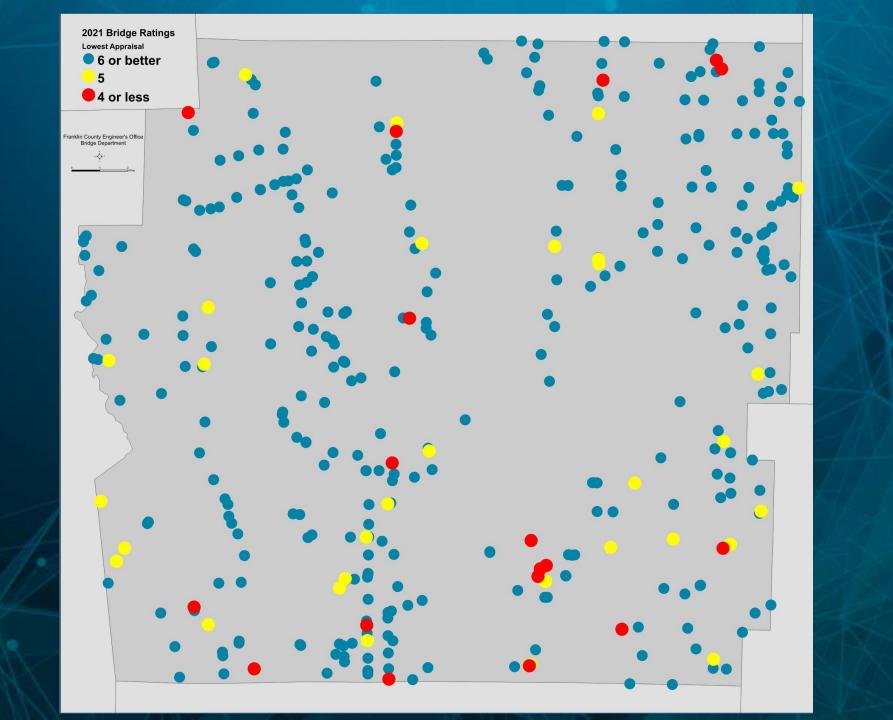

Association for Bridge Construction and Design Central Ohio Chapter www.abcdcoh.org


abcdcoh@gmail.com

Ed Herrick Franklin County Bridge Engineer

Jim Render Specification Products

Dan McCoy R.L. McCoy, Inc.

CORNELL R. ROBERTSON, P.E., P.S. FRANKLIN COUNTY ENGINEER

Franklin County Engineer Summary of 2021 Annual Bridge Inspection Report – February 2022 Presented to the Franklin County Board of Commissioners

In 2021, Franklin County had 374 bridges to inspect.

- 374 Bridges and culverts 10 feet and over in span were inspected 100%.
 - o (9 of the structures inspected are owned by railroads).
- 97.0% of the Franklin County Bridges (354 of the 365) were rated Fair or better.
- 71.2% of the Franklin County Bridges were rated Good, Very Good, or Excellent.
- 47 Franklin County Bridges are over 100 years old.
- 103 Franklin County Bridges are over 75 years old.
- **11** Franklin County Bridges are rated in **Poor** Condition.
- 30 Franklin County Bridges are rated in Fair Condition.
- No Franklin County Bridge is closed due to structural deficiencies.
- 2 Franklin County Bridges are posted with weight reduction limits.
- No Franklin County Bridge is listed as being in serious or critical condition.
- No Franklin County Bridge presents an immediate or potential danger to life or property.

ESCICION HAS BEGUN.

SP Specification Products

 Based in Noblesville Indiana Patented Technology Process as well as chemical Revolution - Industry Disruption Changing the Industry

Product Development

First Admixtures Developed by a Concrete Contractor for **Field Construction** Bleeding Crusting Shrinkage Curling

Field Certified Admixture

Most admixtures are laboratory tested Internal Cure was developed in the Field **Reduced Bleed Reduced Crusting Reduced Shrinkage Reduced Curling** Hardened the Surface

Research & Development

Luna Lu (luna@purdue.edu ACPA Professor Lyles School of Civil Engineering Director Center for Intelligent Infrastructure

How Did We Get Here?

Rebar Corrosion – Salt Intrusion Lower Permeability Lower W/C Ratios **Higher Cementitious Contents High Range Water Reducers** Addition of SCM All these made the concrete harder to finish **Increased Crack Potential**

Cement Industry Changes

Cement Fineness 1920's – Blaine Fineness - 300 Modern Type I Blaine Fineness – 400 New Type IL Blaine Fineness – 450+ Do our W/C Ratios provide enough water???

Field Reality

Concrete is starved for Water Lab-Crete vs Real-Crete Cylinders are cured in water Real Concrete in the field dries out Advent of More Powerful Microscopes **Autogenous Cracking Density and Permeability is Compromised** Almost no one cures concrete properly

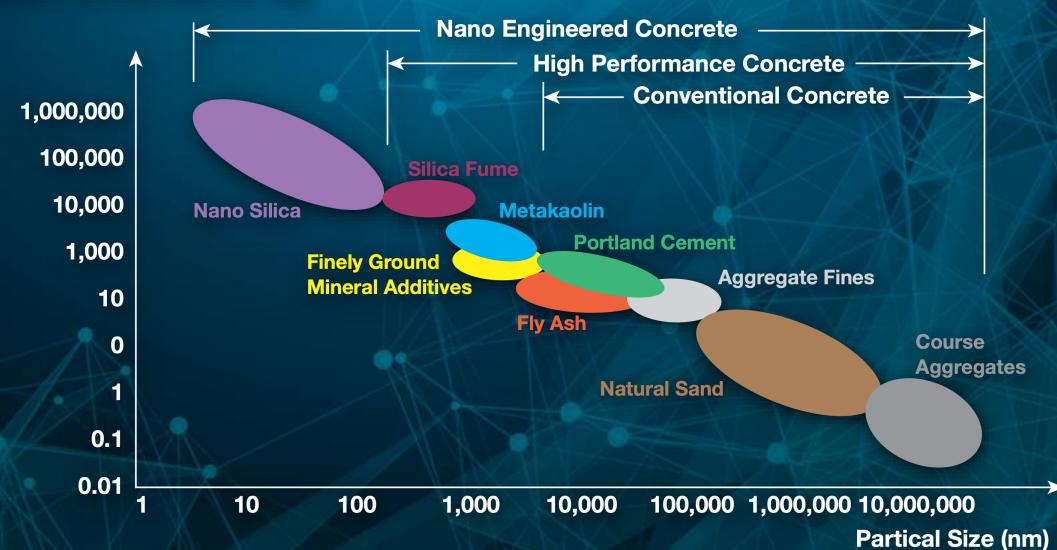
Nano Silica Science

• Liquid Admixture @ 4 oz/cwt • ASTM C 494 Type S Nano Particles of Silica Precisely Sized Must be added after the cement is wetted and thoroughly mixed • Typically with the flush water

Eliminate wet curing and curing compounds while improving the sustainability and finish of the concrete surface.

 Anionic Particles Physically Attracted to Water Bonds to the Water 30% More Water Retained Water of Transport Cures Curing starts Immediately • Reduces Slump Loss

Eliminate wet curing and curing compounds while improving the sustainability and finish of the concrete surface.



Surface Area

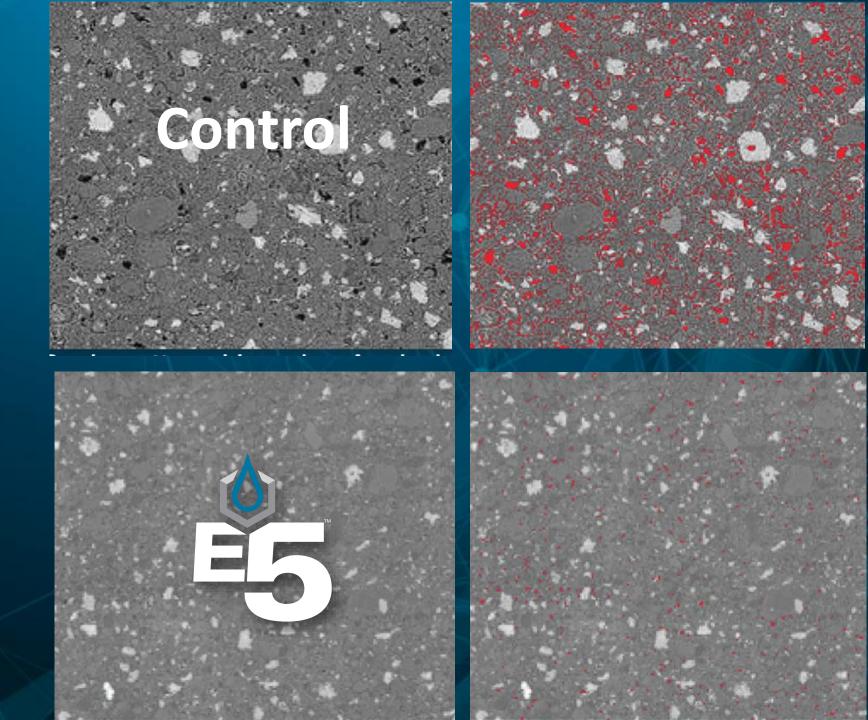
Specific Surface Area (m²/kg))

Specific Surface Area

MICROSPHERE

(Cement Grain)

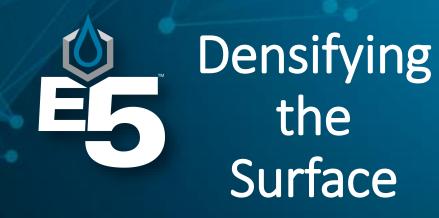
10,000nm


Nano Particles

NANOPARTICLE

(E5 Nano Silica)

For same volume, surface interaction is 1,000 times higher


Petrographic Proof Actually Cures Concrete Purdue has **Proven Internal Cure Retains** 30% more water

Ancillary Benefits

 Improves Pumpability, Placeability & Finishability Reduces Shrinkage Reduces Curling Reduces Segregation – Viscosity Modifying Properties Reduces Absorption • Hardens & Densifies the Surface Increases Abrasion Resistance

Silica Attaches to Water Water Carries Silica Up Densifies the concrete surface Petrographic Evidence 0.55 to 0.40!

Bridge Decks and Overlays

INDOT

INDOT Progress

- Commercial Success in Indiana Led to INDOT Interest
- Presented January 2020
- Test Bridge Deck Placed in June 2020
- Positive Results led to Wider Test
- 26 Decks placed in 2020
- Significantly less cracking & easier to place without water added to the surface

INDOT / Purdue Findings

Concrete with Normal DOT W/C Ratios (0.38 – 0.42) had Significant Autogenous Cracking associated with Un-Hydrated Cement Autogenous Cracking leads to an Increase in Permeability Raising the W/C Ratios to (0.44 – 0.47) with the Addition of E5 Internal Cure Significantly **Reduced Internal Cracking**

History of Internal Curing Concrete

Light Weight Aggregate uses the Reservoirs inside the fine aggregate to provide additional water for Hydration

Proven System for improving Internal Hydration and lowering permeability

It is a nightmare for Ready Mix Producers due to bin capacity & length of time to saturate fine LWA

Purdue has proved that Internal Cure admixture while using a different mechanism, accomplishes the same mission, Internal Curing

LWA still needs wet cure to hydrate the surface

Benefits

Eliminates Wet Cure

Starts the curing process from addition to the truck

Improves Slump Retention Improves Abrasion Resistance Improves Pumpability, Placeability & Finishability Reduces Shrinkage

Eliminate wet curing and curing compounds while improving the sustainability and finish of the concrete surface.

DELOUD FLYASH THE REVOLUTION HAS BEGUN.

www.SpecificationProducts.com

Shortage Concerns

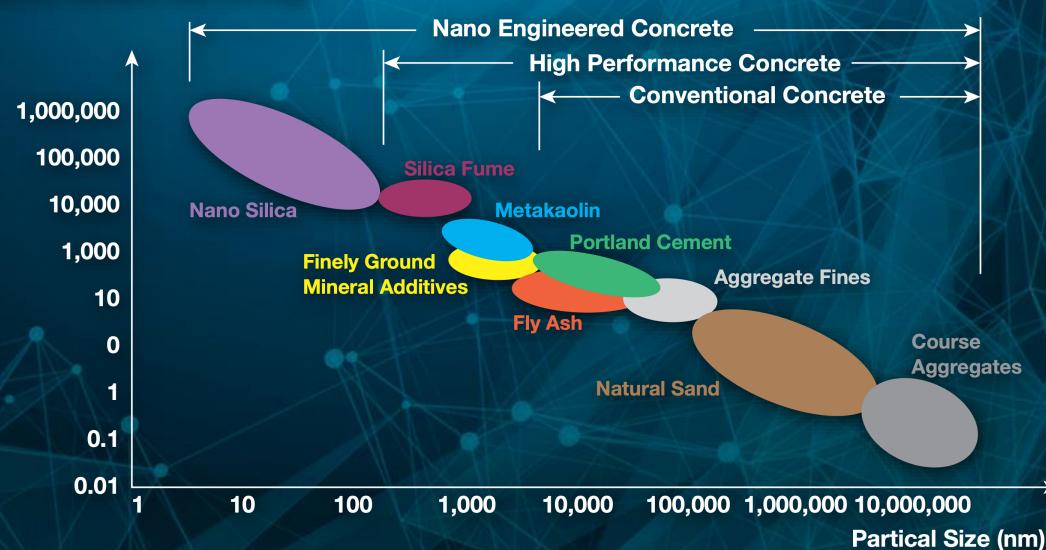
 Material Shortages loom on the horizon • Cement • Slag • Fly Ash • Lithium Nitrate • How will we cope with these?

Technical Data

Liquid Admixture @ 8 oz/cwt ASTM C 494 Type S **Nano Silica in Suspension** Wider Particle Band **Effective Pozzolanic Replacement MUST be added after cement is wetted And Thoroughly Mixed**

e]

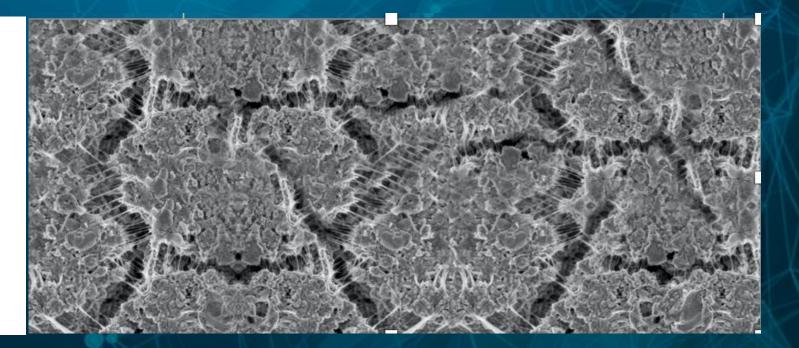
CS^{**} Technology optimized to replace a SCM like Fly Ash used in ready-mixed rete, providing a sustainable, evergreen industry solution.



Technolog

Surface Area

Specific Surface Area (m²/kg))

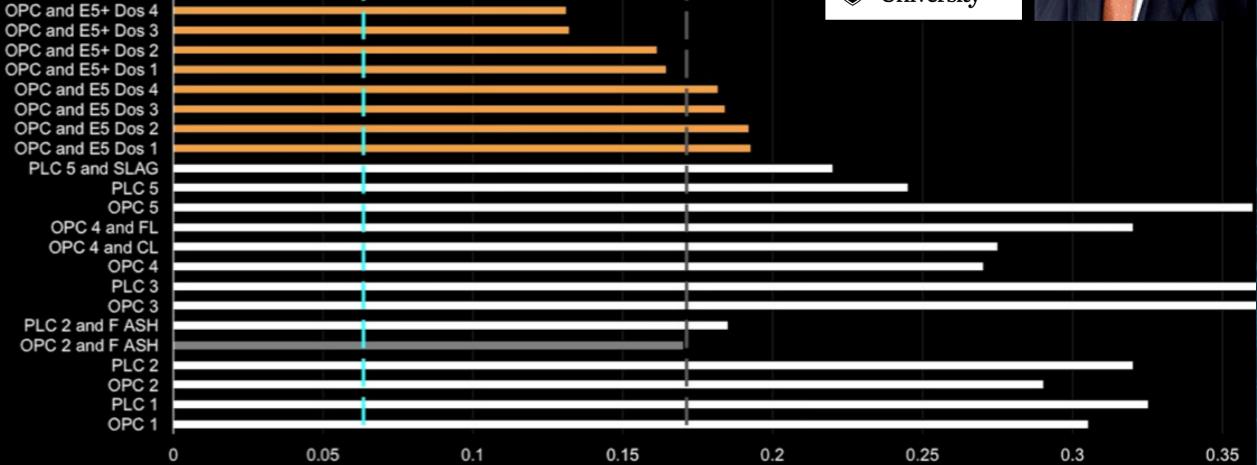


Pozzolanic Reaction

Cement + Water ------> C-S-H + CH

- C-S-H = Calcium Silicate Hydrate
- CH = Calcium Hydroxide

Reactive Silica + CH + Water → C-S-H



Nano Silica Consumes Calcium Hydroxide Particle to Particle Packing

Calcium Hydroxide Consumption

Dr. Jason Weiss

Field Results

Indiana Ready Mix Producer & Paver Implemented LFA Eliminated Class F Ash **Cementitious Replacement -12% Eliminated Air Issues Superior Finishability**

RCS™ Technology

Benefits

Consistent Product Ready Availability Carbon / Cement reduction No Effect on Air Reduces Bleed Water Reduces Shrinkage Consumes Calcium Hydroxide

e]

ICS[®] Technology optimized to replace a SCM like Fly Ash used in ready-mixed crete, providing a sustainable, evergreen industry solution.

Synergism

What if we use them both together?

INDOT Issues

Cracking Inspection – Water added to surface Wet Curing Issues All led to premature failures and remediation

Indiana Bridge Deck Comparison

Material	Reference	E5 Mix
Cement	658	580
Micro Silica	20	
E5 Liquid Fly Ash		8 oz/cwt
E5 Internal Cure		4 oz/cwt
W/C Ratio	0.42	0.47
Compressive Strength	6200	6600
Cement Efficiency	9.4	11.38
Flexural Strength	720	1140

78 Pounds Cement Reduction Eliminated Silica Fume

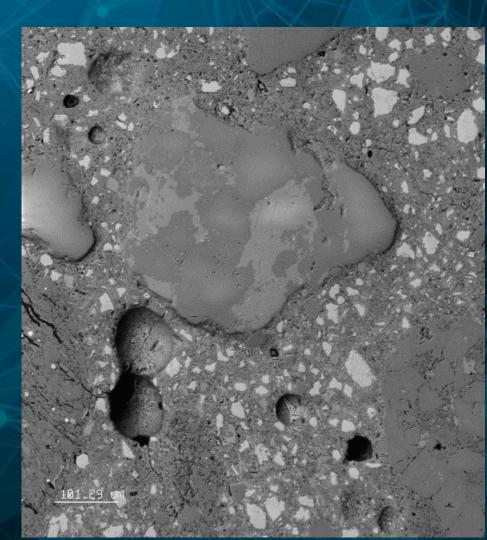
INDOT Progress

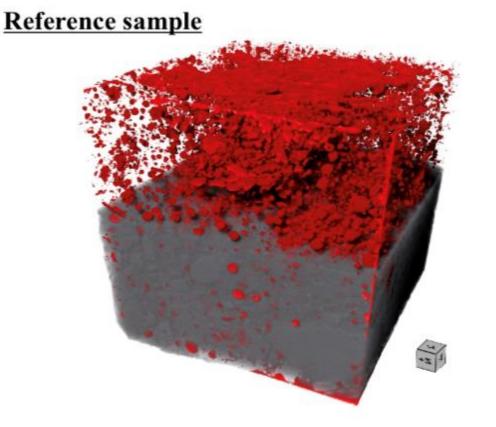
- E5 Internal Cure approved with a memo in 2021
 - Eliminating Wet Cure
- E5 Liquid Fly Ash Introduced to INDOT
- E5 LFA& E5 IC together test deck in early 2021
- Over 200 Bridge Decks placed to date with E5 IC
- 100 Bridge Decks placed with the combination
 - Lowered the cementitious content 98 #
- Both admixtures now on the approved list
- Multiple states now testing both materials for approval

Synergism

- Synergistic Strength gain from both admixtures
- Increase in Flexural Strength reduces crack potential
- Significant Carbon / Cementitious reduction
- Durability improvement due to more complete cementitious hydration and reduction in Autogenous shrinkage
- Improved Curing & Particle Packing reduces Permeability
- Hardens & Densifying the Surface
- Reduced Cracking

Paste Density & Aggregate Bond

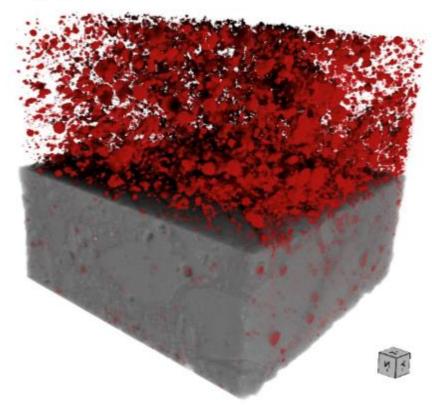

Control


Improved Paste **Density &** Concrete Ductility Combination enhances the bond **Reduces**

Microcracking

Combination

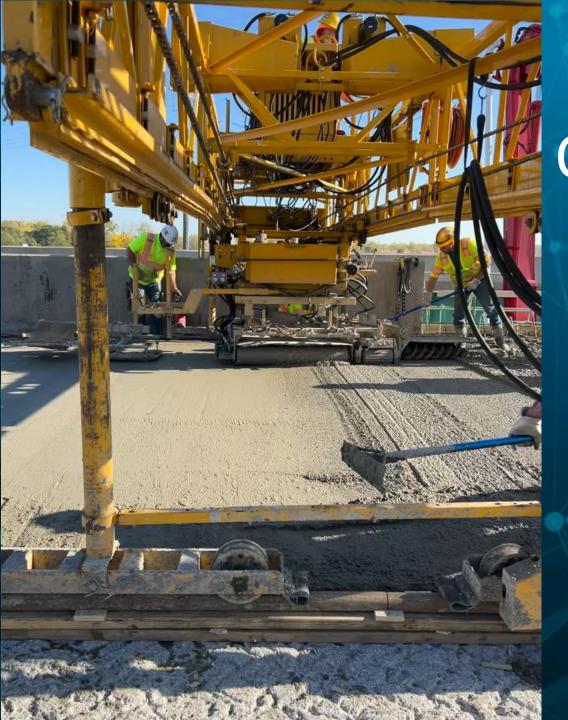
Micro-CT for Concrete w/c=0.42


Pore volume: 2,664 mm³

Sample Volume: 53,008 mm³

Porosity: 5.03 %

0.6%E5 sample



Pore volume: 1,822 mm³ Sample Volume: 53,462 mm³

Porosity: 3.4 %

huan1345@purdue.edu

10/2021 | Slide [7]

INDOT **Overlay Mix Evaporation** Rate 0.24 Reduced **Cracking!**

ODOT SDC Overlay Mix

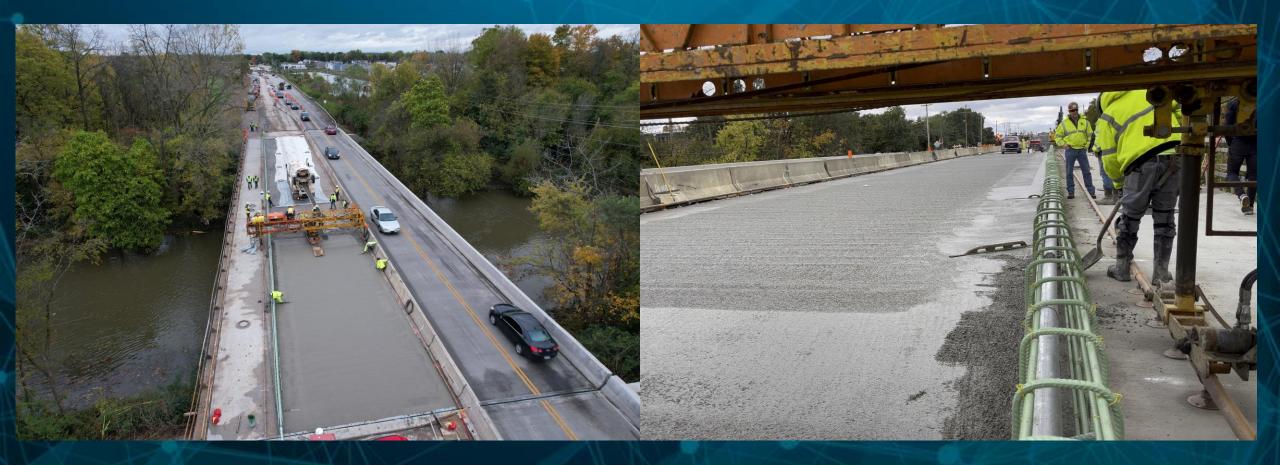
Current Mix Design

- Too Much Powder
- Not Enough Water
- No water of transport left for Internal Cure to work
- SP will not work with the current mix design
- We are currently testing a proposed change with multiple producers

Material	Current	Proposed	Reduction
Cement	825	650	175
Water	300	300	
W/C Ratio	0.36	0.46	
HRWR	48 oz	12 oz	
Strength	8000	5500	
E5 Internal Cure		26 oz	
E5 Liquid Fly Ash		52 oz	

INDOT Solutions

E5 Internal Cure in their standard mix designs **Easier Placement & Finishing** No Surface Water needed to close Same or Better Flexural Strengths Incorporated E5 LFA with Cementitious Reduction Similar Compressive Strengths **Better Flexural Strengths** Lower Permeability due to Particle Packing


Franklin County Results Ed Herrick

Refugee Rd Full Depth Placement

Refugee Road Overlay

OHIO DEPARTMENT OF TRANSPORTATION Mike DeWine, Governor Jack Marchbanks, Ph.D., Director

1980 W. Broad Street, Columbus, OH 43223 614-466-7170 transportation.ohio.gov

CONSTRUCTION MEMORANDUM

- 22-01 September 15th, 2022
- **TO: District Deputy Directors**
- District Construction Engineers, Area Engineers, Project Engineers
- **District Testing Engineers**
- Ohio Concrete
- FROM: Jordan Zamary, Concrete and Cement Engineer
- **Division of Construction Management**

ODOT Memo

E5 Internal Cure Now Allowed in their standard mix designs **Easier Placement & Finishing** No Water Added to the Surface Allowed Wet Cure Eliminated / White Pigmented Curing Compound E5 Liquid Fly Ash now Allowed with New JMF in Combination **RCPT** Test waived for these bridges Specification Products Representative MUST be on site until both the contractor & Ready Mix Producer are certified

Ed Conclusions

Ed Conclusions

Hurdles

Rapid Chloride Permeability Test SEM & Micro CT Scan Change in Mindset about Permeability is Required Change in Mindset about Strength Higher Strength does NOT Mean more Durable Concrete

The Future

Nano Silica is the future of the Concrete Industry More Durable More Ductile Ease of Placement and Finish Reduction of Cracking Carbon Reduction

SP Specification SP Products

www. SpecificationProducts.com

тм

Conventional Wisdom

Concentration on Compressive Strength Does Higher Strength mean more Durable? Does Higher Strength resist Surface Abrasion? Do Low W/C Ratios produce more Durable Concrete?