levels
- Reanalyze LCCA alternatives by perform sensitivity analyses and simulation
- If the alternatives provide different levels of service, then the alternative that provides the best overall long-term benefit can also be compared using Benefit-to-Cost Analysis (BCA)
  - Considers the benefits of an improvement as well as its costs
  - Use for different levels of service, utility, objectives, or duration (e.g., 75 years and 100 years)
  - Goal is to maximize benefits

# **Example LCCA**

### **Alternative A:**

- Fewer construction and rehab activities
- More extensive work and work zones per activity
- Higher cost per activity

### **Alternative B:**

- Requires more frequent activities and use of work zones
- Shorter work zone durations
- Lower cost per activity



ife-Cycle Cost

### Note smaller discount factors as time increase.

#### LIFE-CYCLE COST ANALYSIS (LCCA) EXAMPLE: DETERMINISTIC APPROACH

Presented here is an example of a deterministic LCCA comparing two alternative project strategies. Each alternative will supply the same level of performance or benefit, so application of LCCA is appropriate. Costs that are equal between alternatives have been removed from the analysis. The discount rate is 4 percent, and a 35-year analysis period is used.

#### Step One: Establish Design Alternatives

Alternative A is characterized by fewer construction and rehabilitation activities than is Alternative B, but the activities it requires are more extensive and cost more, per activity, than those of Alternative B. Alternative B requires more frequent use of work zones to maintain level of service, but these work zones last less time, per activity, than those of Alternative A.

#### Step Two: Determine Activity Timing

| Year | Alternative A Activities                                          | Alternative B Activities                   |  |
|------|-------------------------------------------------------------------|--------------------------------------------|--|
| 0    | Initial construction                                              | Initial construction                       |  |
| 12   |                                                                   | Rehabilitation one (8-year service life)   |  |
| 20   | Rehabilitation one (20-year service life)                         | Rehabilitation two (8-year service life)   |  |
| 28   |                                                                   | Rehabilitation three (8-year service life) |  |
| 35   | End of analysis period—residual service life value if applicable. |                                            |  |

#### Step Three: Estimate Costs (Agency and User)

Agency and user costs for each activity are in constant, base year dollars. User costs are based upon user vehicle operating costs and traveler delay associated with work zone activities. User costs increase for similar work due to the increase in traffic over time. Costs for year 35 reflect the value of remaining service life for each alternative in year 35.

|      | Alternat                     | ive A Activities           | Alternative B Activities     |                            |  |
|------|------------------------------|----------------------------|------------------------------|----------------------------|--|
| Year | Constant Dollar Agency Costs | Constant Dollar User Costs | Constant Dollar Agency Costs | Constant Dollar User Costs |  |
| 0    | \$26,000,000                 | \$11,000,000               | \$20,000,000                 | \$8,000,000                |  |
| 12   |                              |                            | 6,000,000                    | 10,000,000                 |  |
| 20   | 15,000,000                   | 30,000,000                 | 6,000,000                    | 16,000,000                 |  |
| 28   |                              |                            | 6,000,000                    | 28,000,000                 |  |
| 35   | (3,750,000)                  | (7,500,000)                | (750,000)                    | (3,500,000)                |  |

#### Step Four: Compute Life-Cycle Costs

Using the discount factor, the present value (PV) is calculated for each of the agency and user costs (see the Inflation and Discounting box on page 16).

|                  |                 | Alternative A              |                          | Alternative B              |                          |
|------------------|-----------------|----------------------------|--------------------------|----------------------------|--------------------------|
| Year             | Discount Factor | Discounted<br>Agency Costs | Discounted<br>User Costs | Discounted<br>Agency Costs | Discounted<br>User Costs |
| 0                | 1.0000          | \$26,000,000               | \$11,000,000             | \$20,000,000               | \$8,000,000              |
| 12               | 0.6246          |                            |                          | 3,747,582                  | 6,245,970                |
| 20               | 0.4564          | 6,845,804                  | 13,691,608               | 2,738,322                  | 7,302,191                |
| 28               | 0.3335          |                            |                          | 2,000,865                  | 9,337,369                |
| 35               | 0.2534          | (950,308)                  | (1,900,616)              | (190,062)                  | (886,954)                |
| Total Costs (PV) |                 | 31,895,496                 | 22,790,992               | 28,296,707                 | 29,998,576               |

#### Step Five: Analyze the Results

# **Example LCCA**

Step Four: Compute Life-Cycle Costs

Using the discount factor, the present value (PV) is calculated for each of the agency and user costs (see the Inflation and Discounting box on page 16).

|                  |                 | Alternative A              |                          | Alternative B              |                          |  |
|------------------|-----------------|----------------------------|--------------------------|----------------------------|--------------------------|--|
| Year             | Discount Factor | Discounted<br>Agency Costs | Discounted<br>User Costs | Discounted<br>Agency Costs | Discounted<br>User Costs |  |
| 0                | 1.0000          | \$26,000,000               | \$11,000,000             | \$20,000,000               | \$8,000,000              |  |
| 12               | 0.6246          |                            |                          | 3,747,582                  | 6,245,970                |  |
| 20               | 0.4564          | 6,845,804                  | 13,691,608               | 2,738,322                  | 7,302,191                |  |
| 28               | 0.3335          |                            |                          | 2,000,865                  | 9,337,369                |  |
| 35               | 0.2534          | (950,308)                  | (1,900,616)              | (190,062)                  | (886,954)                |  |
| Total Costs (PV) |                 | 31,895,496                 | 22,790,992               | 28,296,707                 | 29,998,576               |  |
|                  |                 |                            |                          |                            |                          |  |

### **Alternative A:**

Lowest *combined* agency *and* user

costs

### **Alternative B:**

 Lowest *initial* construction and *total* agency costs

"Based on this information alone, the decision-maker could lean toward either Alternative A (based on overall cost) or Alternative B (due to its lower initial and total agency costs).

However, more analysis might prove beneficial.

... Alternative B might be revised to see if user costs could be reduced through improved traffic management during construction and rehabilitation.

Sensitivity analysis could be performed based on discount rates or key assumptions concerning construction and rehabilitation costs.

Finally, probabilistic analysis could help to capture the effects of uncertainty in estimates of timing or magnitude of costs developed for either alternative." Life-Cycle Cost Analysis Primer

# Simple SHRP2 Example #1

#### Table 3: Total Quantities for Different Components of the Bridge for the Different Exposure Zones

| Component                                                                                | Buried /<br>Submerged | Water<br>Level | Interior | Atm.   | Indirect<br>De-icing | Direct<br>De-icing |
|------------------------------------------------------------------------------------------|-----------------------|----------------|----------|--------|----------------------|--------------------|
| Land structures (Pier 1 and abutments)* (ft <sup>2</sup> )                               | Not<br>calculated     | 5,703          |          |        |                      |                    |
| Pier 2+3+4+5* (ft <sup>2</sup> )                                                         | Not<br>calculated     | 40,846         |          |        |                      |                    |
| Top deck roadway and<br>pedestrian surface main and<br>approach spans (ft <sup>2</sup> ) |                       |                |          |        |                      | 104,063            |
| Structural steel to be painted (ft <sup>2</sup> )                                        |                       |                | 103,782  | 62,795 | 50,037               |                    |
| Total barrier length (ft)                                                                |                       |                |          |        |                      | 5,550              |
| Cables and hangers (ea)                                                                  |                       |                |          | 64     |                      |                    |
| Elastomeric bearings on<br>appr. span (ea)                                               |                       |                |          | 42     |                      |                    |
| Elastomeric bearings on<br>stringers (ea)                                                |                       |                |          | 231    |                      |                    |
| Arch disc bearings (ea)                                                                  |                       |                |          | 4      |                      |                    |
| Modular expansion joints<br>(ea)                                                         |                       |                |          |        | 2                    |                    |
| Strip seal expansion joints<br>(ea)                                                      |                       |                |          |        | 2                    |                    |
| Scuppers (ea)                                                                            |                       |                |          | 90     |                      |                    |

\* The exposure zones 'water level, interior', 'atmospheric', 'indirect de-icing salts', and 'direct de-icing salts' are considered under one for land structures and piers because the maintenance tasks defined for these exposure zones are assumed to be the same. There is uncertainty related to the amount of maintenance specific to each zone, instead one maintenance regime is assumed for these structures. No maintenance tasks are considered for the buried exposure zone and therefore areas are not calculated.

SHRP2 R19A LCCA of New Bridge Design Alternatives

Table 5: Calculations of Maintenance Cost for Cables and Hangers.

| Maintenance                    | Calculation    | Activity Cost per Time<br>(2018\$) |
|--------------------------------|----------------|------------------------------------|
| Condition-based<br>Maintenance | 1 x \$6,500    | \$6,500                            |
| Cyclical Maintenance           | 64 x \$1,560   | \$99,840                           |
| Replacement                    | 64 x \$156,000 | \$9,984,000                        |

### Table 4: Unit Costs for Maintenance Tasks for Cables and Hangers

| Maintenance                    | Unit     | Unit Cost (2018\$) |
|--------------------------------|----------|--------------------|
| Condition-based<br>Maintenance | Lump sum | \$6,500            |
| Cyclical Maintenance           | еа       | \$1,560            |
| Replacement                    | еа       | \$156,000          |

Table 6: Calculations of Present Value for Cables and Hangers at Year 40.

| Maintenance                 | Calculation                         | Present Value (2018\$) |
|-----------------------------|-------------------------------------|------------------------|
| Condition-based Maintenance | \$6,500 x (1+0.029) <sup>-40</sup>  | \$2,072                |
| Cyclical Maintenance        | \$99,840 x (1+0.029) <sup>-40</sup> | \$31,819               |

### **Component: Cables and hangers**

#### Condition-based maintenance:

| Description: Cleaning and minor adjustment, based on outcome of routine inspection (every two years) |
|------------------------------------------------------------------------------------------------------|
|------------------------------------------------------------------------------------------------------|

| Total PV (2018\$):               | 103,760      |
|----------------------------------|--------------|
| Activity cost per time (2018\$): | 6,500        |
| Unit cost (2018\$):              | 6,500        |
| Quantity:                        | 1 (lump sum) |
| Cycle starting at year:          | 2            |
| Duration of cycle (years):       | 2            |

### Cyclical maintenance:

| Total PV (2018\$):                   | 323,830                                             |
|--------------------------------------|-----------------------------------------------------|
| Activity cost per time (2018\$):     | 99,840                                              |
| Unit cost (2018\$):                  | 1,560                                               |
| Quantity:                            | 64 (ea)                                             |
| Cycle starting at year:              | 25                                                  |
| Duration of cycle (years):           | 5                                                   |
| Description: Minor repair of sealing | g, grease, drainage, HDPE tube, bolts, and coating. |
|                                      |                                                     |

SHRP2 R19A LCCA of New Bridge Design Alternatives



#### **Replacement:**

| Total PV (2018\$):                 | 1,796,313 |
|------------------------------------|-----------|
| Activity cost per time (2018\$):   | 9,984,000 |
| Unit cost (2018\$):                | 156,000   |
| Quantity:                          | 64 (ea)   |
| Cycle starting at year:            | 60        |
| Duration of cycle (years):         | 60+       |
| Description: Replacement of cables | 5.        |

#### TOTAL LCC for cables and hangers in PV 2018\$: 2,223,903

Table 7: Calculation of Present Value at Each Year for Maintenance and Replacement of Cables and Hangers.

|      |           |                    | ent: Cables an<br>Discount Rate |            |           |          |
|------|-----------|--------------------|---------------------------------|------------|-----------|----------|
|      |           | on-based<br>enance |                                 | aintenance | Replac    | ement    |
| Year | Unit Cost | PV                 | Unit Cost                       | PV         | Unit Cost | PV       |
|      | (2018\$)  | (2018\$)           | (2018\$)                        | (2018\$)   | (2018\$)  | (2018\$) |
| 1    |           |                    |                                 |            |           |          |
| 2    | 6,500     | 6,139              |                                 |            |           |          |
| 3    |           |                    |                                 |            |           |          |
| 4    | 6,500     | 5,798              |                                 |            |           |          |
| 5    |           |                    |                                 |            |           |          |
| 6    | 6,500     | 5,475              |                                 |            |           |          |
| 7    |           |                    |                                 |            |           |          |
| 8    | 6,500     | 5,171              |                                 |            |           |          |
| 9    |           |                    |                                 |            |           |          |
| 10   | 6,500     | 4,884              |                                 |            |           |          |
| :    | :         | :                  |                                 |            |           |          |
| 25   |           |                    | 99,840                          | 48,856     |           |          |
| 26   | 6,500     | 3,091              |                                 |            |           |          |
| 27   |           |                    |                                 |            |           |          |

R19A LCCA of

|                |                                | Compon        | ont: Cables an                  | d hangars |             |           |
|----------------|--------------------------------|---------------|---------------------------------|-----------|-------------|-----------|
|                |                                |               | ent: Cables an<br>Discount Rate | -         |             |           |
|                | Condition-based<br>Maintenance |               | Cyclical Maintenance            |           | Replacement |           |
| Year           | Unit Cost                      | PV            | Unit Cost                       | PV        | Unit Cost   | PV        |
|                | (2018\$)                       | (2018\$)      | (2018\$)                        | (2018\$)  | (2018\$)    | (2018\$)  |
| 28             | 6,500                          | 2,919         |                                 |           |             |           |
| 29             |                                |               |                                 |           |             |           |
| 30             | 6,500                          | 2,757         | 99,840                          | 42,349    |             |           |
| 31             |                                |               |                                 |           |             |           |
| :              | :                              | :             |                                 |           |             |           |
| 60             | 6,500                          | 1,169         | 99,840                          | 17,963    | 9,984,000   | 1,796,313 |
| 61             |                                |               |                                 |           |             |           |
| 62             | 6,500                          | 1,104         |                                 |           |             |           |
| :              | :                              | :             |                                 |           |             |           |
| :              | :                              | :             |                                 |           |             |           |
| 100            | -                              | -             | -                               | -         |             |           |
|                |                                |               |                                 | 1         |             |           |
| Sub-Total      | 318,500                        | 103,760       | 1,497,600                       | 323,830   | 9,984,000   | 1,796,313 |
| Grand<br>Total | 103,760 + 32                   | 23,830 + 1.79 | 6,313 = 2,223,                  | 903       |             |           |

Table 7: Calculation of Present Value at Each Year for

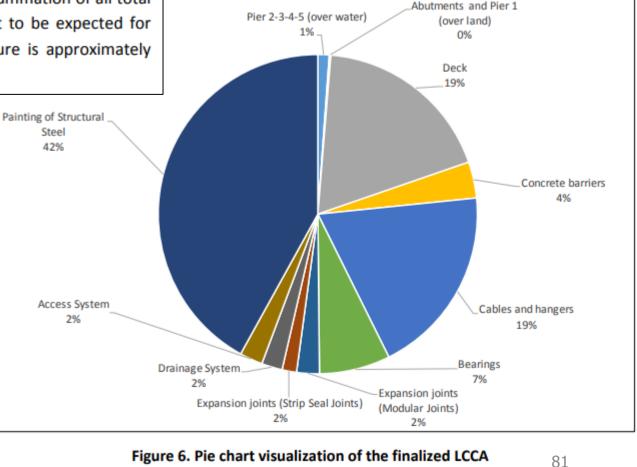
# cont. #1, imple Exa SHRP2 Simple

#### **Condition-based and Routine Maintenance** (the latter is marked with \* below)

| Concrete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Structural Steel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Other Components                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>Component: Bridge deck (main + approach spans)</u><br>Description: Condition-based maintenance is not<br>anticipated or very minor. Ignored for this example.                                                                                                                                                                                                                                                                                                                                                                     | Component: Cables and hangersDescription: Cleaning and minor adjustments.Duration of cycle:2Cycle starting at year:2Quantity:1 (lump sum)Unit cost (2018\$):6,500Activity cost (2018\$):6,500Total PV (2018\$):103,760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Component: Bearings (disc)Description: Maint. of sliding material, repair of coating.Duration of cycle:25Cycle starting at year:25Quantity:4 (ea)Unit cost (2018\$):13,600Activity cost (2018\$):54,400Total PV (2018\$):46,021                                                                                                                                                                                                                                                                                                                               |
| Component: Concrete barriers*         Description: Repair of damaged sections as needed (for example due to impacts).         Duration of cycle:       1         Cycle starting at year:       1         Quantity:       1 (lump sum)         Unit cost (2018\$):       750         Activity cost (2018\$):       750         Total PV (2018\$):       24,336         Component: Land structures (Pier 1 and abutments)         Description: Condition-based maintenance is not anticipated or very minor. Ignored for this example. | Component: Painting, interior         Description: Touch-ups of paint (5%), overcoat (100%), and repaint (100%, last year of replacement: 48).         Duration of cycle:       48         Cycle starting at year:       26 (touch-up) / 35 (overcoat) / 48 (repaint)         Quantity:       5,189 ft2 / 103,782 ft2 / 103,782 ft2         Unit cost (2018\$):       9.6 / 16.8 / 32.4         Activity cost (2018\$):       49,815 / 1,743,530 / 3,362,521         Total PV (2018\$):       29,696 / 803,586 / 852,564         Component: Painting, atmospheric       Description: Touch-ups of paint (5%), overcoat (100%), and repaint (100%, last year of replacement: 76).         Duration of cycle:       38         Cycle starting at year 21 (touch-up) / 28 (overcoat) / 76 (repaint)         Quantity:       4,396 ft2 / 62,795 ft2 / 62,795 ft2         Unit cost (2018\$):       9.6 / 16.8 / 32.4         Activity cost (2018\$):       42,198 / 1,054,953 / 2,034,552         Total PV (2018\$):       30,963 / 633,697 / 918,256 | Component: DrainageDescription: Overhaul, spot coating repair, tighten loosefasteners.Duration of cycle:10Cycle starting at year:10Quantity:90 (ea)Unit cost (2018\$):200Activity cost (2018\$):18,000Total PV (2018\$):50,242Component: Expansion joints (modular/strip seal)Description: Maint. of moving parts (incl. springs), repairof strip seal, and repair of coating.Duration of cycle:10Cycle starting at year:10Quantity:2 (ea) / 2 (ea)Unit cost (2018\$):57,200 / 28,600Activity cost (2018\$):57,200 / 28,600Total PV (2018\$):159,657 / 79,829 |
| <u>Component: Piers 2-3-4-5</u><br>Description: Condition-based maintenance is not<br>anticipated or very minor. Ignored for this example.                                                                                                                                                                                                                                                                                                                                                                                           | Component: Painting, indirect de-icing salts           Description: Touch-ups of paint (5%), overcoat (100%), and           repaint (100%, last year of replacement: 66).           Duration of cycle:           33           Cycle starting at year: 18 (touch-up) / 24 (overcoat) / 33 (repaint)           Quantity:         5,004 ft2 / 50,037 ft2 / 50,037 ft2           Unit cost (2018\$):         9.6 / 16.8 / 32.4           Activity cost (2018\$):         44,243 / 652,218 / 876,846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Component: Access systemsDescription: Touch-ups of coatings and minor repair.Duration of cycle:5Cycle starting at year:5Quantity:1 (lump sum)Unit cost (2018\$):15,000Activity cost (2018\$):15,000Total PV (2018\$):89,323                                                                                                                                                                                                                                                                                                                                   |

# cont. #1, Example SHRP2 Simple

#### Cyclical maintenance


|                                                                                                                                                                                                                                                                                                                | cyclical maintenance                                                                                                                                                                                                                                        |                                                                                                                                                                                                                          |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Concrete                                                                                                                                                                                                                                                                                                       | Structural Steel                                                                                                                                                                                                                                            | Other Components                                                                                                                                                                                                         |  |
| Component: Bridge deck (main + approach spans)Description: Repair of concrete surface spalls and other<br>concrete deterioration and any localized reinforcement<br>deter.Duration of cycle:30Cycle starting at year:30Quantity:51,839 ft² (50% of total)Unit cost (2018\$):60Activity cost (2018\$):3,121,875 | Component: Cables and hangersDescription: Minor repair of sealing, grease, drainage,HDPE tube, bolts and coating.Duration of cycle:5Cycle starting at year:25Quantity:64 (ea)Unit cost (2018\$):1,560Activity cost (2018\$):99,840Total PV (2018\$):323,830 | Component: BearingsDescription: Cleaning, spot repair of coating.Duration of cycle:1Cycle starting at year:1Quantity:1 (lump sum)Unit cost (2018\$):17,500Activity cost (2018\$):17,500Total PV (2018\$):568,846         |  |
| Component: Concrete barriersDescription: Repair due to scaling, corrosion etc.Duration of cycle:15Cycle starting at year:15Quantity:555 ft (10% of total)Unit cost (2018\$):100Activity cost (2018\$):55,500Total PV (2018\$):85,759                                                                           | Component: Painting, interior<br>Description: N/A (Per definitions in Section 3.0,<br>maintenance of paint is condition-based in all cases)                                                                                                                 | Component: DrainageDescription: Cleaning and small repair work.Duration of cycle:1Cycle starting at year:1Quantity:1 (lump sum)Unit cost (2018\$):4,600Activity cost (2018\$):4,600Total PV (2018\$):149,262             |  |
| Component: Land structures (Pier 1 and abutments)Description: Repair of concrete deterioration.Duration of cycle:1Cycle starting at year:1Quantity:5.7 ft² (0.1% of total)Unit cost (2018\$):100Activity cost (2018\$):570Total PV (2018\$):18,505                                                             | Component: Painting, atmospheric<br>Description: N/A (Per definitions in Section 3.0,<br>maintenance of paint is condition-based in all cases)                                                                                                              | Component: Expansion jointsDescription: Cleaning and spot repair of coating.Duration of cycle:1Cycle starting at year:1Quantity:1 (lump sum)Unit cost (2018\$):1,000Activity cost (2018\$):1,000Total PV (2018\$):64,896 |  |
| Component: Piers 2-3-4-5Description: Repair of concrete deterioration.Duration of cycle:1Cycle starting at year:1Quantity:40.8 ft² (0.1% of total)Unit cost (2018\$):100Activity cost (2018\$):4,085Total PV (2018\$):132,541                                                                                  | <u>Component: Painting, indirect de-icing salts</u><br>Description: N/A (Per definitions in Section 3.0,<br>maintenance of paint is condition-based in all cases)                                                                                           | Component: Access systemsDescription: Ad hoc minor repair.Duration of cycle:1Cycle starting at year:1Quantity:1 (lump sum)Unit cost (2018\$):5,000Activity cost (2018\$):5,000Total PV (2018\$):162,241                  |  |

| Replacement                                                                                                                                                                                                                |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                               |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Concrete                                                                                                                                                                                                                   | Structural Steel                                                                                                                                                                                                                   | Other Components                                                                                                                                                                                                                                                              |  |  |
| Component: Bridge deck (main + approach spans)<br>Description: No replacement anticipated.                                                                                                                                 | Component: Cables and hangersDescription: Replacement of all cables and hangers.Duration of cycle:60Cycle starting at year:60Quantity:64 (ea)Unit cost (2018\$):156,000Activity cost (2018\$):9,984,000Total PV (2018\$):1,796,313 | Component: Bearings (disc/elastomeric)Description: Replacement of bearings.Duration of cycle:50Cycle starting at year:50Quantity:4 (ea) / 273 (ea)Unit cost (2018\$):20,000 / 3,000Activity cost (2018\$):80,000 / 819,000Total PV (2018\$):19,157 / 196,117                  |  |  |
| Component: Concrete barriersDescription: Replacement of 100% of the barriers.Duration of cycle:60Cycle starting at year:60Quantity:5,550 ftUnit cost (2018\$):313Activity cost (2018\$):1,737,150Total PV (2018\$):312,547 | Component: Painting, interior<br>Description: N/A (Per definitions in Section 3.0,<br>maintenance of paint is condition-based in all cases)                                                                                        | Component: DrainageDescription: Replacement of scuppers.Duration of cycle:75Cycle starting at year:75Quantity:90 (ea)Unit cost (2018\$):4,100Activity cost (2018\$):369,000Total PV (2018\$):43,239                                                                           |  |  |
| Component: Land structures (Pier 1 and abutments)<br>Description: No replacement anticipated.                                                                                                                              | Component: Painting, atmospheric<br>Description: N/A (Per definitions in Section 3.0,<br>maintenance of paint is condition-based in all cases)                                                                                     | Component: Expansion joints (modular / strip seal)Description: Replacement of expansion joints.Duration of cycle:30Cycle starting at year:30Quantity:2 (ea)/ 2 (ea)Unit cost (2018\$):53,900 / 41,800Activity cost (2018\$):107,800 / 83,600Total PV (2018\$):73,348 / 56,882 |  |  |
| Component: Piers 2-3-4-5<br>Description: No replacement anticipated.                                                                                                                                                       | Component: Painting, indirect de-icing salts<br>Description: N/A (Per definitions in Section 3.0,<br>maintenance of paint is condition-based in all cases)                                                                         | Component: Access systemsDescription: Replacement of ladders, platforms etc.Duration of cycle:60Cycle starting at year:60Quantity:1 (lump sum)Unit cost (2018\$):100,000Activity cost (2018\$):100,000Total PV (2018\$):17,992                                                |  |  |

SHRP2 R19A LCCA of New Bridge Design Alternatives

## 6.2.12 Total Present Value Cost for Entire Bridge (Step 10)

Finally, the total PV cost for the entire bridge structure is determined by summation of all total PV costs for each component. In the present example, the total PV cost to be expected for maintenance tasks during the 100-year service life of the bridge structure is approximately \$11.5M. It is noted that user cost is not included in this example.



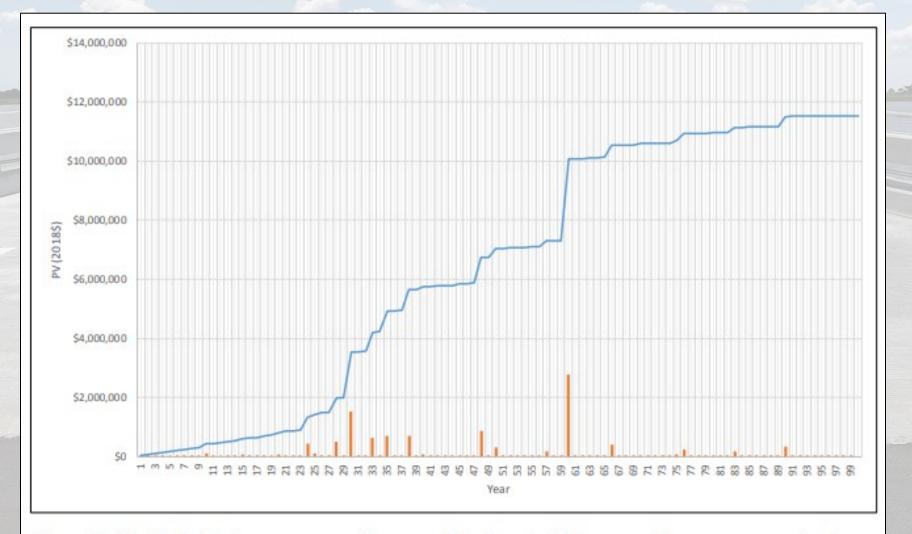



Figure 7. Life Cycle Costs per year and accumulated costs. Values are shown as present values

# **Simple SHRP2 Example #2**

## Option 1: Waterproofing and asphalt overlay Option 2: Concrete overlay (2.5 inches)

SHRP2 R19A LCCA of New Bridge Design Alternative

### Table 8. Maintenance Schedule by Option.

| Year | Option 1 - Waterproofing and Asphalt Overlay | Option 2 - Concrete Overlay         |
|------|----------------------------------------------|-------------------------------------|
| 15   | Replacement of asphalt                       | -                                   |
| 25   | Replacement of waterproofing and asphalt     | Roughening of the surface (milling) |
| 40   | Replacement of asphalt                       | -                                   |
| 50   | Replacement of waterproofing and asphalt     | Replacement of concrete overlay     |
| 65   | Replacement of asphalt                       | -                                   |
| 75   | Replacement of waterproofing and asphalt     | Replacement of concrete overlay     |
| 90   | Replacement of asphalt                       | -                                   |

### Table 9. Detailed Procedure for Maintenance Tasks.

|                                      | Option 1 - Waterproofing and<br>Asphalt Overlay                                                                                                                       | Option 2 - Concrete Overlay                                                                                                                                                     |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Maintenance task                     | Replacement of waterproofing and asphalt                                                                                                                              | Replacement of concrete<br>overlay                                                                                                                                              |
| Detailed<br>maintenance<br>procedure | <ol> <li>Surface removal</li> <li>Partial depth repairs</li> <li>Deck surface preparation</li> <li>Deck waterproofing</li> <li>Asphalt supply, application</li> </ol> | <ol> <li>Concrete removal</li> <li>Partial depth repairs</li> <li>Supply high performance<br/>concrete (HPC) deck overlay</li> <li>Placement of HPC deck<br/>overlay</li> </ol> |

| Description: Surface removal (Option 1)                                |                                                   |                                   | Table 10. Calculation of Present Value at Each Year for<br>Maintenance and Replacement of Overlay. |                                             |             |                  |  |
|------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------|-------------|------------------|--|
|                                                                        | Duration of cycle (years): See Table 8            |                                   |                                                                                                    | Component: Overlay Real Discount Rate: 2.9% |             |                  |  |
| н.                                                                     | Cycle starting at year:                           | See Table 8                       |                                                                                                    |                                             | Surface ren | noval (option 1) |  |
|                                                                        | Quantity:                                         | 92 ft x 131 ft =                  | 12,052 ft <sup>2</sup>                                                                             | Year                                        | Unit Cost   | PV               |  |
|                                                                        | Unit cost (2018\$):                               | 6.5\$/ft <sup>2</sup>             |                                                                                                    |                                             | (2018\$)    | (2018\$)         |  |
|                                                                        | Activity cost per time (2018)                     | \$): 12.052 ft <sup>2</sup> x 6.5 | \$/ft <sup>2</sup> = 78.338\$                                                                      | 1                                           | -           | -                |  |
|                                                                        | Total PV (2018\$):                                | 160,455                           |                                                                                                    | :                                           | -           | -                |  |
|                                                                        | 1010111 (20100).                                  | 100,455                           |                                                                                                    | 15                                          | 78,338      | 51,020           |  |
|                                                                        |                                                   |                                   |                                                                                                    | :                                           | -           | -                |  |
|                                                                        | SHRP2 R19A LCCA of New Bridge Design Alternatives |                                   |                                                                                                    | 25                                          | 78,338      | 38,334           |  |
| 1                                                                      |                                                   |                                   |                                                                                                    | :                                           | -           | -                |  |
|                                                                        |                                                   |                                   | 40                                                                                                 | 78,338                                      | 24,966      |                  |  |
|                                                                        |                                                   |                                   |                                                                                                    | :                                           | -           | -                |  |
|                                                                        |                                                   |                                   |                                                                                                    | 50                                          | 78,338      | 18,759           |  |
|                                                                        |                                                   |                                   |                                                                                                    | :                                           | -           | -                |  |
|                                                                        |                                                   |                                   |                                                                                                    | 65                                          | 78,338      | 12,217           |  |
|                                                                        | Component: Over                                   | lav Real Discount Rate: 2         | 9 9%                                                                                               | :                                           | -           | -                |  |
| Component: Overlay Real Discount Rate: 2.9% Surface removal (option 1) |                                                   | 75                                | 78,338                                                                                             | 9,180                                       |             |                  |  |
|                                                                        | Year                                              | Unit Cost                         | PV                                                                                                 | :                                           | -           | -                |  |
|                                                                        |                                                   | (2018\$)                          | (2018\$)                                                                                           | 90                                          | 78,338      | 5,978            |  |
|                                                                        |                                                   |                                   |                                                                                                    | :                                           |             | 84               |  |
| Tota                                                                   | al 5                                              | 48,366                            | 160,455                                                                                            | 100                                         | -           | -                |  |

Table 11. Total Present Value Cost for Option 1 – Waterproofing and Overlay and Option 2 – Concrete Overlay for the Highway Bridge.

| Option 1 - Waterproofing and Asphalt<br>Overlay      |                      | Option 2 - Concrete Overlay                          |                      |
|------------------------------------------------------|----------------------|------------------------------------------------------|----------------------|
| Maintenance task                                     | Total PV<br>(2018\$) | Maintenance task                                     | Total PV<br>(2018\$) |
| Surface removal (See Table 8)                        | 160,455              | Deck surface roughening<br>(Year 25)                 | 10,961               |
| Partial depth repairs (every 25 years)               | 94,749               | Concrete removal (Years 50 and 75)                   | 79,887               |
| Deck surface preparation<br>(every 25 years)         | 18,950               | Partial depth repairs (Years 50 and 75)              | 101,803              |
| Deck waterproofing (every 25 years)                  | 71,063               | Supply HPC deck overlay (2.5 inch) (Years 50 and 75) | 3,355                |
| Asphalt supply+application<br>(every 10 to 15 years) | 70,376               | Placement of HPC deck<br>overlay (Years 50 and 75)   | 3,195                |
| TOTAL                                                | 415,573              | TOTAL                                                | 199,202              |

SHRP2 R19A LCCA of New Bridge Design Alternatives

Table 12. Road User Costs Per Hour for Cars and Trucks According to Ohio DOT [14]. The Values From 2008 are Extrapolated to Future Years by Use of the Consumer Price Index.

| Year<br>2018                                     |                                           | Car<br>\$23.09       |                                       | Truck<br>\$62.33                          |                    |
|--------------------------------------------------|-------------------------------------------|----------------------|---------------------------------------|-------------------------------------------|--------------------|
| 2010                                             |                                           | ation of Closu       | re for Either Com<br>hway Bridge by O | plete or                                  |                    |
| Option 1 – Waterproofing and Asphalt<br>Overlay  |                                           | Option               | 2 – Concrete Overl                    | ау                                        |                    |
| Task                                             | Traffic Contro                            | Duration (days)      | Task                                  | Traffic Control                           | Duration<br>(days) |
| Replacement of                                   | Complete<br>closure<br>(detour)           | sure 3 Roughening of | Complete<br>closure<br>(detour)       | 1                                         |                    |
| asphalt (every 10<br>to 15 years)                | Partial closure<br>(lane<br>restrictions) | 6                    | (milling) (Year<br>25)                | Partial closure<br>(lane<br>restrictions) | 2                  |
| Replacement of closure 14 Replacement of detour) | Complete<br>closure<br>(detour)           | 16                   |                                       |                                           |                    |
| asphalt and<br>asphalt (every<br>25 years)       | Partial closure<br>(lane<br>restrictions) | 20                   | overlay (Years<br>50 and 75)          | Partial closure<br>(lane<br>restrictions) | 38                 |

6HRP2 R19A LCCA of New Bridge Design A

Table 14. Calculation of RUC for Surface Roughening at Year 2045 with Full Bridge Closure for Option 2 – Concrete Overlay by Use of Calculation Tool found at Ohio DOT's Website [15].

| Work Zone User Cost Calculations (Year 2018) |                   |            |  |  |  |  |
|----------------------------------------------|-------------------|------------|--|--|--|--|
|                                              | Distance & Speed) |            |  |  |  |  |
|                                              | er Input:         |            |  |  |  |  |
| Construction Calendar Year:                  | 20                | 45         |  |  |  |  |
|                                              | Car               | B/C Truck  |  |  |  |  |
| ADT of Detoured Section:                     | 22,727            | 2,273      |  |  |  |  |
| Length of Normal Route (Miles):              | 1                 | .1         |  |  |  |  |
| Length of Detour Route (Miles): 2.6          |                   |            |  |  |  |  |
| Avg Posted Speed on Normal Route (MPH): 55   |                   |            |  |  |  |  |
| Avg Posted Speed on Detour Route (MPH): 40   |                   |            |  |  |  |  |
| Duration of Closure (Days):                  | 1                 | 1          |  |  |  |  |
| Calcula                                      | ted Values:       |            |  |  |  |  |
| Cost per Hour:                               | \$23.09           | \$62.33    |  |  |  |  |
| Travel Time Along Normal Route (Secs):       | 72                | 72         |  |  |  |  |
| Travel Time Along Detour Route (Secs):       | 234               | 234        |  |  |  |  |
| Delay (Secs):                                | 162               | 162        |  |  |  |  |
| Delay (Hours):                               | 0.045             | 0.045      |  |  |  |  |
| Delay Cost per Vehicle:                      | \$1.04            | \$2.81     |  |  |  |  |
| Delay Cost per Day:                          | \$23,617.50       | \$6,375.85 |  |  |  |  |
| Delay Cost for Closure Duration:             | \$23,617          | \$6,376    |  |  |  |  |
| Total Delay Cost for Closure Duration:       | \$29              | ,993       |  |  |  |  |
| Average Delay Cost per Day:                  | \$29              | ,993       |  |  |  |  |

Table 15. Calculation of RUC for Replacement of Asphalt at Year 2035 with Partial Bridge Closure for Option 1 – Waterproof and Asphalt Overlay by Use of Calculation Tool found at Ohio DOT's Website [15].

| Work Zone User Cost Calculations (Year 2018) |                                  |            |  |  |  |
|----------------------------------------------|----------------------------------|------------|--|--|--|
| No Lanes Closed                              |                                  |            |  |  |  |
| User Input:                                  |                                  |            |  |  |  |
| Construction Calendar Year:                  | Construction Calendar Year: 2035 |            |  |  |  |
|                                              | Car                              | B/C Truck  |  |  |  |
| ADT of Section:                              | 22,727                           | 2,273      |  |  |  |
| Length of Work Zone (Miles):                 | 1.                               | .1         |  |  |  |
| Original Posted Speed (MPH):                 | 5                                | 5          |  |  |  |
| Work Zone Posted Speed (MPH):                | 30                               |            |  |  |  |
| Duration of Work Zone (Days): 6              |                                  |            |  |  |  |
| Calcula                                      | ted Values:                      |            |  |  |  |
| Cost per Hour:                               | \$23.09                          | \$62.33    |  |  |  |
| Travel Time Pre-Work Zone (Secs):            | 72                               | 72         |  |  |  |
| Travel Time During Work Zone (Secs):         | 132                              | 132        |  |  |  |
| Delay (Secs):                                | 60                               | 60         |  |  |  |
| Delay (Hours):                               | 0.017                            | 0.017      |  |  |  |
| Delay Cost per Vehicle:                      | \$0.38                           | \$1.04     |  |  |  |
| Delay Cost per Day:                          | \$8,747.22                       | \$2,361.42 |  |  |  |
| Delay Cost for Work Zone Duration:           | \$52,483                         | \$14,169   |  |  |  |
| Total Delay Cost for Work Zone Duration:     | \$66,                            | 652        |  |  |  |
| Average Delay Cost per Day:                  | \$11,                            | 109        |  |  |  |

| Table 16. Calculations of Present Value for Total Delay Costs in Table 14 and Table 15. |                                     |                              |  |  |  |
|-----------------------------------------------------------------------------------------|-------------------------------------|------------------------------|--|--|--|
| Total Delay Cost Example For                                                            | Calculation                         | Present<br>Value<br>(2018\$) |  |  |  |
| Option 2, surface roughening, year 2045, partial closure (Table 14)                     | \$29,993 x (1+0.029) <sup>-25</sup> | \$14,677                     |  |  |  |
| Option 1, replacement of asphalt, year 2035, full closure (Table 15)                    | \$66,652 x (1+0.029) <sup>-15</sup> | \$43,409                     |  |  |  |

SHRP2 R19A LCCA of New Bridge Design Alternatives

Table 17. Comparison of RUC for Complete or Partial Closure of the Highway Bridge for Option 1 - Waterproofing and Asphalt Overlay. RUC are shown as Present Value Costs.

|          |       |                                                | Com                    | Complete Closure<br>(Detour) |                        | rtial Closure<br>e Restrictions) |
|----------|-------|------------------------------------------------|------------------------|------------------------------|------------------------|----------------------------------|
|          | Year  | Task                                           | Duratio<br>n<br>(days) | Total RUC<br>(PV 2018\$)     | Duratio<br>n<br>(days) | Total RUC<br>(PV 2018\$)         |
|          | 2020  | Bridge constructed                             |                        |                              |                        |                                  |
| N. M. S. | 2035  | Replacement of asphalt                         | 3                      | \$58,602                     | 6                      | \$43,409                         |
|          | 2045  | Replacement of<br>waterproofing and<br>asphalt | 14                     | \$205,480                    | 20                     | \$108,719                        |
|          | 2060  | Replacement of asphalt                         | 3                      | \$28,677                     | 6                      | \$21,242                         |
|          | 2070  | Replacement of<br>waterproofing and<br>asphalt | 14                     | \$100,551                    | 20                     | \$53,201                         |
| -        | 2085  | Replacement of asphalt                         | 3                      | \$14,033                     | 6                      | \$10,395                         |
|          | 2095  | Replacement of<br>waterproofing and<br>asphalt | 14                     | \$49,204                     | 20                     | \$26,034                         |
|          | 2110  | Replacement of asphalt                         | 3                      | \$6,867                      | 6                      | \$5,087                          |
|          | TOTAL | . COST                                         |                        | \$463,413                    |                        | \$268,087                        |

RUC: Road User Costs

Table 18. Comparison of RUC for Complete or Partial Closure of the Highway Bridge for Option 2 - Concrete Overlay. RUC are shown as Present Value Costs.

|    | Year  | Task                                     | Complete Closure<br>(Detour) |                          | Partial Closure<br>(Lane Restrictions) |                          |
|----|-------|------------------------------------------|------------------------------|--------------------------|----------------------------------------|--------------------------|
| 10 | Tear  | Task                                     | Duration<br>(days)           | Total RUC<br>(PV 2018\$) | Duration<br>(days)                     | Total RUC<br>(PV 2018\$) |
|    | 2020  | Bridge constructed                       |                              |                          |                                        |                          |
|    | 2045  | Replacement of asphalt                   | 1                            | \$14,677                 | 2                                      | \$10,872                 |
|    | 2060  | Replacement of waterproofing and asphalt | 16                           | \$93,368                 | 38                                     | \$85,122                 |
|    | 2095  | Replacement of asphalt                   | 16                           | \$45,689                 | 38                                     | \$41,654                 |
|    | TOTAL | COST                                     |                              | \$153,734                |                                        | \$137,648                |

Table 19. Comparison of Total Costs in Present Value (PV 2018\$) for Option 1 – Waterproofing and Asphalt Overlay and Option 2 – Concrete Overlay for the Highway Bridge.


|                            | Option 1 –<br>Waterproofing and Asphalt<br>Overlay | Option 2 –<br>Concrete Overlay |
|----------------------------|----------------------------------------------------|--------------------------------|
| Initial construction costs | \$120,000                                          | \$40,000                       |
| Maintenance costs          | \$415,573                                          | \$199,202                      |
| SUM                        | \$535,573                                          | \$239,202                      |
| Road user costs            | \$268,087                                          | \$137,648                      |
| Total PV cost (2018\$)     | \$803,660                                          | \$376,850                      |

**RUC:** Road User Costs

U.S. Department of Transportation Federal Highway Administration Office of Infrastructure

2

## Bridge Management Systems Workshop



## Bridge Management System (BMS)



Structures Analyst™



Advance Your Bridge and Structures Management Strategies and Increase ROI

deighto

Bridge Management Extend the Life of Your Bridge Methods

#### Keep Your Bridges Safe

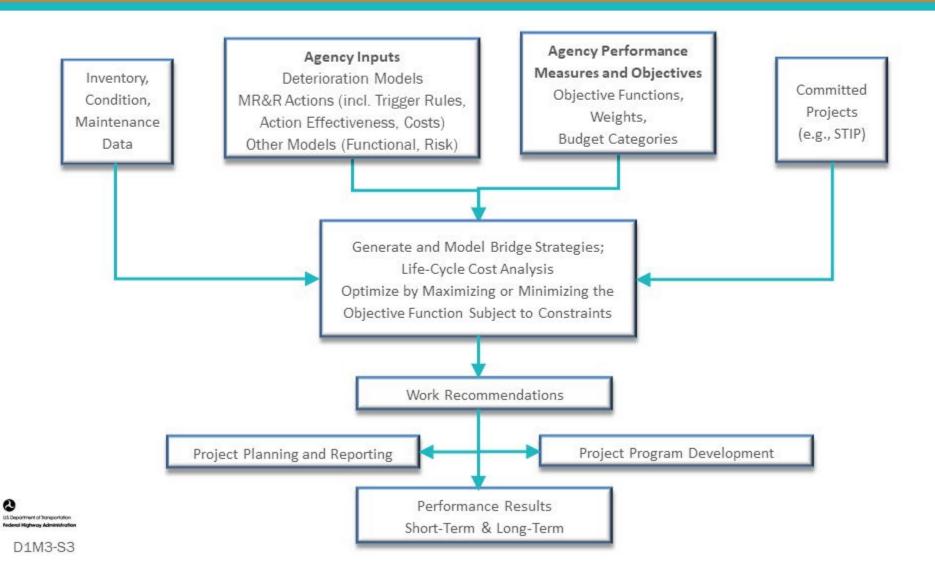
C US. Department of Transportation

D1M2-S11

Deck, superstructure, substructure, structural condition, deck, wearing system, perapats, girders, paint systems, approaches, abutments, bearings and columns. Our solution analyzes both the bridge structure and components.


Examples:

 AASHTOWare™ Bridge Management (BrM)


 AgileAssets® Structures Analyst™

> Deighton dTIMS©

(dot.gov) FHW Bridge Management Systems Workshop Participant Workbook |



## **BMS Workflow Steps**



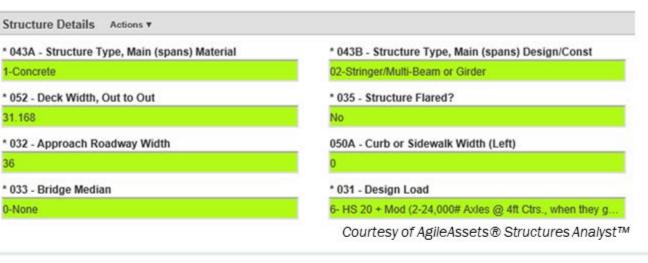
Bridge Management Systems Workshop Participant Workbook | FHWA (dot.gov)



## **Inventory and Condition Data**

Structure Details Actions V

\* 052 - Deck Width, Out to Out


1-Concrete

31.168



\* 033 - Bridge Median 0-None

Source: Adobe Stock



| leme | -       | Elem Desc Struct |          |                       | Env.: All | ✓ Clear | Filters Qua | antity O Percer | t        |         | y Grid Nav | e<br>Id Elem |   |
|------|---------|------------------|----------|-----------------------|-----------|---------|-------------|-----------------|----------|---------|------------|--------------|---|
| >    | Elem. 🔺 | Str. Unit. 🔺     | Env.     | Element Description   | Tot. Qty. | Units   | Qty1        | Qty2            | Qty3     | Qty4    |            |              |   |
|      | 12      | 101              | Mod. (3) | Re Concrete Deck      | 23844.796 | sq.ft   | 4,768.961   | 11922.398       | 6676.541 | 476.895 |            | <i>H</i> •   | × |
| >    | 107     | 101              | Low (2)  | Steel Opn Girder/Beam | 3345.098  | ft      | 1,672.549   | 1505.295        | 167.254  | 0       |            | H.           | > |
|      | 161     | 101              | Low (2)  | Stl Pin Pin/Han both  | 18        | each    | 0.000       | 18              | 0        | 0       |            | 1            | > |
|      | 205     | 101              | Low (2)  | Re Conc Column        | 18        | each    | 18.000      | 0               | 0        | 0       |            | 1.           | > |

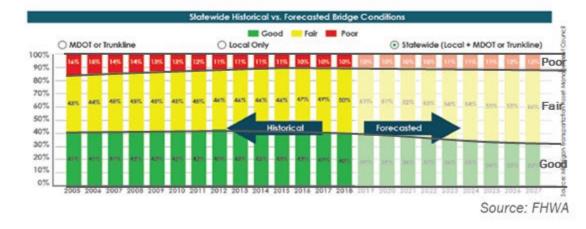
Courtesy of AASHTOWare™ Bridge Management (BrM)

0 U.S. Department of Transports

D1M3-S4

Systems Workshop Participant Workbook | FHWA (dot.gov)

Bridge Managem


# Condition Data in the BMS – Example Bridge Element Inspection

|    | Elem. 🔺 | Str. Unit. 🔺 | Env.     | Element Description    | Tot. Qty. | Units | Qty1      | Qty2      | Qty3       | Qty4        |       |             |     |
|----|---------|--------------|----------|------------------------|-----------|-------|-----------|-----------|------------|-------------|-------|-------------|-----|
| e, | 12      | 101          | Mod. (3) | Re Concrete Deck       | 23844.796 | sq.ft | 4,768.961 | 11922.398 | 6676.541   | 476.895     |       | <i>×</i> •  | ×   |
|    | 107     | 101          | Low (2)  | Steel Opn Girder/Beam  | 3345.098  | ft    | 1,672.549 | 1505.295  | 167.254    | 0           |       | H.          | ×   |
|    | 161     | 101          | Low (2)  | Stl Pin Pin/Han both   | 18        | each  | 0.000     | 18        | 0          | 0           |       | 1.          | ×   |
|    | 205     | 101          | Low (2)  | Re Conc Column         | 18        | each  | 18.000    | 0         | 0          | 0           |       | H.          | x   |
|    | 215     | 101          | Mod. (3) | Re Conc Abutment       | 327.799   | ft    | 278.629   | 49.17     | 0          | 0           |       | 1.          | ×   |
|    | 234     | 101          | Low (2)  | Re Conc Pier Cap       | 315.098   | ft    | 308.796   | 6.302     | 0          | 0           |       | H.          | ×   |
|    | 300     | 101          | Sev. (4) | Strip Seal Exp Joint   | 327.799   | ft    | 0.000     | 327.799   | 0          | 0           |       | 1.          | ×   |
|    | 311     | 101          | Low (2)  | Moveable Bearing       | 18        | each  | 0.000     | 18        | 0          | 0           |       | 14          | ×   |
|    | 313     | 101          | Low (2)  | Fixed Bearing          | 18        | each  | 0.000     | 18        | 0          | 0           |       | 1           | ×   |
|    | 3       | 101          | Sev. (4) | Re Conc Approach Slav  | 4137.496  | sq.ft | 4,137.496 | 0         | 0          | 0           |       | 14          | ×   |
|    | 331     | 101          | Sev. (4) | Re Conc Bridge Railing | 812.001   | ft    | 0.000     | 812.001   | 0          | 0           |       | <b>//</b> • | x   |
|    |         |              | _        | N                      |           |       |           | Courtesvo | of AASHTON | /are™ Bridg | e Man | aøem        | ent |

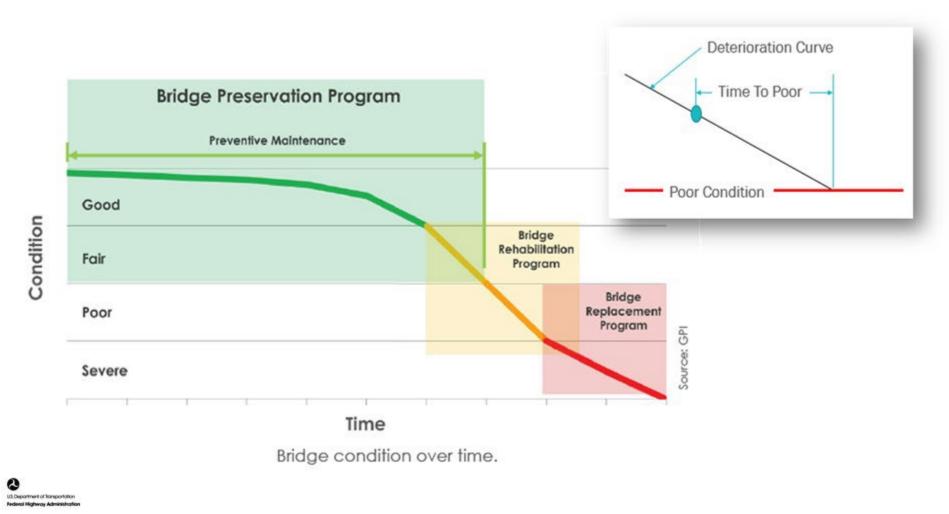
(dot.gov) 亡 8 Bridge Management System

# Goals, Objectives, and Performance Measures

|                   |                             |                   |       | CS1 Coef. | CS2 Coef. | CS3 Coef. |     |       |                         |                      |                |
|-------------------|-----------------------------|-------------------|-------|-----------|-----------|-----------|-----|-------|-------------------------|----------------------|----------------|
| _                 |                             |                   |       | 1         | 0.75      | 0.5       |     |       |                         |                      |                |
| Element<br>Number | Element Name                | Total<br>Quantity | Units | CS1       | CS2       | CS3       | CS4 | (I) - | Element<br>Health Index | $q_e \omega_e H I_e$ | $q_e \omega_e$ |
| 12                | Concrete Deck               | 300               | SFT   | 0         |           | 300       |     | 600   | 50.00%                  | 180000               | 90000          |
| 107               | Steel Girder/Beam           | 100               | LFT   | 61        | 34        | 5         |     | 3500  | 89.00%                  | 350000               | 311500         |
| 215               | Concrete Abutment           | 24                | LFT   | 24        |           |           | 1   | 7700  | 100.00%                 | 184800               | 184800         |
| 300               | Strip Seal Expansion Joint  | 24                | LFT   | 0         |           |           | 24  | 560   | 0.00%                   | 13440                | 0              |
| 205               | Reinforced Concrete Columns | 4                 | Each  | 4         |           |           |     | 9000  | 100.00%                 | 36000                | 36000          |
|                   |                             |                   |       |           |           |           |     |       | Total                   | 764240               | 622300         |



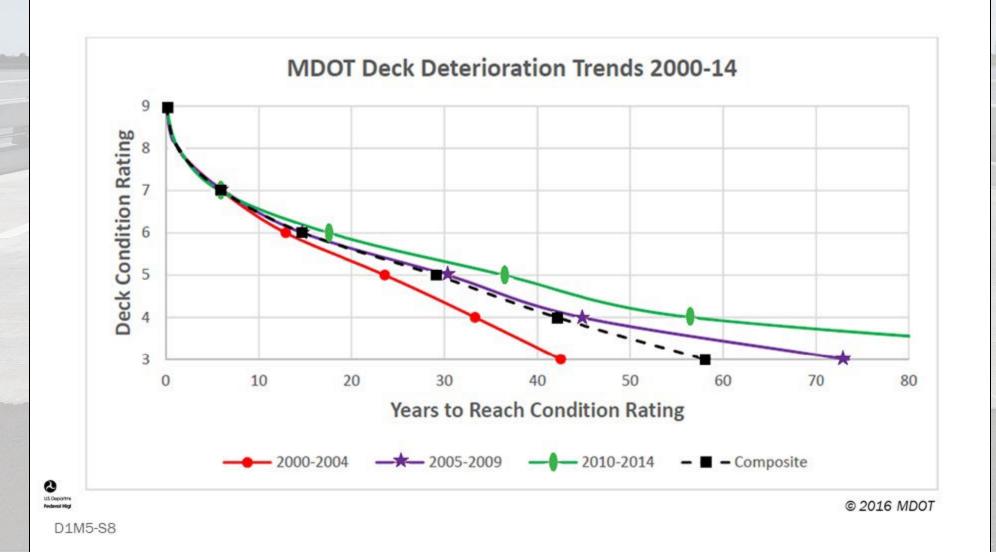
- · Goal: Maintain bridges in a state of good repair
- Objective: Maintain asset value at 80% (HI)
- Performance Measure: Health Index


U.S. Devolutionent of 1

D1M3-S5

Bridge Management Systems Workshop Participant Workbook

Bridge Health Index 81.4%

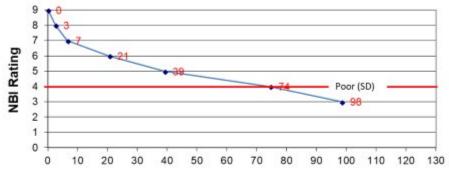

# Deterioration Modeling and Project Selection



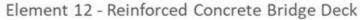
Bridge Management Systems Workshop Participant Workbook | FHWA (dot.gov)

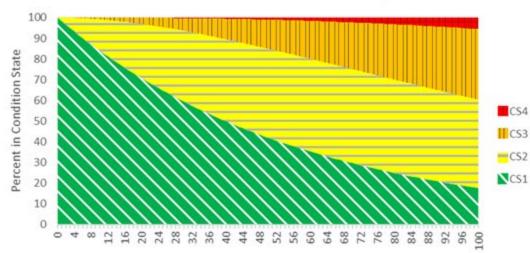
D1M5-S7

# Deterioration Rates Can Change Over




(dot.gov) FHWA Systems Workshop Participant Workbook Bridge Management





## **Deterioration Modeling**

#### Example: Deck Deterioration Curve



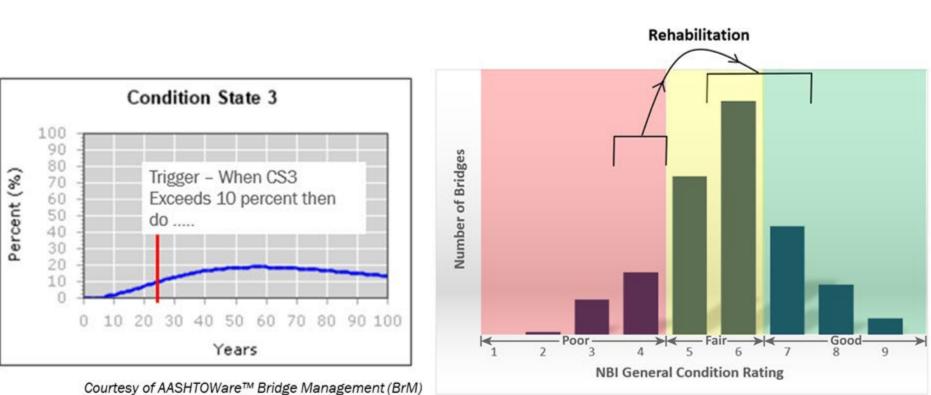
Years to Reach Condition State





Years

D1M3-S6


(dot.gov)

FHWA

Bridge Management Systems Workshop Participant Workbook

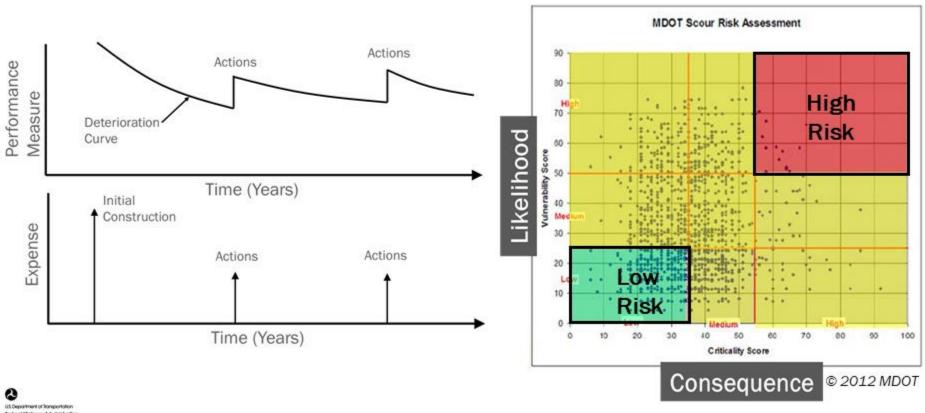


## Actions, Triggers, Costs and Effects



Contract of Responses Redenal Highway Administration

D1M3-S7

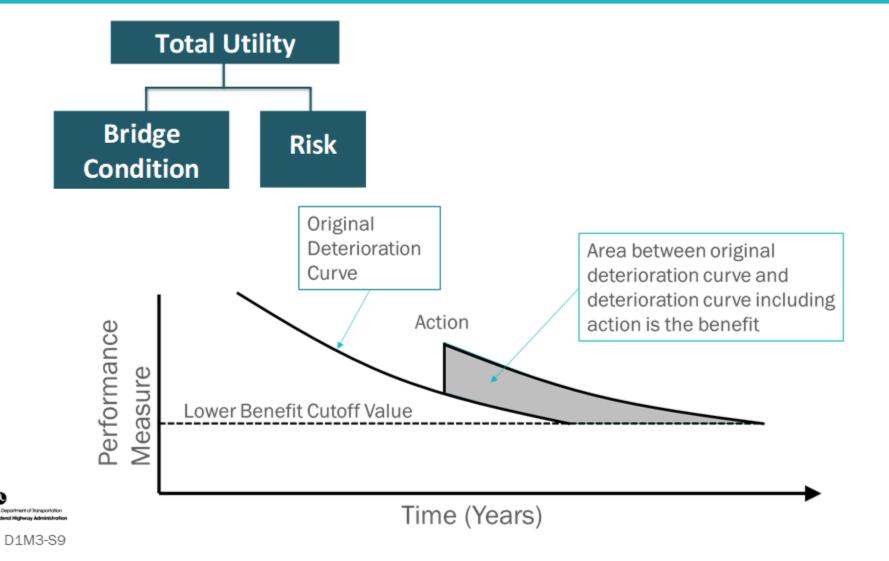

(dot.gov)

FHWA

Bridge Management Systems Workshop Participant Workbook |



# Life-Cycle Modeling, User Costs, and Risk Assessment

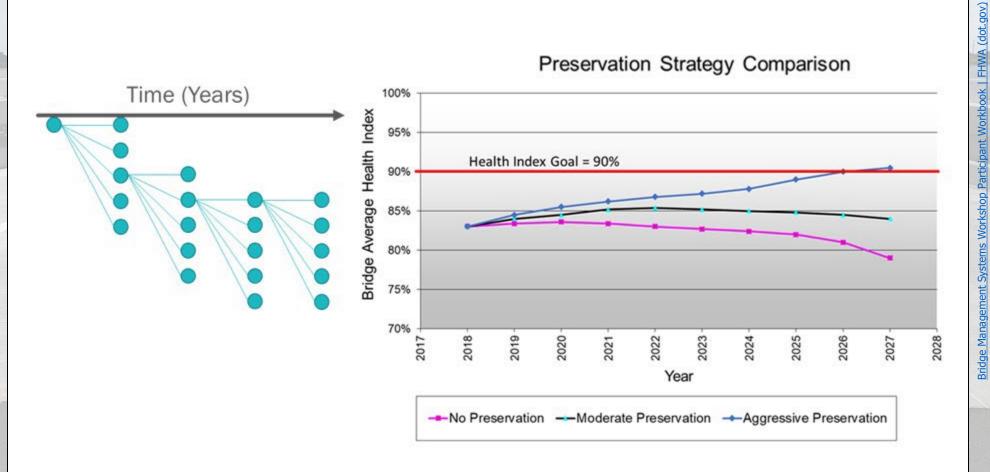



(dot.gov) FHWA Bridge Management Systems Workshop Participant Workbook |

D1M3-S8



## **Benefit/Cost Analysis**




(dot.gov)

FHWA

Bridge Management Systems Workshop Participant Workbook

# Strategy Generation and Scenario Modeling



US. Department of Noneportation Redenal Highway Administrat

D1M3-S10

December 2022





Ohio's risk-based asset management plan for the National Highway System to improve or preserve the conditions of the assets and performance of the system pursuant to 23 U.S.C 119(e)(1)

Transportation Asset Management Plan (TAMP) | Ohio Department of Transportation

Ohio Department of Transportation

TAMP

December 2022

#### 1.4 Asset Management at ODOT

Asset Management at ODOT is guided by several initiatives and involves nearly every employee at the agency. The overall ODOT TAM program is guided by the following Federal programs and department criteria. While each program provides a specific focus related to TAM objectives, the targets and implementation of each often overlap.



Ohio Department of Transportation TAMP December 2022

#### 1.4.3 TPM Performance Measures and Federal Targets

MAP-21 and the FAST Act require States to set 2- and 4-year performance targets for Pavements and Bridges on the NHS<sup>4</sup>. While the legislation establishes these requirements, rules were established by FHWA that define the performance measures and the process for setting the State targets. In addition, the legislation and rules established minimum condition levels for NHS Bridges and Interstate Pavement that are evaluated based on Federal performance measures.

| Preserve Our Assets |                                                                                                                                                         |      |  |  |  |  |  |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|--|--|--|--|
| Metric              | Description                                                                                                                                             | Goal |  |  |  |  |  |
| Bridge Condition    | Percent of bridge deck area in good or fair<br>condition, meaning that both the deck and general<br>appraisal ratings are at least 5 on a scale of 0-9. | 97%  |  |  |  |  |  |

Please note the Bridge Condition CSF accounts for non-major state bridges (10' and greater, carrying a state route or over a state route) and excludes major bridges (structures greater than 81,000 square feet or crossing the Ohio River). Major bridges are not included in the CSF because funding decisions for major bridges are made separately from the remaining non-major state bridges. A separate CSF for Major Bridges does not exist, with these assets managed on an individual structure need basis.

December 2022





Ohio's risk-based asset management plan for the National Highway System to improve or preserve the conditions of the assets and performance of the system pursuant to 23 U.S.C 119(e)(1)

Transportation Asset Management Plan (TAMP) | Ohio Department of Transportation

### Technology and Management Systems

ODOT's management strategies depend on the availability of analysis models and computerized tools to effectively evaluate the long-term impacts of investment options. ODOT currently uses a state-of-the-art Pavement management system (dTIMS) for managing its Pavement investments and is in the process of linking its new maintenance management processes, which include maintenance work planning, and reporting, to its Asset Management program.

ODOT has fully implemented AssetWise for the inventory and inspection data collection process for Ohio's Bridges. A project was initiated to implement the AASHTOWare Bridge Management System (BrM), however, it is currently postponed due to a lack of resources. ODOT has an implementation schedule defined to deliver BrM in 2023 for use by the district's 2024 work plans.

| DOT Tier 1 Asset | ts         |                         |                    |                         |
|------------------|------------|-------------------------|--------------------|-------------------------|
| Asset            | Regulatory | Inspection<br>Frequency | Performance Target | Replacement<br>Strategy |
| Bridges          | FHWA/State | 1, 2-yr                 | 97% GA>=5          | Life Cycle              |

### Minimum Bridge Conditions:

State DOTs are required to maintain bridges so that the percentage of the deck area of bridges classified as in poor condition does not exceed 10.0 percent. This minimum condition level applies to bridges carrying the NHS, which includes on- and off-ramps connecting to the NHS within a State, and bridges carrying the NHS that cross a State border. A bridge will be classified as in poor condition when one of its NBI Items, 58–Deck, 59–Superstructure, 60–Substructure, or 62–Conduits, is 4 or less.

December 2022





## 2.3 Bridge Inventory and Condition

Ohio has over 44,000 Bridges. ODOT is responsible for maintaining over 10,000 of these Bridges on the Priority and General systems. The Ohio Turnpike maintains 531 additional Bridges. The Bridge inventory includes all structures with a span greater than or equal to 10 feet.

Plan (TAMP) | ODOT

## 2.3.1 ODOT Bridge Inventory and Condition

ODOT inspects bridges on a 1 or 2-year cycle depending on the most recent condition rating, based on <u>Ohio Revised Code Section 5501.47</u>. Each inspection provides a rating for the major elements of the Bridge (superstructure, substructure, deck, and conduit) on a 0 to 9 scale, with 9 representing an element in *Excellent* condition and 0 representing a *Failed* element. Any element rated below 5 is considered *Poor*. To provide an overall assessment of the Bridge condition that takes all major components into account, the lowest rating from these primary elements is reported as General Appraisal (GA). In addition to these primary condition ratings, some Bridges require more detailed inspections if they have fracture-critical members, underwater components, or are complex structures. On a Statewide basis, more than 98.3 percent of the Bridges maintained by ODOT are in *Fair* or better condition (GA of 5 or more).

### **Overall Bridge Condition Ratings**

In the below table, Bridge conditions are reported based on the lowest component rating. The lowest rating for the three major elements of the Bridge (superstructure, substructure, and conduit) is calculated. Below are the levels to identify when a Bridge is in Good, Fair, or Poor Condition.

- Good (7-9)
- Fair (5-6)
- Poor (0-4)

## BRIDGE INVENTORY AND CONDITION<sup>5</sup>

|             | Count  | Deck Area (sq.<br>ft) | Good   | Fair              | Poor  |
|-------------|--------|-----------------------|--------|-------------------|-------|
| NHS         |        |                       |        |                   |       |
| Interstate  | 2,157  | 34,999,520            | 69.22% | 29.25%            | 1.53% |
| U.S. Route  | 1,895  | 16,687,849            | 66.65% | 32.19%            | 1.16% |
| State Route | 1,468  | 16,175,499            | 61.78% | 36.38%            | 1.84% |
| Turnpike    | 380    | 5,178,028             | 57.63% | 41.84%            | 0.53% |
| Local       | 185    | 1,700,059             | 51.35% | 43.78%            | 4.86% |
| TOTAL       | 6,085  | 74,740,955            | 65.29% | 33,21%            | 1.50% |
| NON-NHS     |        |                       |        |                   |       |
| U.S. Route  | 978    | 4,692,639             | 62.88% | 35.58%            | 1.53% |
| State Route | 6,457  | 21,236,103            | 62.95% | 34.77%            | 2.28% |
| Turnpike    | 151    | 1,094,554             | 61.59% | 37.09%            | 1.32% |
| Local       | 29,826 | 54,942,785            | 57.44% | 35.70%            | 6.87% |
| TOTAL       | 37,412 | 81,966,081            | 58,50% | 35,53%            | 5.93% |
| GRAND TOTAL | 43,497 | 156,707,036           | 59.44% | <b>35.27%</b> 108 | 5.29% |

<sup>5</sup> The analysis was run in March 2022, which would include all condition information approved at that time.

December 2022





Ohio's risk-based asset management plan for the National Highway System to improve or preserve the conditions of the assets and performance of the system pursuant to 23 U.S.C 119(e)(1)

Transportation Asset Management Plan (TAMP) | Ohio Department of Transportation

### 2.5.6 Bridge Data Quality Management Data Quality

ODOT follows the below processes and methodology in ensuring that the bridges and structure's data quality is of the highest order:

- 1. The Office of Structural Engineering (OSE) performs the following data checks and balances:
  - a. Monthly Data checks: NBI Data Checks (dot.gov).
  - OSE performs Quarterly Element Data checks (adhering to the granularity required on NHS NBIS bridges): Element Data Errors and Flags (dot.gov).
  - c. Data quality checks are also performed using the Base Transportation Referencing System (BTRS). BTRS is an ODOT-developed database workflow process that perpetuates the LRS and Roadway information changes to other ODOT enterprise systems. This process is designed to discover and detail data anomalies, if they exist, so that appropriate action can be taken based on the result of the completed process.
- ODOT staff perform a significant percentage of the inventory and inspection of Ohio's bridges and rely on numerous local partner agencies to complete this work on their respective structures.
  - OSE evaluates bridge inspection frequencies as compared to Federal regulatory requirements outlined in the <u>NBIS Metrics 6 -10</u>. Data is then gathered and analyzed from approved inspection reports.
  - b. Monthly Frequency Checks are performed for Routine, Dive, and Fracture Critical inspections. This is to ensure inspections occur at timely intervals.
  - c. OSE utilizes the AssetWise application for bridge inspection notes, details, and reference guidelines for inspection reporting. <u>AssetWise Inspection</u>.

December 2022





Ohio's risk-based asset management plan for the National Highway System to improve or preserve the conditions of the assets and performance of the system pursuant to 23 U.S.C 119(e)(1)

Transportation Asset Management Plan (TAMP) | Ohio Department of Transportation

| NITS DITUge Performation                                       | lice l'algets (re                   | entormance Perio       | d 2022 - 2020)         |                        |
|----------------------------------------------------------------|-------------------------------------|------------------------|------------------------|------------------------|
|                                                                | Previous<br>Target<br>(2018 - 2022) | Current<br>Performance | 2 Yr. Target<br>(2024) | 4 Yr. Target<br>(2026) |
| Percentage of NHS<br>Bridges by deck area in<br>Good Condition | 50%                                 | 63.3%                  | >55%                   | >55%                   |
| Percentage of NHS<br>Bridges by deck area in<br>Poor Condition | 5%                                  | 1.7%                   | <3%                    | <3%                    |

NHS Bridge Performance Targets (Performance Period 2022 - 2026)

Table 23 - NHS Bridge Targets

The above bridge (Both NHS and Non-NHS) performance targets were compared against the 4-year targets documented in the 2021 -2024 STIP. The results were that the performance targets listed in the TAMP met and exceeded the targets listed in the STIP.

The Federal Requirements for LCP Analysis (23 CFR 515.7(b)) include:

- Incorporating the State DOT targets for asset conditions for each asset class or asset subgroup into the analysis.
- Modeling deterioration for NHS bridges and pavements for each asset class or asset sub-group.
- Analyzing potential work types across the whole life of each asset class or asset sub-group with the general unit costs identified.
- Identifying management strategies for each asset class or asset subgroup to minimize the life cycle costs while achieving the 23 U.S.C. 150(d) performance targets for asset conditions.
- Identifying any subgroups that have been excluded, with justification for their exclusion.

Additionally, the new Bipartisan Infrastructure Law (BIL) updates, State DOTs are required to:

 Consider extreme weather and resilience as part of the life cycle cost and risk management analyses within a State TAMP (23 U.S.C. 119(e)(4)(D)).

December 2022



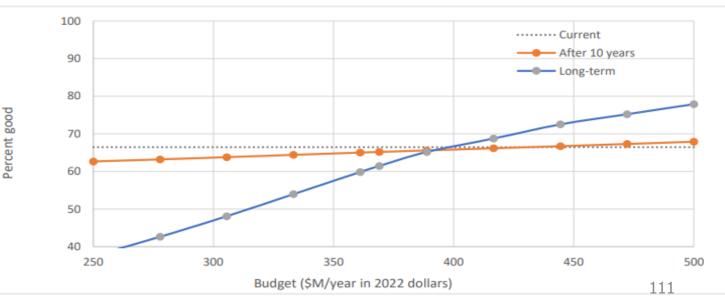


Ohio's risk-based asset management plan for the National Highway System to improve or preserve the conditions of the assets and performance of the system pursuant to 23 U.S.C 119(e)(1)

Transportation Asset Management Plan (TAMP) | Ohio Department of Transportation

### 4.5 Life Cycle Planning for Bridge

ODOT currently utilizes a spreadsheet analysis tool to conduct the life cycle analysis required for the bridge network. This analysis leverages representative rates of deterioration for bridge conditions, and various treatment cycles with a comparison of a traditional rehabilitation approach (which predominately includes deck replacement and bridge replacement in a worst-first prioritization) with a strategy that increased the amount of preservation work, with each strategy aiming to maintain current condition levels.


### 4.5.1 The Trade-off of Funding and Condition

Note for the below graphics, "Long-term" is based on a 200-year analysis period of computing life cycle costs. Because of discounting, future costs are given less weight, which increases the benefit of delaying big costs by utilizing preservation work. Since replacement costs are considerable, this calculation ensures we account for the future cost of keeping each transportation network link in operation by replacing bridges at the end of their economic life, even though it is far in the future. This long-term calculation ensures we capture those future costs in the calculation.

Below is the general appraisal information for the NBI NHS, Non-NBI NHS, Non-NHS, and Turnpike NHS. Additionally, the Deck, Wearing Surface, and Protective Coating information are shown for NBI NHS. To see this information for the other networks, please refer to Appendix C.

### Ohio Bridge NBI NHS (All Owners) Analysis:

### General Appraisal:



#### Table 29 - Ohio Bridge NBI NHS All Owners Analysis General Appraisal

December 2022





Ohio's risk-based asset management plan for the National Highway System to improve or preserve the conditions of the assets and performance of the system pursuant to 23 U.S.C 119(e)(1)

Transportation Asset Management Plan (TAMP) | Ohio Department of Transportation

### 4.5.2 Return on Investment

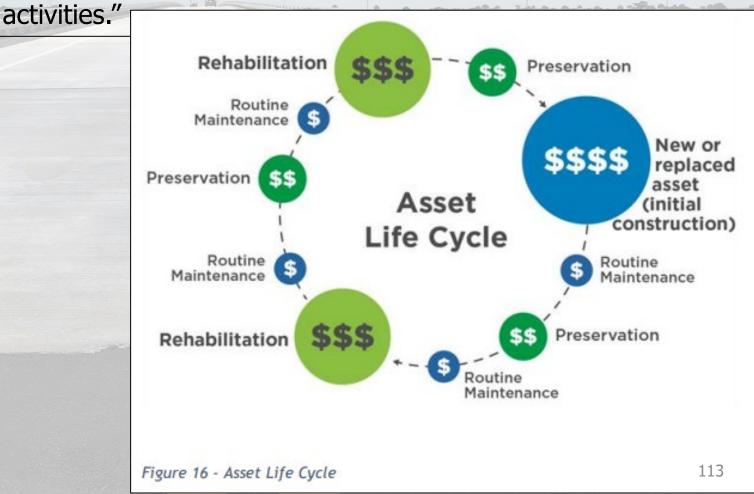
These LCP analysis results were analyzed in their current conditions to assess the return on investment that ODOT achieves from this preservation strategy. The analysis assumed that roughly the same conditions from year to year would be maintained over the long term. The preservation model was calibrated to keep conditions roughly constant. The findings were that ODOT's preservation strategy yields a 47 percent return on investment for the NBI NHS. The non-NHS result showed a 69 percent return on investment.

### 4.7 Life Cycle Costs for Extreme Weather and Resilience

The BIL amendments which took effect on October 1, 2021, instruct State DOTs to consider extreme weather and resilience as part of the life cycle analysis. ODOT's current processes for project selection through the Annual District Work Plan Process and Risk Management strategies provide ODOT planners and engineers the ability to factor in these risks to the agency's strategies.

Conducting a sound life cycle analysis accounting for future extreme weather scenarios requires an understanding of several factors potentially including specific potential impacts, impacts on materials performance, impacts on funding, and impacts on ODOT's project selection processes among others. In Chapter 5, ODOT details a variety of initiatives related to extreme weather and resilience already complete, as well as a proposed project to develop a comprehensive Resiliency Improvement Plan. This plan will enable ODOT to develop a holistic approach for continuing to achieve the SOGR while accounting for these additional risk factors.

December 2022






Ohio's risk-based asset management plan for the National Highway System to improve or preserve the conditions of the assets and performance of the system pursuant to 23 U.S.C 119(e)(1)

Transportation Asset Management Plan (TAMP) | Ohio Department of Transportation

"Each type of treatment serves a different function in keeping an asset operational and the costs vary as the magnitude of the treatment increases. Life cycle strategies that promote the timely application of maintenance and preservation treatments, such as the strategies we have adopted, are cost-effective because they defer the need for more costly rehabilitation and reconstruction



December 2022





Ohio's risk-based asset management plan for the National Highway System to improve or preserve the conditions of the assets and performance of the system pursuant to 23 U.S.C 119(e)(1)

Transportation Asset Management Plan (TAMP) | Ohio Department of Transportation

# **Asset Life Cycle**

**Initial Construction** – This category refers to the construction of new assets, including Pavements or Bridges, on new alignments.

**Reconstruction** – Work activities in this category involve the complete replacement of an existing asset to serve the same alignment once the asset reaches the end of its service life. ... For a Bridge or Conduit, it involves the complete replacement of the Bridge or an open-cut replacement of a Conduit.

**Rehabilitation** – This category involves major work to restore the structural integrity of an asset as well as work that may be necessary to correct major safety defects. ... For Bridges, repairs to, or replacement of, one or more major Bridge elements, such as deck replacement or substructure rehabilitation may be included.

**Preservation** – This category includes low-cost treatments applied to assets in relatively good condition to slow the rating of deterioration or address minor repairs. ... For Bridges, it includes Bridge and joint sealing, Bridge deck resealing, and painting of steel elements.

**Routine Maintenance** – Maintenance activities may include cyclic activities, such as joint sealing or crack filling, to prevent damage to underlying layers. Routine maintenance may also include repairs to address safety-related issues to keep the asset operational. 114

December 2022





Ohio's risk-based asset management plan for the National Highway System to improve or preserve the conditions of the assets and performance of the system pursuant to 23 U.S.C 119(e)(1)

Transportation Asset Management Plan (TAMP) | Ohio Department of Transportation

| Bridge Work Ty                                  | pe Summary                                     |              |                |                     |
|-------------------------------------------------|------------------------------------------------|--------------|----------------|---------------------|
| FHWA Work<br>Category                           | Treatment Type                                 | Average Low  | Average Medium | Average High        |
| Preservation                                    | Bridge Preservation                            | \$470,476    | \$996,527      | \$6,107,366         |
| Preservation                                    | Patching concrete<br>structures                | \$722        | \$8,305        | \$16,858            |
| Preservation                                    | Slope and channel scour protection             | \$772        | \$4,324        | \$12,725            |
| Preservation                                    | Special - Patching<br>Concrete Bridge<br>Decks | \$4,613      | \$10,659       | \$19,669            |
| Preservation                                    | Treating concrete                              | \$1,123      | \$2,152        | \$3,715             |
| Reconstruction                                  | Add Through<br>Lane(s)                         | \$33,701,824 | \$49,728,377   | \$110,433,343       |
| Rehabilitation                                  | Approach slabs                                 | \$1,582      | \$3,328        | \$5,039             |
| Rehabilitation                                  | Joint Repair                                   | \$643        | \$2,395        | \$5,110             |
| Rehabilitation                                  | Railings                                       | \$1,138      | \$1,954        | \$2,983             |
| Routine<br>Maintenance                          | Bridge cleaning                                | \$117        | \$337          | \$1,388             |
| Routine<br>Maintenance                          | Bridge Maintenance                             | \$301,541    | \$671,129      | \$2,805,538         |
| Routine<br>Maintenance                          | Bridge Repair per<br>Force Account             | \$1,212      | \$2,406        | \$4,238             |
| Routine<br>Maintenance<br>able 41 - Bridge Work | Bridge Sweeping                                | \$69         | \$150          | <b>\$404</b><br>115 |

### ODOT Risk Likelihood Ratings

| Risk Ranking                     | Likelihood           | Frequency                 | Risk Score |
|----------------------------------|----------------------|---------------------------|------------|
| Very High or Almost Certain      | Near Certainty (90%) | Within 1 Year             | 5          |
| High or Likely                   | Highly Likely (70%)  | Within 2 Years            | 4          |
| Moderate                         | Likely (50%)         | Within 3-5 Years          | 3          |
| Low or Unlikely                  | Unlikely (20-30%)    | Within 6-10 Years         | 2          |
| Very Low or Rare                 | Remote (10%)         | Within More Than 10 Years | 1          |
| Table 42 Dick Likelihood Datings |                      |                           |            |

Table 43 - Risk Likelihood Ratings

### ODOT Risk Impact Ratings

|                                           |                          | Ir                                  | npact on Syst                                     | tem Performano                                           | ce Score                                                   |
|-------------------------------------------|--------------------------|-------------------------------------|---------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------|
| Factor                                    | Insignificant/<br>Little | Low/Some                            | Moderate/<br>Noticeable                           | High/<br>Large                                           | Catastrophic                                               |
|                                           | 1                        | 2                                   | 3                                                 | 4                                                        | 5                                                          |
| Asset<br>Valuation/<br>Economic<br>Impact | < \$50M                  | \$50M-\$100M                        | \$100M-\$500M                                     | \$500M-\$2.2B                                            | > \$2.2B                                                   |
| Legal<br>Compliance                       | In Compliance            | Agrees to<br>Compliance<br>Schedule | Adopts<br>Corrective<br>Action                    | Expects to<br>Comply Within 1<br>Year                    | No Viable Plan to Comply                                   |
| Public<br>Expectations                    | Minor<br>complaints      | Unplanned<br>Disruption <<br>1 Day  | Multiple<br>Unplanned<br>Disruptions 1-<br>4 Days | Large Number<br>of Unplanned<br>Disruptions 5-29<br>Days | Unplanned Disruption to Essential<br>Services<br>> 30 Days |
| Safety                                    | None                     | Minor                               | Serious                                           | Single Fatality                                          | Multiple Fatalities                                        |
| Reputation                                | None                     | Some Minor<br>Issues                | Regional<br>Issues                                | Larger System<br>Issues                                  | System Highly Impacted                                     |
| Environmental<br>Damage                   | Short-Term               | Limited                             | Major                                             | Heavy                                                    | Permanent                                                  |
| Table 44 - Risk In                        | npact Ratings            |                                     |                                                   | Transportation A                                         | Asset Management Plan (TAMP)   ODOT                        |

|         |                      |              | Risk Likeli     | hood Ratings    | and Levels    |                       |
|---------|----------------------|--------------|-----------------|-----------------|---------------|-----------------------|
|         |                      | Rare<br>(1)  | Unlikely<br>(2) | Moderate<br>(3) | Likely<br>(4) | Almost<br>Certain (5) |
|         | Catastrophic<br>(5)  | Low          | Medium          | High            | Extreme       | Extreme               |
| Ratings | High<br>(4)          | Low Medium   |                 | High            | High          | Extreme               |
| act Rat | Moderate<br>(3)      | Low          | Low             | Medium          | High          | High                  |
| Impact  | Low<br>(2)           | Very Low Low |                 | Low             | Medium        | Medium                |
|         | Insignificant<br>(1) | Very Low     | Very Low        | Low             | Low           | Low                   |

Table 45 - Risk Likelihood Ratings and Levels

The highest priority risks are addressed using one of the following strategies:

| Strategy                   | Description                                                                                                                                                                                                                     |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Terminating                | Eliminating the threat posed by an adverse risk or avoiding the risk by clarifying requirements, obtaining information, improving communications, or acquiring expertise.                                                       |
| Transferring               | Shifting the negative impact of a threat, along with the ownership of the response, to a third party (e.g., insurance or transfer responsibility to a private or other public entity). This action does not eliminate the risk. |
| Treating                   | Reducing the probability and/or impact of an adverse risk event to an acceptable threshold.                                                                                                                                     |
| Tolerating                 | Retaining the risk, which may indicate a decision to accept a risk or an inability to identify any other suitable response strategy.                                                                                            |
| Take Advantage             | Benefitting from an opportunity (e.g., new external funding) that helps attain strategic goals. 116                                                                                                                             |
| Table 46 - Risk Strategies |                                                                                                                                                                                                                                 |

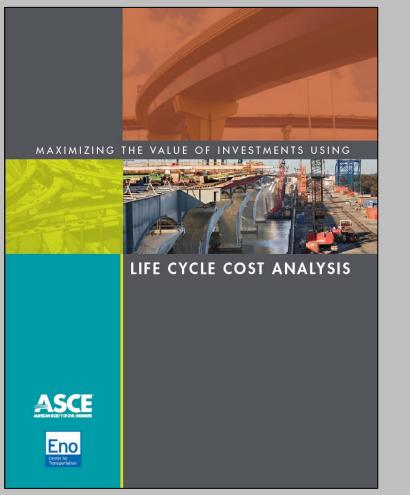
December 2022





Ohio's risk-based asset management plan for the National Highway System to improve or preserve the conditions of the assets and performance of the system pursuant to 23 U.S.C 119(e)(1)


Transportation Asset Management Plan (TAMP) | Ohio Department of Transportation


### Bridge & Conduit Work Activities - Funding Investment Categories

| Category                         | Definition/Detail                                                                                                                                                                                                                                           |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bridge/Conduit Maintenance       | OTC Bridge Maintenance is Operating Expenses spent on Bridges and Maintenance Misc. CIP.                                                                                                                                                                    |
| Preservation                     | OTC Bridge Preservation is Bridge Painting and Weatherproofing.                                                                                                                                                                                             |
| Bridge/Conduit<br>Rehabilitation | OTC Bridge Rehabilitation is 60 percent of Bridge Deck Replacements, Bridge<br>Deck Overlays, and Misc. Bridge Repairs.<br>The conduit allocation is as follows: 50 percent goes to maintenance and 50<br>percent goes to Rehabilitation of OpEx and Capex. |
| Reconstruction                   | OTC Bridge Reconstruction is 40 percent of Bridge Deck Replacements, Bridge Deck Overlays, and Misc. Bridge Repairs and accounts for replacement structures.                                                                                                |
| Table 55 - Bridge and Conduit Wo | rk Activities - Funding Investment Categories                                                                                                                                                                                                               |

## APPENDIX B: FEDERAL IMPROVEMENT REFERENCE TABLE

|                                              | TEDERAL IMI NOTEMENT REFERENCE IF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |
|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Federal<br>Improvement Code                  | Federal Improvement Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TAMP Category               |
| Bridge - New<br>Construction                 | Construction of a new bridge that does not replace or relocate an existing bridge.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | New Construction            |
| Bridge Replacement<br>- Added Capacity       | Total replacement of a structurally inadequate or functionally<br>obsolete bridge with a new structure constructed with<br>additional lanes in the same general traffic corridor to current<br>geometric construction standards. Incidental roadway<br>approach work is included. The use of this code requires the<br>reporting of the National Bridge Inventory (NBI) structure<br>number in the data field identified Bridge Numbers.                                                                                                                                                                                                        |                             |
| Bridge Replacement<br>- No Added<br>Capacity | Total replacement of a structurally inadequate or functionally<br>obsolete bridge with a new structure constructed without<br>additional lanes in the same general traffic to current<br>geometric construction standards. A bridge removed and not<br>replaced or replaced with a lesser facility is considered a<br>bridge replacement. Incidental roadway approach work is<br>included. Widening the lanes and/or shoulders of an existing<br>structure without adding through lanes. The use of this code<br>requires the reporting of the National Bridge Inventory (NBI)<br>structure number in the data field identified Bridge Numbers. | Reconstruction              |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             |
|                                              | Transportation Asset Management Plan (TAMP)   Ohio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Department of Transportatio |





Maximizing the Value of Investing using LCCA | ASCE

Life-Cycle Cost Analysis Primer



Life-Cycle Cost Analysis Primer | FHWA

#### Comparison of Software Packages for Life Cycle Cost and Benefit Analysis of Highway Projects

Yi Jiang<sup>1</sup>, Guangyuan Zhao<sup>2</sup>, and Shuo Li<sup>3</sup>

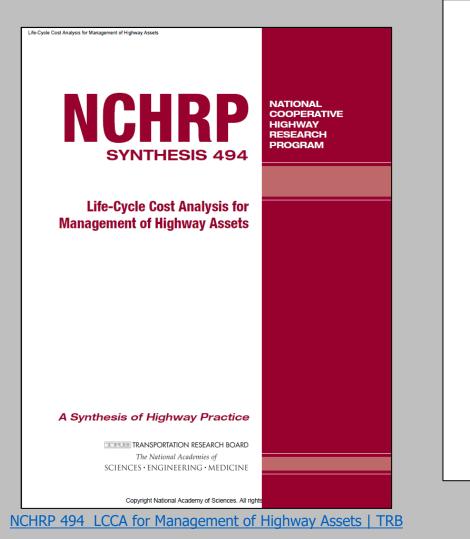
<sup>1</sup> Ph.D., P.E., Professor, Department of Building Construction Management, Purdue University, West Lafayette, Indiana 47907. Tel.: (765) 494-5602; E-mail: jiang2@purdue.edu

<sup>2</sup> Graduate Student, Department of Building Construction Management, Purdue University, West Lafayette, Indiana 47907. E-mail: <u>zhao179@purdue.edu</u>

<sup>3</sup> Ph.D., P.E. Research Engineer, Indiana Department of Transportation, Office of Research and Development, 1205 Monitogenery Street, West Lafayette, Indiana 47906. Tel.: (765) 463-1521. E-mail: <u>ili@indot.in.gov</u>

#### ABSTRACT

As part of the effort to develop an economic analysis methodology for evaluating highway projects, the commonly utilized software packages for highway life cycle cost analysis (LCCA) were examined and evaluated. The software packages include MicroBENCOST, California Life-Cycle Benefit/Cost Analysis Model (Cal-B/C), and the Redbook Wizard. Through this study, the methodologies applied by these packages were examined. The similarities and differences among the methodologies were identified and compared. Cost and benefit data from real highway projects were applied using the software packages to evaluate and compare the economic analysis results. It was found that even though the general frameworks of economic analyses are similar in these packages, there exist many differences in the specific processes and parameter values. This paper presents the results of the comparisons and evaluations. The evaluation procedures are illustrated. The similarities and differences of the methods are outlined. The impact of the differences on the results of highway economic analysis is discussed. It is believed that the results of this study will be helpful for highway engineers and planners to understand the capacities and limitations of the software packages.


#### INTRODUCTION

Economic analysis is a critical component of a comprehensive project or program evaluation methodology that considers all key quantitative and qualitative impacts of highway investments. It allows highway agencies to identify, quantify, and value the economic benefits and costs of highway projects and programs over a multiyear timeframe. With this information, highway agencies are better able to

85

Sustainable Transportation Systems

Comparison of Software Packages for Life Cycle Cost & Benefit Analysis of Highway Projects 120



U.S. Department of Commerce Technology Administration National Institute of Standards and Technology

Office of Applied Economics Building and Fire Research Laboratory ology Gaithersburg, MD 20899

**NIST GCR 03-853** 

### BridgeLCC 2.0 Users Manual

Life-Cycle Costing Software for the Preliminary Design of Bridges

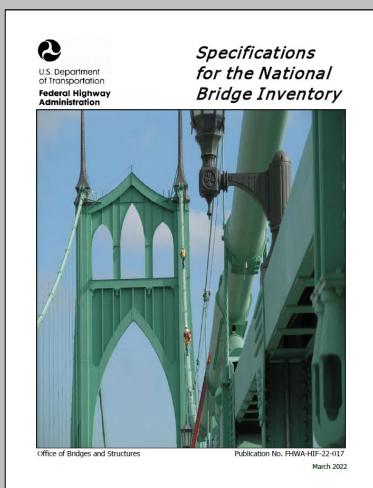
Mark A. Ehlen



BridgeLCC 2.0 Users Manual (nist.gov) BridgeLCC | NIST



Maintaining a Resilient Infrastructure to Preserve Mobility






FHWA Bridge Preservation Guide (dot.gov)

2

U.S. Department of Transportation Federal Highway Administration

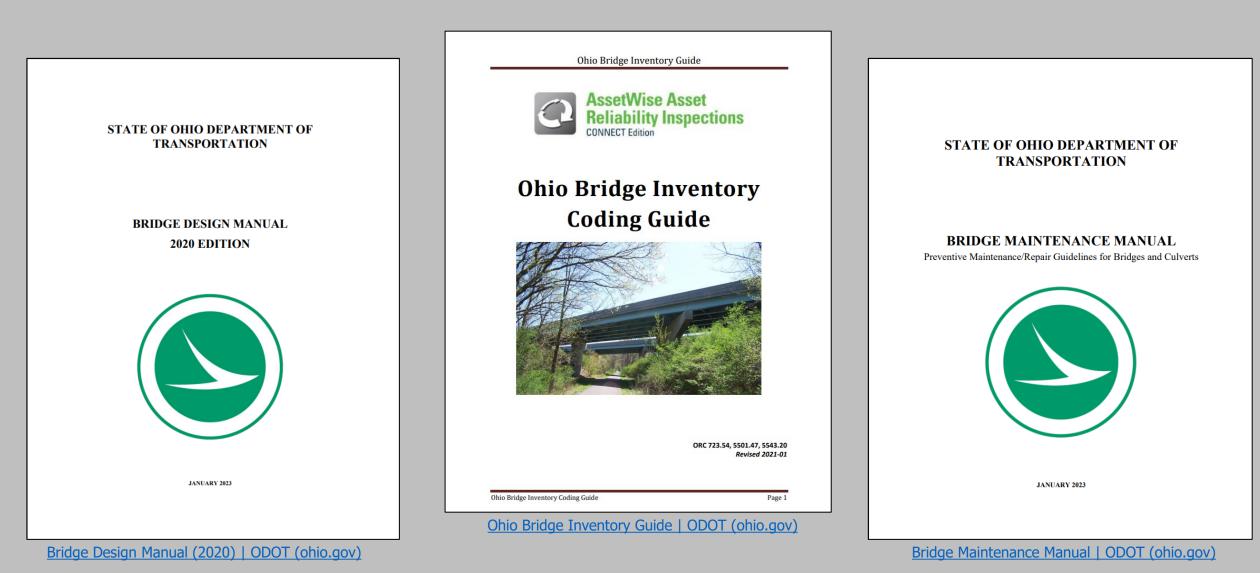


Specifications for the National Bridge Inventory (dot.gov)

FHWA Computation Procedure for the Bridge Condition Measures FHWA-HIF-18-023

U.S. Department of Transportation Federal Highway Administration Office of Infrastructure

April 2018

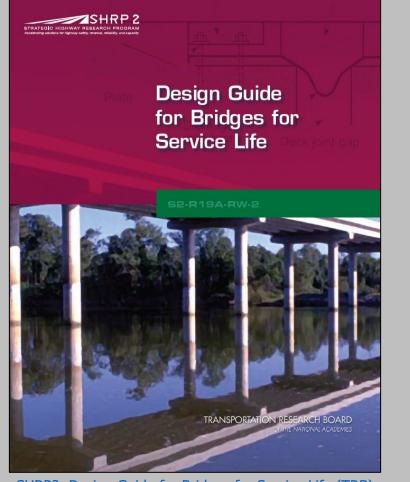

<u>FHWA Computation Procedure for the Bridge Condition</u> <u>Measures | FHWA (dot.gov)</u> Ohio Department of Transportation Manual of Bridge Inspection





ORC 5501.47 Published 1973 Revised 2014 with 2017 and 2021 Addendums References Highlighted

Manual of Bridge Inspection (2014) | ODOT (ohio.gov)



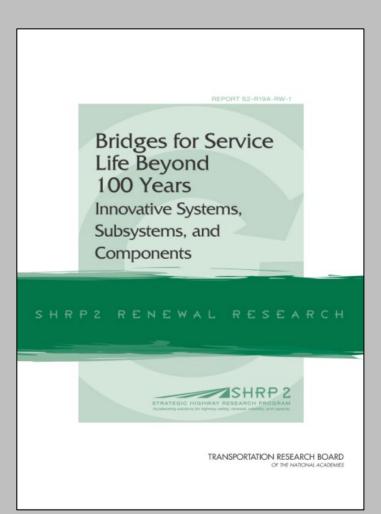



### Service Life Design for Bridges

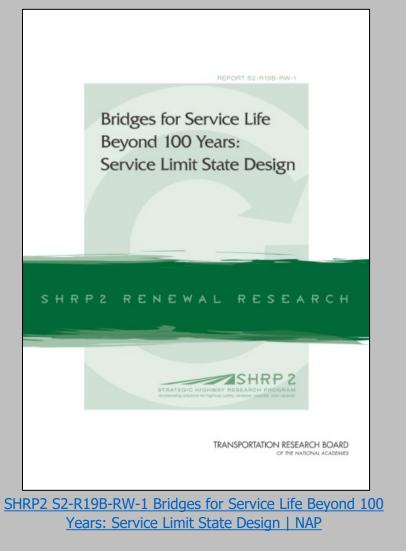
Summary Guide

April 29, 2019




SHRP2 Design Guide for Bridges for Service Life (TRB)




Service Life Design for Bridges (R19A) Academic Toolbox

May 9, 2018

SHRP2 R19A Service Life Design for Bridges, Academic Toolbox (transportation.org) 124



<u>SHRP2 S2-R19A-RW-1</u> -- Bridges for Service Life Beyond 100 Years - Innovative Systems, Subsystems, and Components | NAP



Service Life Design Reference Guide





Source: Modjeski and Masters

ん

U.S. Department of Transportation

Federal Highway Administration

Sponsored by Federal Highway Administration Office of Bridges and Structures FHWA-HIF-22-052

Service Life Design Reference Guide (dot.gov)



Concrete Bridge Superstructure Elements (NAP)



SCAN TEAM REPORT NCHRP Project 20 68A, Scan 15-03

### Successful Preservation Practices For Steel Bridge Coatings

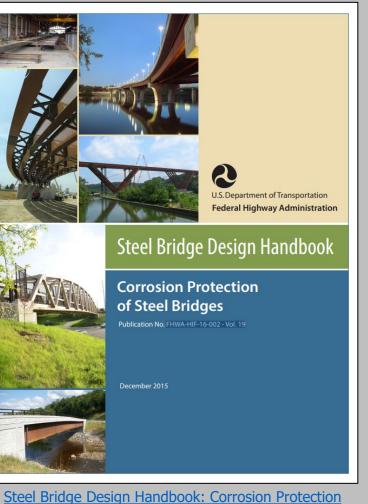
Supported by the National Cooperative Highway Research Program

The information contained in this report was prepared as part of NCHRP Project 20-68A U.S. Domestic Scan, National Cooperative Highway Research Program.

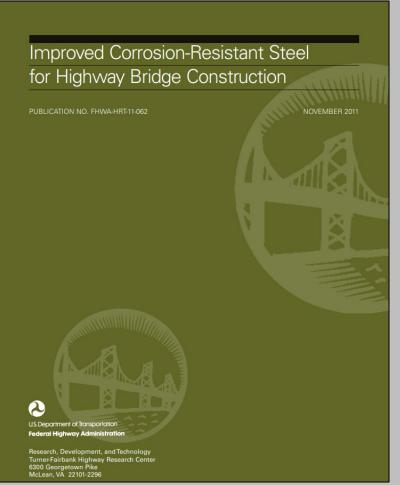
<u>SPECIAL NOTE</u>: This report <u>IS NOT</u> an official publication of the National Cooperative Highway Research Program, Transportation Research Board, or the National Academies of Sciences, Engineering, and Medicine.

NCHRP20-68A 15-03 Successful Preservation Practices for Steel Bridge Coatings (trb.org) 126

### Coating Performance on Existing Steel Bridge Superstructures


PUBLICATION NO. FHWA-HRT-20-065

SEPTEMBER 2020

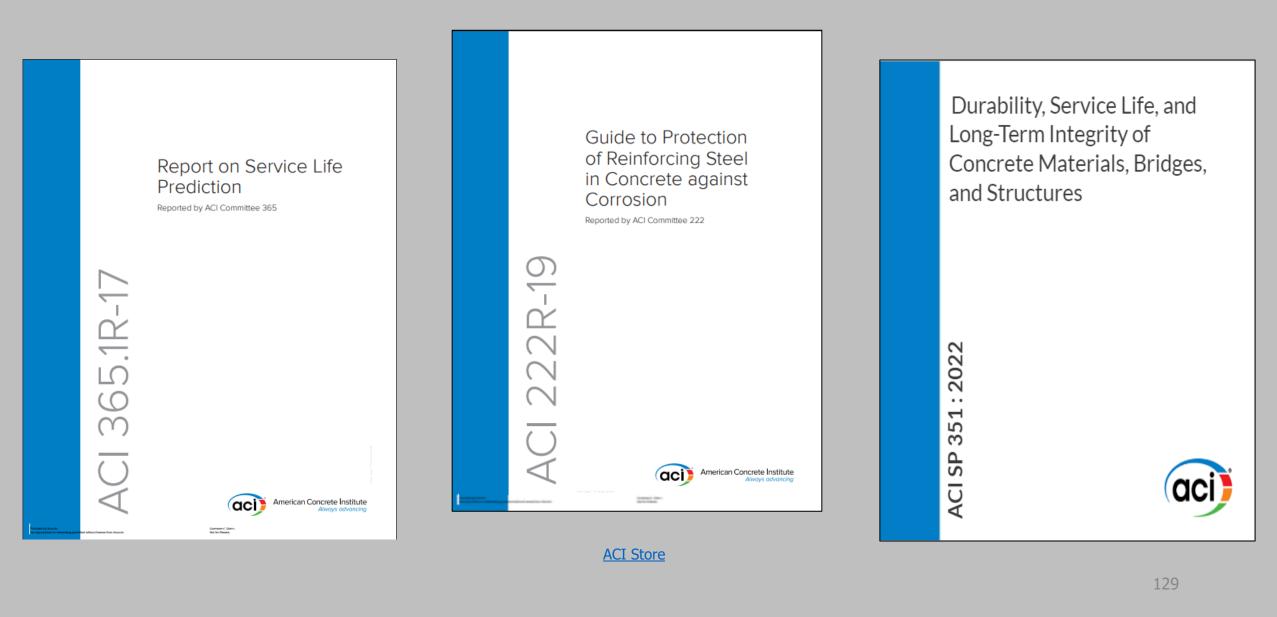

US Department of Transportation Federal Highway Administration

Research, Development, and Technology Turner-Fairbank Highway Research Center 6300 Georgetown Pike McLean, VA 22101-2296

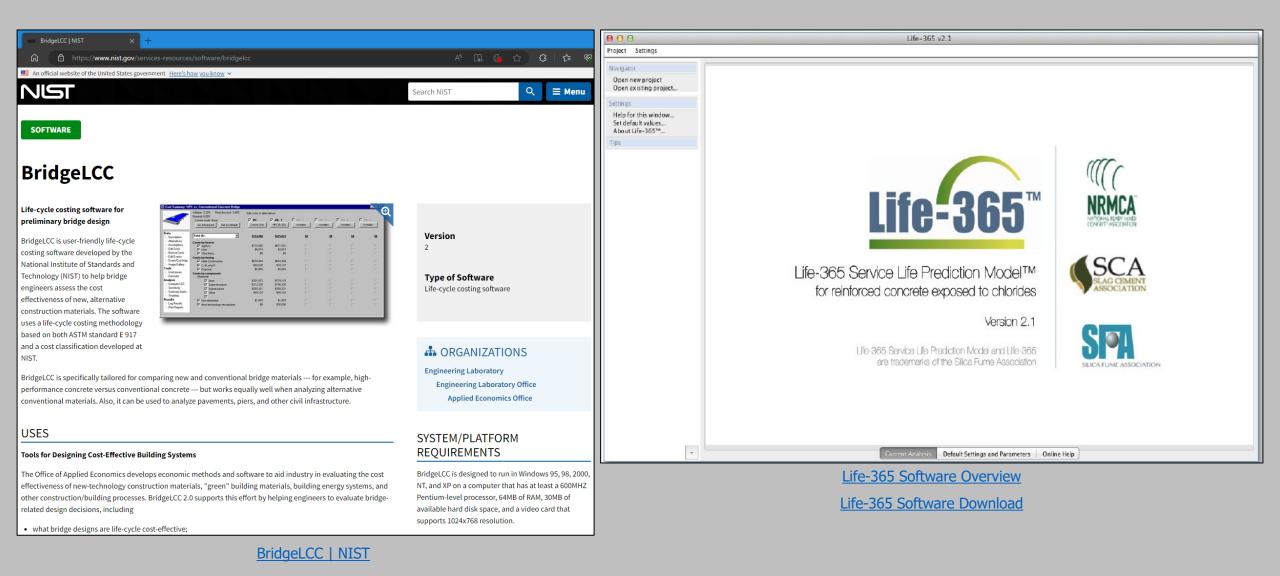
Coating Performance on Existing Steel Bridge Superstructures (bts.gov)

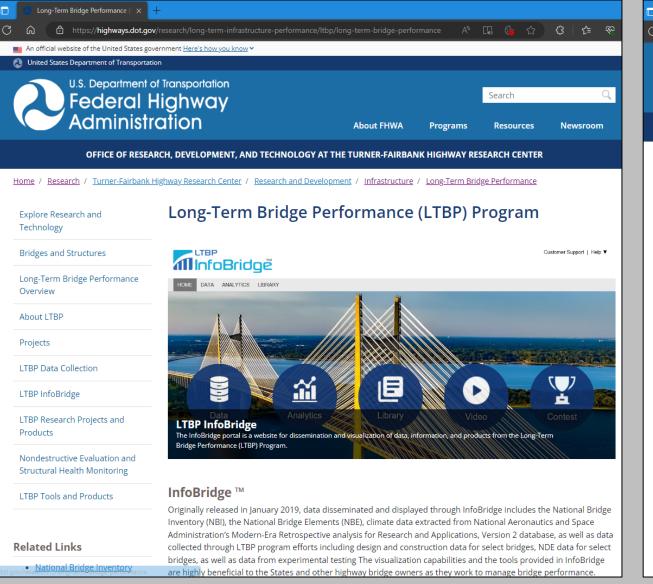


Steel Bridge Design Handbook: Corrosion Protection of Steel Bridges (bts.gov)

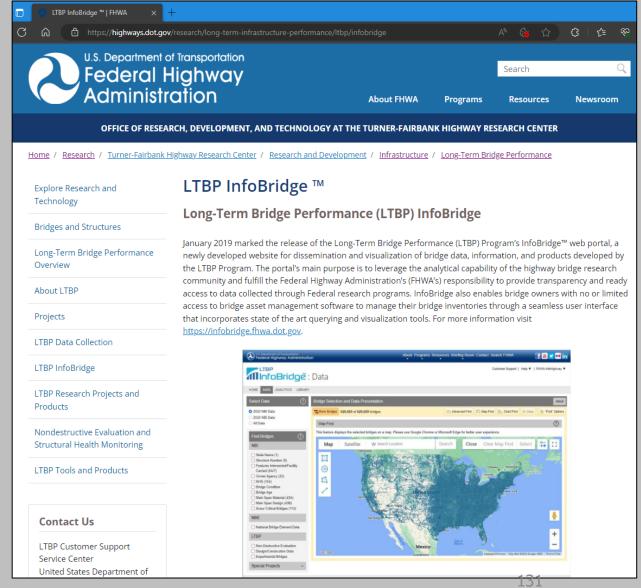



Improved Corrosion-Resistant Steel for Highway Bridges Construction (bts.gov)






# **Free Bridge LCCA Tools**



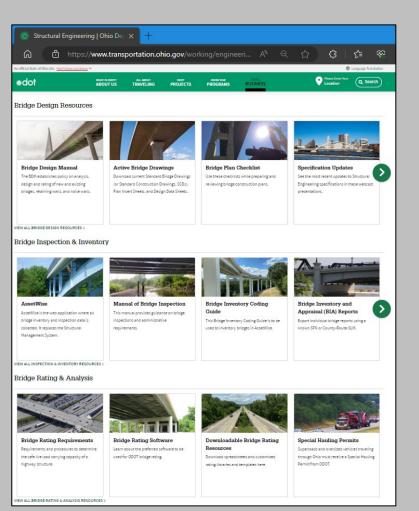


### Long-Term Bridge Performance (LTBP) Program | FHWA (dot.gov)

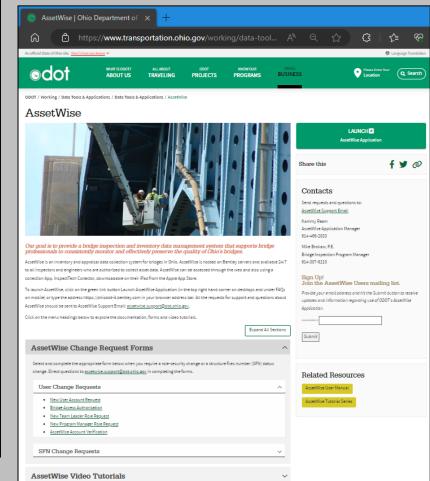


LTBP InfoBridge <sup>™</sup> | FHWA (dot.gov)

| 🚷 LTBP Tools and Products   FHWA 🗙                            | +                                                                                                                                  |                                       |                          |                        |                     |
|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------|------------------------|---------------------|
| https://highways.dot.go                                       | v/research/long-term-infrastructure-performa                                                                                       |                                       |                          | A 🗔 🏠                  | (3   ८≩ 🕫           |
| An official website of the United States go                   |                                                                                                                                    |                                       |                          |                        |                     |
| United States Department of Transporta                        |                                                                                                                                    |                                       |                          |                        |                     |
| U.S. Department                                               |                                                                                                                                    |                                       |                          | Search                 | C                   |
| Federal I<br>Administ                                         | ration                                                                                                                             | About FHWA                            | Programs                 | Resources              | Newsroom            |
| OFFICE OF RESE/                                               | ARCH, DEVELOPMENT, AND TECHNOLO                                                                                                    | OGY AT THE TURNER-FAIRBAN             | NK HIGHWAY RE            | SEARCH CENTER          |                     |
| <u>Iome</u> / <u>Research</u> / <u>Turner-Fairbank</u>        | Highway Research Center / Research and                                                                                             | Development / Infrastructure          | / Long-Term Brid         | <u>dge Performance</u> |                     |
| Explore Research and<br>Technology                            | LTBP Tools and P                                                                                                                   | roducts                               |                          |                        |                     |
| Bridges and Structures                                        | <ul> <li>Bridge Deterioration Models         <ul> <li>Bridge Components Con</li> <li>Bridge Network Perform</li> </ul> </li> </ul> |                                       |                          |                        |                     |
| Long-Term Bridge Performance<br>Overview                      | Bridge Performance Transition     Bridge Condition Transition Hi     Asset Valuation Tool                                          |                                       |                          |                        |                     |
| About LTBP                                                    | Historical Bridge Specification     LTBP Program Protocols                                                                         | <u>Changes</u>                        |                          |                        |                     |
| Projects                                                      | Duides Deterioustion B                                                                                                             | 1 a dala                              |                          |                        |                     |
| LTBP Data Collection                                          | Bridge Deterioration N                                                                                                             |                                       |                          |                        |                     |
| LTBP InfoBridge                                               | Bridge Components Cond<br>Bridge condition forecast models ar                                                                      |                                       |                          | data-driven bridg      | ge asset            |
| LTBP Research Projects and<br>Products                        | management program by optimizin<br>repairs, maintenance, or preservation                                                           |                                       | associated with          | bridge replaceme       | ent, rehabilitation |
| Nondestructive Evaluation and<br>Structural Health Monitoring | The LTBP Program developed three<br>models (Base Models, Survival Mode<br>LTBP InfoBridge release. The model<br>Inventory (NBI).   | els, and Machine Learning Mo          | dels) and implen         | nented them in th      | ne January 2020     |
| LTBP Tools and Products                                       | The three models represent three le compute the average time-in-condit                                                             | <u> </u>                              |                          | -                      |                     |
|                                                               | apply those to each bridge compone                                                                                                 | ent condition forecasting. <u>Sun</u> | <u>vival models</u> deri | ve condition ratin     | ng transition       |
| Contact Us                                                    | probabilities from survival-analysis of<br>ratings. <u>Machine-learning models</u> ar<br>approach.                                 |                                       |                          |                        |                     |
| TRP Customer Support                                          |                                                                                                                                    |                                       |                          |                        |                     |


| dge Inf                                                               |                                                                                                   |                                                                                 |                                                                     |                                                             |                                                                  |                                                               |                           |                                  |             |          |                           |                                 |                                         |                    |                           |               |                                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |                            |                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                                  |        |            |          |            |                        |         |            |                |             |        |
|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------|---------------------------|----------------------------------|-------------|----------|---------------------------|---------------------------------|-----------------------------------------|--------------------|---------------------------|---------------|-----------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------|--------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------|--------|------------|----------|------------|------------------------|---------|------------|----------------|-------------|--------|
| te Nam                                                                |                                                                                                   |                                                                                 |                                                                     |                                                             |                                                                  |                                                               |                           |                                  | Stru<br>065 |          | umber (l                  | 8):                             |                                         |                    |                           |               |                                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |                            |                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                                  |        |            |          |            |                        |         |            |                |             |        |
| 1.0043                                                                |                                                                                                   |                                                                                 |                                                                     |                                                             |                                                                  |                                                               |                           |                                  | 065         | 102      |                           |                                 |                                         |                    |                           |               |                                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |                            |                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                                  |        |            |          |            |                        |         |            |                |             |        |
| Data                                                                  |                                                                                                   | ition For                                                                       |                                                                     |                                                             |                                                                  |                                                               |                           |                                  |             |          |                           |                                 |                                         |                    |                           |               |                                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |                            |                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                                  |        |            |          |            |                        |         |            |                |             |        |
| Histor                                                                | cal cond                                                                                          | dillion ra                                                                      | tings a                                                             | re as re                                                    | ported u                                                         | under ea                                                      | ch NBI 1                  | ubmitta                          |             | spection | dates f                   | or these                        | ratings                                 | may lag            | a few ye                  | ars for s     |                                         | vidges. F                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |                            |                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                                  |        |            |          |            |                        |         |            |                |             |        |
| Forec                                                                 | ast mod                                                                                           | els wer                                                                         | e gener                                                             | rated us                                                    | sing NBI                                                         | data tha                                                      | t were s                  | ubmitte                          | d prior to  | 0 2022 1 | For som                   | e bridge                        | es with ci                              | omponer            | its condi                 | tion ratin    | igs thi                                 | st change                                | id in 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2, the ci            | ondition                   | forecas                        | t in 202                         | 3 may i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tot be a          | curate.                          | Models | vill be up | dated to | reflect th | he 2022                | NBI dat | ta in a fu | lure relea     | se of Infol | Bridge |
| Der                                                                   | * •                                                                                               | 0                                                                               | Superstr                                                            | ructure                                                     | 0 5                                                              | Substruc                                                      | ure                       |                                  |             |          |                           |                                 |                                         |                    |                           |               |                                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |                            |                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                                  |        |            |          |            |                        |         |            |                |             |        |
|                                                                       | n Forec                                                                                           | ast Gr                                                                          | aph                                                                 |                                                             |                                                                  |                                                               |                           |                                  |             |          |                           |                                 |                                         |                    |                           |               |                                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |                            |                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                                  |        |            |          |            |                        |         |            |                |             | (      |
| torical                                                               |                                                                                                   |                                                                                 |                                                                     |                                                             | Deck                                                             |                                                               |                           |                                  |             |          |                           |                                 |                                         |                    |                           |               | Se                                      | elect For                                | ecast M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Models               |                            |                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                                  |        |            |          |            |                        |         |            |                |             |        |
|                                                                       |                                                                                                   |                                                                                 |                                                                     |                                                             |                                                                  |                                                               |                           |                                  | per Boun    |          |                           |                                 |                                         |                    |                           |               | T.                                      | -Base N                                  | Andels (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (50-Ve               | ar Hori                    | 700)                           |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                 |                                  |        |            |          |            |                        |         |            |                |             |        |
| p Lea                                                                 | ming Mo                                                                                           | odels - C                                                                       | )eck                                                                |                                                             | 2 F                                                              | forecast !                                                    | Start Yea                 | Up                               | per Boun    | obd (    | Lower                     | Bound 2                         | ⊾ <b>⊠</b> M                            | ean 🛛              | Media                     | in o          |                                         | L                                        | Time i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | in Con               | dition I                   | Aodels                         |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                                  |        |            |          |            |                        |         |            |                |             |        |
| 9                                                                     |                                                                                                   |                                                                                 |                                                                     |                                                             |                                                                  |                                                               |                           |                                  |             |          |                           |                                 |                                         |                    |                           |               | 0                                       | Machin                                   | Deep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                            |                                | r Horiz                          | zon)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                                  |        |            |          |            |                        |         |            |                |             |        |
| 2                                                                     |                                                                                                   |                                                                                 |                                                                     |                                                             |                                                                  |                                                               |                           |                                  |             |          |                           |                                 |                                         |                    |                           |               |                                         | Surviva                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |                            |                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                                  |        |            |          |            |                        |         |            |                |             |        |
|                                                                       | _                                                                                                 |                                                                                 |                                                                     |                                                             |                                                                  |                                                               |                           |                                  |             |          |                           |                                 |                                         |                    |                           |               |                                         |                                          | Propo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                            |                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                                  |        |            |          |            |                        |         |            |                |             |        |
| Condition Rating                                                      |                                                                                                   |                                                                                 |                                                                     |                                                             |                                                                  | -                                                             |                           |                                  |             |          |                           | Î                               | 0-0-                                    | 99                 | 0-0-1                     | 0-0-0         | -0-0                                    | 0-0-                                     | 0-0-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0-0-                 | 0-0-                       | 0-0-                           | 0-0-                             | 0-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0-0               | 0-0                              | 0-0-   | 0-0-       |          |            | -0-                    |         |            | -0-0           |             |        |
| C                                                                     |                                                                                                   |                                                                                 |                                                                     |                                                             |                                                                  |                                                               |                           |                                  |             |          |                           |                                 |                                         |                    |                           |               |                                         | ••                                       | •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ••                   | •••                        | 1                              |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                                  |        |            |          |            |                        |         | 0-0-1      | -0-0           | -00         |        |
| ε.                                                                    |                                                                                                   |                                                                                 |                                                                     |                                                             |                                                                  |                                                               |                           |                                  |             |          |                           |                                 |                                         |                    |                           |               |                                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |                            |                                | ••                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                                  |        | •••        | 1        |            |                        |         |            |                |             |        |
| 4                                                                     |                                                                                                   |                                                                                 |                                                                     |                                                             |                                                                  |                                                               |                           |                                  |             |          |                           |                                 |                                         |                    |                           |               |                                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |                            |                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                                  |        |            |          |            |                        |         |            |                |             |        |
|                                                                       |                                                                                                   | 2                                                                               | 50                                                                  | 4                                                           | 2                                                                | -                                                             | 3                         | 5                                | 2017        | 2019     | 1                         | 3                               | 5                                       | 2                  | 8                         | -             | 2                                       | 5035 Yea                                 | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                    | -                          | 2                              | 50                               | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                 | 1                                | 2      | 52         | 1        | 0          | 1                      | 2       | 52         | 1              | .0          |        |
|                                                                       | 2001                                                                                              | 2003                                                                            | 20                                                                  | 20                                                          | 20                                                               | 20                                                            | 20                        | 20                               | 20          | 20       | 2021                      | 2023                            | 2025                                    | 2027               | 2029                      | 2031          | 2033                                    | 20                                       | 2037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2039                 | 2041                       | 2043                           | 2045                             | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20                | 20                               | 20     | 20         | 20       | 20         | 20                     | 20      | 20         | 20             | 20.         |        |
|                                                                       | Valuat<br>By: ®                                                                                   |                                                                                 | _                                                                   | -                                                           | nterstate                                                        | e Bridge                                                      | n C                       | NHS I                            | Bridges     | (Includ  | ies Inter                 | state)                          | ON                                      | on-NHS             | Bridge                    |               |                                         | Tea                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |                            |                                | _                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                                  | _      |            |          |            |                        |         |            |                |             | Ab     |
| roup I<br>stal E                                                      | by: ®<br>ridge (                                                                                  | All Br                                                                          | idges<br>for All                                                    | O la<br>I Bridg                                             | yes: 61                                                          |                                                               |                           |                                  |             | (Includ  | ies inter                 | state)                          | O N                                     | on-NHS             | Bridge                    | 5             |                                         | Tea                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |                            |                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                                  |        |            |          |            |                        |         |            |                |             | Ab     |
| roup I<br>otal E<br>otal C<br>otal F                                  | By: ®<br>ridge (<br>leck Ar<br>leplace                                                            | All Bri<br>Count<br>rea for<br>ement                                            | idges<br>for All<br>All Br<br>Value                                 | O li<br>I Bridg<br>ridges<br>ridges                         | pes: 61<br>(sq. ft.<br>Il Bridg                                  | 9,588<br>.): 4,29<br>pes (\$):                                | 0,222,<br>833,3           | 930.5<br>10,193                  |             | (Includ  | ies Inter                 | state)                          | ON                                      | on-NHS             | Bridge                    |               |                                         | Tea                                      | 3/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                            |                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                                  |        |            |          |            |                        |         |            |                |             | Abi    |
| roup I<br>otal E<br>otal C<br>otal F<br>otal E                        | By:  By: By: By: By: By: By: By: By: By: By:                                                      | All Bri<br>Count<br>rea for<br>ement<br>Value                                   | for All<br>r All Br<br>Value<br>e for A                             | O la<br>I Bridg<br>ridges<br>t for A<br>VI Brid             | pes: 61<br>(sq. ft.<br>Il Bridg                                  | 9,588<br>.): 4,29<br>pes (\$):<br>): 763,                     | 0,222,<br>833,3           | 930.5<br>10,193                  |             | (Includ  | ies inter                 | state)                          | O N                                     | on-NHS             | Bridge                    | 5             |                                         | Tea                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |                            |                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                                  |        |            |          |            |                        |         |            |                |             | Abs    |
| roup I<br>otal E<br>otal E<br>otal E<br>emai                          | By:  By: By: By: By: By: By: By: By: By: By:                                                      | All Bri<br>Count<br>rea for<br>ement<br>Value                                   | for All<br>r All Br<br>Value<br>e for A                             | O la<br>I Bridg<br>ridges<br>t for A<br>VI Brid             | jes: 61<br>(sq. ft.<br>Il Bridg<br>Iges (\$                      | 9,588<br>.): 4,29<br>pes (\$):<br>): 763,                     | 0,222,<br>833,3           | 930.5<br>10,193                  |             | (Includ  | ies Inter                 | state)                          | O N                                     | on-NHS             | Bridge                    | 5             |                                         | Tea                                      | u<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                            |                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                                  |        |            |          |            |                        |         |            |                |             | Abo    |
| roup I<br>stal E<br>stal C<br>stal F<br>stal E<br>emai                | By:<br>ridge (<br>reck Ar<br>leplace<br>xisting<br>ning V                                         | All Bri<br>Count<br>rea foi<br>ement<br>Valui<br>alue fi                        | idges<br>for All<br>All Br<br>Value<br>e for A<br>or All E          | O II<br>I Bridg<br>ridges<br>t for A<br>VI Brid<br>Bridge   | ges: 61<br>. (sq. ft.<br>Il Bridg<br>Iges (\$)<br>is (%):        | 9,588<br>.): 4,29<br>pes (\$):<br>): 763,                     | 0,222,<br>833,3<br>489,10 | 930.5<br>10,193                  |             | (Includ  | ies Inter                 | state)                          | ON                                      | on-NHS             | Bridge                    |               |                                         | Tea                                      | J.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                            |                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                                  |        |            |          |            |                        |         |            |                |             | Abs    |
| roup I<br>stal E<br>stal C<br>stal F<br>stal E<br>emai                | By:<br>ridge (<br>reck Ar<br>leplace<br>xisting<br>ning V                                         | All Bri<br>Count<br>rea foi<br>ement<br>Valui<br>alue fi                        | idges<br>for All<br>All Br<br>Value<br>e for A<br>or All E          | O II<br>I Bridg<br>ridges<br>t for A<br>VI Brid<br>Bridge   | ges: 61<br>. (sq. ft.<br>Il Bridg<br>Iges (\$)<br>is (%):        | 9,588<br>.): 4,29<br>ges (\$):<br>): 763,<br>91.6             | 0,222,<br>833,3<br>489,10 | 930.5<br>10,193                  |             |          | ies inter                 | state)                          | ON                                      | on NHS             | Bridge                    | •             |                                         | Tea                                      | J.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                            |                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                                  |        |            |          |            |                        |         |            |                |             | Abs    |
| roup I<br>stal E<br>stal C<br>stal F<br>stal E<br>emai                | By:<br>ridge (<br>reck Ar<br>leplace<br>xisting<br>ning V                                         | All Bri<br>Count<br>rea foi<br>ement<br>Valui<br>alue fi                        | idges<br>for All<br>All Br<br>Value<br>e for A<br>or All E          | O II<br>I Bridg<br>ridges<br>t for A<br>VI Brid<br>Bridge   | ges: 61<br>. (sq. ft.<br>Il Bridg<br>Iges (\$)<br>is (%):        | 9,588<br>.): 4,29<br>ges (\$):<br>): 763,<br>91.6             | 0,222,<br>833,3<br>489,10 | 930.5<br>10,193                  |             |          | ios Inter                 | state)                          | ON                                      | an NHS             | Bridge                    | 3             |                                         | Tea                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |                            |                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>A</u>          |                                  |        |            |          |            |                        |         |            |                |             | Abo    |
| tal E<br>tal C<br>tal F<br>tal E<br>emai                              | By:<br>ridge (<br>reck Ar<br>leplace<br>xisting<br>ning V                                         | All Bri<br>Count<br>rea foi<br>ement<br>Valui<br>alue fi                        | idges<br>for All<br>All Br<br>Value<br>e for A<br>or All E          | O II<br>I Bridg<br>ridges<br>t for A<br>VI Brid<br>Bridge   | ges: 61<br>. (sq. ft.<br>Il Bridg<br>Iges (\$)<br>.s (%):        | 9,588<br>.): 4,29<br>ges (\$):<br>): 763,<br>91.6             | 0,222,<br>833,3<br>489,10 | 930.5<br>10,193                  |             |          | ies Inter                 | state)                          | 0 N                                     | un NHS             | Bridge                    |               |                                         | NO                                       | if                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                            |                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   | V7                               |        |            |          |            |                        |         |            |                |             | Abs    |
| tal E<br>tal C<br>tal F<br>tal E<br>emai                              | By:<br>ridge (<br>reck Ar<br>leplace<br>xisting<br>ning V                                         | All Bri<br>Count<br>rea foi<br>ement<br>Valui<br>alue fi                        | idges<br>for All<br>All Br<br>Value<br>e for A<br>or All E          | O II<br>I Bridg<br>ridges<br>t for A<br>VI Brid<br>Bridge   | ges: 61<br>. (sq. ft.<br>Il Bridg<br>Iges (\$)<br>.s (%):        | 9,588<br>.): 4,29<br>ges (\$):<br>): 763,<br>91.6             | 0,222,<br>833,3<br>489,10 | 930.5<br>10,193                  |             |          | ies inter                 | state)                          | ON                                      | un NHS             | Bridge                    |               |                                         | ND<br>SD<br>NE                           | If MMN IA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |                            |                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   | VT<br>NH<br>MA                   |        |            |          |            |                        |         |            |                |             | Abo    |
| roup I<br>stal E<br>stal C<br>stal F<br>stal E<br>emai                | By:<br>ridge (<br>reck Ar<br>leplace<br>xisting<br>ning V                                         | All Bri<br>Count<br>rea foi<br>ement<br>Valui<br>alue fi                        | idges<br>for All<br>All Br<br>Value<br>e for A<br>or All E          | O II<br>I Bridg<br>ridges<br>t for A<br>VI Brid<br>Bridge   | ges: 61<br>. (sq. ft.<br>Il Bridg<br>Iges (\$)<br>.s (%):        | 9,588<br>.): 4,29<br>ges (\$):<br>): 763,<br>91.6             | 0,222,<br>833,3<br>489,10 | 930.5<br>10,193                  |             |          | ies inter<br>0<br>25      | 1                               | 0                                       | un-NHS<br>R<br>R   | Bridger<br>10             |               |                                         | ND<br>50<br>NE<br>KS                     | AL MAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WI<br>NO             | (,<br>1, N                 | a<br>OH                        | PA<br>NV VA                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N C               | VT<br>NH<br>R<br>R               |        |            |          |            |                        |         |            |                |             | Abo    |
| tal E<br>tal C<br>tal F<br>tal E<br>emai                              | By:<br>ridge (<br>reck Ar<br>leplace<br>xisting<br>ning V                                         | All Bri<br>Count<br>rea foi<br>ement<br>Valui<br>alue fi                        | idges<br>for All<br>All Br<br>Value<br>e for A<br>or All E          | O II<br>I Bridg<br>ridges<br>t for A<br>VI Brid<br>Bridge   | ges: 61<br>. (sq. ft.<br>Il Bridg<br>Iges (\$)<br>is (%):        | 9,588<br>.): 4,29<br>ges (\$):<br>): 763,<br>91.6             | 0,222,<br>833,3<br>489,10 | 930.5<br>10,193                  |             |          | 0                         |                                 | <b>O</b> N                              | un-NHS<br>R<br>NV  | Bridge<br>10<br>UT<br>AZ  |               | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ND<br>SD<br>NE                           | I<br>Internet in the second secon | wi<br>MO             | T, R, IN<br>TIN            | OH KY                          | PA<br>NV<br>VA                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   | VT<br>NH<br>MA<br>Et<br>CT<br>NJ |        |            |          |            |                        |         |            |                |             | Abs    |
| tal E<br>tal C<br>tal F<br>tal E<br>emai                              | By:<br>ridge (<br>reck Ar<br>leplace<br>xisting<br>ning V                                         | All Bri<br>Count<br>rea foi<br>ement<br>Valui<br>alue fi                        | idges<br>for All<br>All Br<br>Value<br>e for A<br>or All E          | O II<br>I Bridg<br>ridges<br>t for A<br>VI Brid<br>Bridge   | ges: 61<br>. (sq. ft.<br>Il Bridg<br>Iges (\$)<br>is (%):        | 9,588<br>.): 4,29<br>ges (\$):<br>): 763,<br>91.6             | 0,222,<br>833,3<br>489,10 | 930.5<br>10,193                  |             |          | 0<br>25<br>50             | 5<br>6                          | • • •                                   | un-NHS<br>R<br>R   | Bridge<br>10<br>UT<br>AZ  |               |                                         | ND<br>50<br>NE                           | I<br>MN<br>IA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WI<br>MD             | C s<br>R IN<br>TN<br>MS AU | a on ky                        | PA<br>NV<br>VA<br>RC<br>SC       | NY CONTRACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   | CT<br>NJ<br>DE                   |        |            |          |            |                        |         |            |                |             | Abo    |
| tal E<br>tal C<br>tal F<br>tal E<br>emai                              | By:<br>ridge (<br>reck Ar<br>leplace<br>xisting<br>ning V                                         | All Bri<br>Count<br>rea foi<br>ement<br>Valui<br>alue fi                        | idges<br>for All<br>All Br<br>Value<br>e for A<br>or All E          | O II<br>I Bridg<br>ridges<br>t for A<br>VI Brid<br>Bridge   | ges: 61<br>. (sq. ft.<br>Il Bridg<br>Iges (\$)<br>is (%):        | 9,588<br>.): 4,29<br>ges (\$):<br>): 763,<br>91.6             | 0,222,<br>833,3<br>489,10 | 930.5<br>10,193                  |             |          | 0<br>25<br>50<br>75       | 5<br>6<br>5                     | <b>ON</b>                               | an-NHS<br>R<br>NV  | Bridge<br>10<br>UT<br>AZ  |               |                                         | ND<br>SD<br>NE<br>KS                     | IMN<br>IA<br>OX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | WI<br>NO<br>AR<br>LA | E IN<br>TN<br>MS AU        | a<br>OH<br>KY                  | PA<br>NV VA<br>NC<br>SC          | NY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | CT<br>NJ<br>DE<br>MD             |        |            |          |            |                        |         |            |                |             | Abe    |
| tal E<br>tal C<br>tal F<br>tal E<br>emai                              | By:<br>ridge (<br>reck Ar<br>leplace<br>xisting<br>ning V                                         | All Bri<br>Count<br>rea foi<br>ement<br>Valui<br>alue fi                        | idges<br>for All<br>All Br<br>Value<br>e for A<br>or All E          | O II<br>I Bridg<br>ridges<br>t for A<br>VI Brid<br>Bridge   | ges: 61<br>. (sq. ft.<br>Il Bridg<br>Iges (\$)<br>.s (%):        | 9,588<br>.): 4,29<br>ges (\$):<br>): 763,<br>91.6             | 0,222,<br>833,3<br>489,10 | 930.5<br>10,193                  |             |          | 0<br>25<br>50             | 5<br>6<br>5                     |                                         | an-AbHS<br>R<br>NV | Bridger<br>10<br>uT<br>AZ |               | ~                                       | ND<br>50<br>NE<br>83                     | MN<br>IA<br>OX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IN COM               | L IN<br>IN<br>IN<br>IN     | a<br>OH<br>Kr                  | NV VA<br>SC<br>RL                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   | CT<br>NJ<br>DE                   |        |            |          |            |                        |         |            |                |             | Abs    |
| tal E<br>tal C<br>tal F<br>tal E<br>emai                              | By:<br>ridge (<br>reck Ar<br>leplace<br>xisting<br>ning V                                         | All Bri<br>Count<br>rea foi<br>ement<br>Valui<br>alue fi                        | idges<br>for All<br>All Br<br>Value<br>e for A<br>or All E          | O II<br>I Bridg<br>ridges<br>t for A<br>VI Brid<br>Bridge   | ges: 61<br>. (sq. ft.<br>Il Bridg<br>Iges (\$)<br>.s (%):        | 9,588<br>.): 4,29<br>ges (\$):<br>): 763,<br>91.6             | 0,222,<br>833,3<br>489,10 | 930.5<br>10,193                  |             |          | 0<br>25<br>50<br>75       | 5<br>6<br>5                     | 0 N                                     | an-NHS<br>MA<br>AK | Bridge<br>UT<br>AZ        |               | 20                                      | ND<br>50<br>NE<br>85                     | MN<br>IA<br>IX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M<br>M<br>M<br>M     | C N<br>R N<br>MS AU        | OH KY                          | PA<br>NV<br>SC<br>FL             | The second |                   | CT<br>NJ<br>DE<br>MD             |        |            |          |            |                        |         |            |                |             | Abo    |
| oup I<br>Ital E<br>Ital C<br>Ital F<br>Ital E<br>Emai<br>ap<br>ect V  | By:                                                                                               | All Bri<br>Count<br>rea foi<br>ement<br>Valui<br>alue fi                        | idges<br>for All<br>All Br<br>Value<br>e for A<br>or All E          | O II<br>I Bridg<br>ridges<br>t for A<br>VI Brid<br>Bridge   | ges: 61<br>. (sq. ft.<br>Il Bridg<br>Iges (\$)<br>.s (%):        | 9,588<br>.): 4,29<br>ges (\$):<br>): 763,<br>91.6             | 0,222,<br>833,3<br>489,10 | 930.5<br>10,193                  |             |          | 0<br>25<br>50<br>75       | 5<br>6<br>5                     | 0 N                                     | an-NHS<br>a<br>NV  | Bridge<br>10<br>UT<br>AZ  |               | 2                                       | MD<br>SD<br>NE<br>83                     | MN<br>IA<br>X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WI<br>NO<br>AR<br>KA | R IN<br>IN<br>MS A         | CH KY                          | PA<br>NV<br>NC<br>SC<br>RL       | NY CAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   | CT<br>NJ<br>DE<br>MD             |        |            |          |            |                        |         |            |                | Export 1    |        |
| roup I<br>stal E<br>stal C<br>stal F<br>tal E<br>email<br>ap<br>ect V | By:                                                                                               | All Bri<br>Count<br>rea foi<br>ement<br>) Value<br>alue fi<br>alue fi<br>o Plot | idges<br>for All<br>All Be<br>Value<br>e for A<br>or All E<br>on Ma | O II<br>I Bridg<br>ridges<br>t for A<br>VI Brid<br>Bridge   | pes: 61<br>(sq. ft<br>II Bridg<br>Iges (\$<br>s (%)<br>Replace   | 9,588<br>.): 4,29<br>ges (\$):<br>): 763,<br>91.6             | 0,222,<br>833,3<br>889,10 | 930.5                            |             | •        | 0<br>25<br>50<br>75       | s<br>6<br>6<br>6<br>6           |                                         | on-NHS<br>R<br>NV  | T O                       | MT<br>WY<br>C |                                         | ND<br>50<br>NE<br>83<br>Value (3         | MN<br>M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WI<br>NO<br>AL<br>IN |                            | OH<br>KY<br>CA                 | PA<br>NV<br>NC<br>SC<br>FL       | NY Unit C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 94 (5)            | CT<br>NJ<br>DE<br>MD             |        | Edat       | ing Valu | e (3)      |                        |         | Rem        | لھ<br>فاتار ہے |             |        |
| Iroup I<br>otal E<br>otal C<br>otal E<br>Bernai<br>Iap<br>Iect V      | ay: e<br>ridge (A<br>leeplace<br>xisting<br>hing Vi<br>alue to<br>alue to<br>1 - Sta              | All Bri<br>Count<br>rea foi<br>ement<br>) Value<br>alue fi<br>alue fi<br>o Plot | idges<br>for All<br>All Be<br>Value<br>e for A<br>or All E<br>on Ma | O II Bridg<br>ridges<br>a for A AUI Brid<br>Bridge<br>np: 1 | pes: 61<br>(sq. ft<br>II Bridg<br>Iges (\$<br>s (%)<br>Replace   | 9,588<br>9,588<br>(5)): 4,28<br>(5)): 763,<br>91.6<br>(ment V | 0,222,<br>833,3<br>889,10 | 930.5<br>30,193<br>3,451         | 8,216       | Tota     | 0<br>25<br>50<br>75<br>10 | s<br>s<br>ccs<br>area (s        | (c) | MA<br>R<br>AV      | 2 U 0                     | MT<br>WY<br>C |                                         | ND<br>SD<br>NE<br>S3<br>T                | MN IA<br>IA<br>X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ×                    | 1                          | a<br>OH<br>KY<br>CA<br>Replace | PA<br>NV VA<br>SC<br>FL          | NY<br>Unit Cu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ME                | CT<br>NJ<br>DE<br>MD<br>DC       |        | Exist      |          |            |                        |         |            |                |             |        |
| Il Bric                                                               | ay: e ridge (<br>ridge (<br>reck Ar<br>xisting<br>ning Vi<br>alue to<br>alue to<br>1 - Sta<br>ama | All Bri<br>Count<br>rea foi<br>ement<br>) Value<br>alue fi<br>alue fi<br>o Plot | idges<br>for All<br>All Be<br>Value<br>e for A<br>or All E<br>on Ma | O II Bridg<br>ridges<br>a for A AUI Brid<br>Bridge<br>np: 1 | pes: 61<br>(sq. ft.<br>Il Bridg<br>Iges (\$<br>s (%):<br>Replace | 9,588<br>9,588<br>(5)): 4,28<br>(5)): 763,<br>91.6<br>(ment V | 0,222,<br>833,3<br>889,10 | 930.5<br>80,193<br>3,451<br>uunt | 3,216       | Tota     | 0<br>25<br>50<br>75<br>10 | s<br>s<br>cos<br>area (1<br>107 | (c t)                                   | WA<br>A<br>AX<br>X | 2 U 0                     | MT<br>WY<br>C | oc<br>Bitana                            | ND<br>SD<br>NE<br>83<br>Value (1<br>11,7 | MN IA<br>OX<br>DX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | x<br>626             | 1                          | A<br>OH<br>KY<br>CA<br>Replace | PA<br>NV<br>VA<br>NC<br>SC<br>FL | NY<br>Unit C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ME<br>1<br>1<br>1 | CT<br>NJ<br>DE<br>MD<br>DC       | -      | Exist      | 1        | 0.734.9    | ×<br>566 296<br>04 273 |         |            |                |             | fable  |

ŵ


HOME

TRAINING

CONTACTS



🖞 https://www.transportation.ohio.gov/working/engineeri... A 🔍 🖒 🚼 🏌 🖨 Language Tra Odot Location Q Search ABOUT US TRAVELING PROJECTS DOT / Working / Engineering / Structural Engineering / Inspection & Inventory Inspection & Inventory Standards, guidelines, snooper-access and training for bridge engineers and bridge inspectors to ensure safe and consistent management of bridges in Ohia. Structural Engineering View All Inspection & Inventory Resources ANNOUNCEMENTS BRIDGE DESIGN RESOURCES NSPECTION & INVENTORY AssetWise Manual of Bridge Bridge Inventory Coding Bridge Inventory and Inspection Guide Appraisal (BIA) Reports ssetWise is the web applicatio BRIDGE RATING & ANALYSIS where all bridge inventory and This Bridge Inventory Coding Guide This manual provides guidance on Export individual bridge reports inspection data is collected. It bridge inspections and is to be used to inventory bridges in using a known SFN or County-Routereplaces the Structural Managemen administrative requirements AssetWise SLM. System. OHIO LTAP Local Technical Local Technical Bridge Photos Buckeye Assets Snooper Requests for Non-ODOT Bridges Assistance Program Download photos of Ohio's state-Map based fittering of historic and owned bridges, collected by county restricted bridges. Fill out this form to request the LTAP supports local governments by for easy search and association. department's snooper truck next providing training and technical calendar year. assistance. Additionally, it coordinates eLearning and some prequalification trainings for other TIMS M tter Data, Better Dec Roadway Infrastructure Snooper Operations Transportation Maintenance Manual Information Mapping Procedures for conducting a bridge The PIMP is an all inclusive reference Access the most current asset data inspection with an ODOT snooper nd roadway information on Ohio's guide for any individual looking to maintain roadway infrastructure in truci transportation system via Ohio customizable maps on TIMS Bridge Inspection & Inventory | ODOT (ohio.gov)



AssetWise | ODOT (ohio.gov)

### Structural Engineering | ODOT (ohio.gov)



DOT / Know Our Programs / Statewide Planning & Research / Modeling & Forecasting / Performance Monitoring

Performance Monitoring

# Statewide

Planning & Research

SPR HOME

STATEWIDE TRANSPORTATION PLANNING

REGIONAL TRANSPORTATION PLANNING MARITIME & FREIGHT

MODELING &

FORECASTING pavement and bridges) are a required part of the HPMS submittal all state DOTs provide to FHWA each year, and also utilized for performance reporting required of some MPO RESEARCH agencies.

> In support of this, the modeling and forecasting section calculates the LOTTR and PHED statistics covering a full calendary ear for all roadway segments on the NHS statewide following procedures recommended by FHWA. The database functionality of the TransCad software program is utilized for this, as documented in the related resources of this page. Additionality, the section produces forecast volumes and capacities needed for the annual HPMS submittal as well as volume estimates on local roadways for use in safety analysis.

The federal government, as part of the "FAST Act" authorizing spending on surface

more efficiently meet national goals. One of the stated goals is improved system

transportation, directed the FHWA to establish national performance measures for many of

the goals established. This is intended to support improved investment decision making, to

performance and the easing of congestion, to be measured via an annual update of the Level

of Travel Time Reliability (LOTTR) and amount of Peak Hour Excessive Delay (PHED) for every

segment on the National Highway System (NHS) where travel time data exists. These

statistics (along with other data supporting performance goals for such things as safety,

### Performance Monitoring | ODOT (ohio.gov)

#### 🕥 🔲 🔕 Pages - Bid Histories

🗧 🖸 🙆 🖞 https://**www.dot.state.oh.us**/Divisions/ConstructionMgt/Estimating/Pages/... A 🍳 ★ 🕃 🎼 🌮

#### An Official Site of Ohio.gov

### **⊜dot**

#### ODOT / Working / Contracts / Estimating

#### **Bid Data**

#### Item Search

Search for ODOT items and cost history.
Refreshed regularly with the latest letting information.

#### **Bid Tabs**

fy

Share this

Contacts

Sam Granato

614-644-6796

Sam.Granato@dot.ohlo.gov

Related Resources

FHWA Guidance on Reliability an

Modeling and Forecasting Reliab

Overview of Modeling and Fore

Enterprise Volume and Capacity

Access Ohio 2045: System

Performance Report

Delay Calculation

Procedures

and Delay Procedures

Published <u>after</u> projects are awarded, typically within two weeks after a letting.
 <u>Only</u> published for awarded projects, <u>never</u> published for rejected projects.

#### Summary of Contracts Awarded

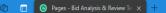
Compiled and published by the end of January of the following year.

#### Issues Opening Files

If you experience issues opening files, please try the following: 1. Hover your mouse cursor over the file you wish to view.

Click on the arrow to the right of the file.

3. Select 'Download a Copy' and note where the file is downloaded locally. You should now be able to open the file on your computer. Excel macros must be enabled for the files to function.


Туре

#### ■ Category : 1. Item Search (4)

Name

| Beategory | . I. Rein Search (4)           |  |
|-----------|--------------------------------|--|
| 2)        | Bid Data Item Search 2019-2023 |  |
| 2)        | Bid Data Item Search 2015-2019 |  |
| <b>(</b>  | Bid Data Item Search 2014-2018 |  |
| 2)        | Bid Data Item Search 2010-2013 |  |
| Category  | : 2. Bid Tabs (24)             |  |
| <b>E</b>  | Bids Summary 2015Q2-2022Q4     |  |
| N         | Bid Tabs 2023                  |  |
|           | Bid Tabs 2022                  |  |
|           |                                |  |
| 7         | Bid Tabs 2021                  |  |

Bid Histories | ODOT (ohio.gov)



 $\leftarrow$  C  $\widehat{\alpha}$  https://www.dot.state.oh.us/Divisions/ConstructionMgt/Estimating/Pages/... A  $\bigcirc$   $\bigcirc$   $\bigcirc$ 

#### An Official Site of Ohio.gov

Odot

ODOT / Working / Contracts / Estimating

### Business Intelligence | Economics & Data Analytics

If you experience issues opening files, please try the following: 1. Hover your mouse cursor over the file you wish to view. 2. Click on the arrow to the right of the file. 3. Select "Download a Copy" and note where the file is downloaded locally. You should now be able to open the file on your computer.

Type Name

#### ■ Category : Best Practices (1)

#### 2022-01, High Inflation Budget Estimating Best Practices

Category : Chained-Fisher Construction Cost Index (5)

- 2023 Q1, ODOT Chained-Fisher CCI
- 2023 Q1, ODOT Chained-Fisher CCI Summary
- 2023 Q1, ODOT Chained-Fisher CCI Comparison
- DODT Chained Fisher CCI-Guide to Understanding
- ODOT Chained Fisher CCI-In Depth Look

#### ■ Category : Forecasting (2)

- 2023-01, Construction Cost Forecast
- 2023-01, CY23-27 Business Plan Inflation Calculator

Category : Forecasting & Construction Cost Outlook Archive (27)

- 2022-07, Construction Cost Forecast
- 2022-01, Construction Cost Forecast
- 2021-07, Construction Cost Forecast
- 2021-01, Construction Cost Forecast
- 2020-07, Construction Cost Forecast
- 1 5 🔸

#### Bid Analysis & Review | ODOT (ohio.gov)

| 🛛 🛃 Bridge – FHWA InfoTechr                                 | nology $	imes$                  | +                                                                                                                                                                                                                                     |                |                                        |               |                   |                |                |                |             |          |
|-------------------------------------------------------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------|---------------|-------------------|----------------|----------------|----------------|-------------|----------|
|                                                             | os://infote                     | chnology.fhwa.dot.gov/bridge/                                                                                                                                                                                                         |                |                                        |               | A <sub>0</sub>    | Q ()           | · ☆            | <3 ∣           | £≡ %        | 2        |
| U.S. Department of Transporta<br>Federal Highway Adr        | <sup>ition</sup><br>ministratio | n                                                                                                                                                                                                                                     |                | About Programs Resour                  | ces Bri       | efing Room        | Contact Se     | arch FHWA      | <b>f</b> ⊻     | 🐻 👓         | in       |
| R InfoTechn                                                 | olog                            | <b>U</b>                                                                                                                                                                                                                              |                |                                        |               |                   | Customer Su    | port Help      |                |             | Go       |
| HOME LIBRARY                                                |                                 |                                                                                                                                                                                                                                       |                |                                        |               |                   |                |                |                |             |          |
| Find Technology                                             |                                 | Bridge Non-Destructive Evaluation Technolog                                                                                                                                                                                           | ies            |                                        |               |                   |                |                |                |             |          |
| Asset Type                                                  |                                 | Acoustic Emission (AE)                                                                                                                                                                                                                | $\rightarrow$  | Acoustic Tomography                    | $\rightarrow$ | Active            | Infrared The   | mography (I    | RT)            | -           | <b>→</b> |
| <ul> <li>Bridge</li> <li>Pavements</li> </ul>               |                                 | The Coring                                                                                                                                                                                                                            | $\rightarrow$  | Crack Propagation Gage (CPG)           | $\rightarrow$ | T Displac         | cement Gaug    | e (DG)         |                | -           | <b>→</b> |
|                                                             |                                 | 祌 Drilling                                                                                                                                                                                                                            | $\rightarrow$  | Dye Penetrant Testing (DPT)            | $\rightarrow$ | Eddy C            | Current Array  | Testing (EC    | A)             | -           | <b>→</b> |
| Material                                                    |                                 | Eddy Current Testing (ECT)                                                                                                                                                                                                            | $\rightarrow$  | Electrical Resistivity (ER)            | $\rightarrow$ | 拱 Galvar          | iostatic Pulse | Measureme      | ent (GPM)      | -           | <b>→</b> |
| <ul> <li>Concrete</li> <li>Steel</li> <li>Timber</li> </ul> |                                 | GPR (Delamination and Corrosion)                                                                                                                                                                                                      | $\rightarrow$  | GPR (Locating Reinforcement)           | $\rightarrow$ | GPR (             | Voids & Hone   | ycombing)      |                | -           | ÷        |
| Structural Element                                          | í                               | Ground Penetrating Radar                                                                                                                                                                                                              | $\rightarrow$  | Half-Cell Potential (HCP)              | $\rightarrow$ | 开 Hamm            | er Sounding    |                |                | -           | <i>→</i> |
| Target of Investigation                                     | í                               | Impact Echo (IE)                                                                                                                                                                                                                      | $\rightarrow$  | Infrared Thermography (IT)             | $\rightarrow$ | 🔫 Linear          | Polarization   | (LPR)          |                | -           | <b>→</b> |
| Applicable Technologies                                     | í                               | Magnetic Flux Leakage (MFL)                                                                                                                                                                                                           | $\rightarrow$  | Magnetic Particle Testing (MT)         | $\rightarrow$ | 🔫 Magne           | tometer (MM    | )              |                | -           | ÷        |
|                                                             |                                 | Moisture Content Measurement                                                                                                                                                                                                          | $\rightarrow$  | Phased Array Ultrasonic Testing (PAUT) | $\rightarrow$ | Probin            | g              |                |                | -           | <i>→</i> |
|                                                             |                                 | Radiography (RAD Tendons)                                                                                                                                                                                                             | $\rightarrow$  | Radiography (RAD Void)                 | $\rightarrow$ | resista           | ance Microdr   | lling          |                | -           | <b>→</b> |
|                                                             |                                 | Free Withdrawal Testing                                                                                                                                                                                                               | $\rightarrow$  | Sounding                               | $\rightarrow$ | T Stress          | Wave Timing    | I              |                | -           | <b>→</b> |
|                                                             |                                 | Transverse Vibration of Structural Systems                                                                                                                                                                                            | $\rightarrow$  | Ultrasonic Surface Waves (USW)         | $\rightarrow$ | Iltraso           | onic Testing ( | Flaw Detecti   | on)            | -           | <b>→</b> |
|                                                             |                                 | Ultrasonic Testing (Thickness Measurement)                                                                                                                                                                                            | $\rightarrow$  | Ultrasonic Tomography (UST)            | $\rightarrow$ | 🔫 Visual          | Inspection     |                |                | -           | <b>→</b> |
|                                                             |                                 |                                                                                                                                                                                                                                       |                |                                        |               |                   |                |                |                |             |          |
| US.Department of Transportation                             | <u>S Dot Home</u>               | Freedom of Information Act (FOIA)   Accessibility   Web Policies & N<br>USA.gov   WhiteHouse.gov<br>(Administration   1200 New Jersey Avenue   Washington, DC 20590<br>Highway Research Center   6300 Georgetown Pike   Mclean, VA 22 | )   202-366-40 |                                        | B             | <u>ridge – FH</u> | WA Info        | <u>echnolo</u> | <u>gy (dot</u> | <u>gov)</u> | ]13      |

5

# **Contact Info**

## **Robert Hinman**, P.E.

Pavement & Materials Engineer Federal Highway Administration, Ohio Division robert.hinman@dot.gov (614) 280-6837