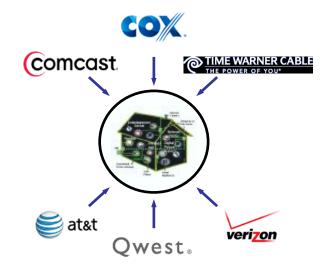


MoCA HOME NETWORK INSTALLATION AND MAINTENANCE

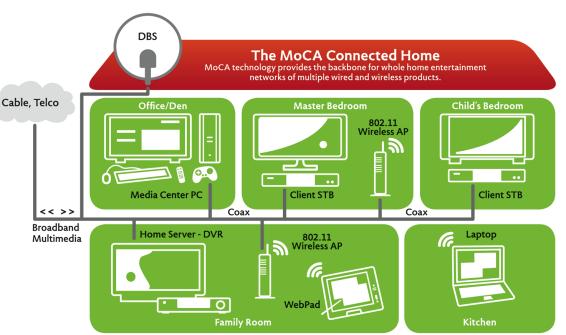
SCTE Greater Chicago Chapter Meeting December 2, 2010


Agenda

- The Networked Home
- MoCA Technical Overview
- MoCA Installation and Maintenance
- Q & A

The Networked Home: Competitive Landscape

- Competition between service providers is intense
 - MSOs have leveraged new technologies to add <u>voice</u> to existing video/data packages
 - Telcos have leveraged new technologies to add <u>video</u> to existing voice/data packages
 - MSO and Telco triple play services bundles are comparable
- MSOs and Telcos are seeking ways to increase competitiveness and drive additional revenues through <u>new</u> service offerings
- Quad-play, enhanced access architectures and advanced home entertainment networks will be the service provider's next significant opportunity to gain competitive advantage



	High- Speed Internet	Voice	Digital Video
AT&T	10.8%	-8.08%	46.60%
Verizon	14.88%	-8.32%	95.15%
Comcast	16.64%	84.05%	16.80%
TWC	12.90%	47.19%	9.70%

The Networked Home: Applications

- Video-On-Demand
- Multi-Room DVR Sharing
- Multi-Player Gaming
- Music, Photo and Home Video Sharing
- 3G/4G Cellular Wireless Integration - "3 Screens"
- Home Security and Automation
- Smart Grid Applications

Source: "MoCA: The Standard for Home Entertainment Over Coax™" Brochure http://www.mocalliance.org

New home networking technologies will be needed to support the new applications...

The Networked Home: Network Requirements

- Use existing home wiring plant
- Coexist with cable, telco and satellite services
- High capacity (100 Mb/s 1 Gb/s)
- Low latency, jitter and loss to support real-time applications
- Reliable
- Secure
- Ubiquitous...available throughout the entire home
- Allows communication between all connected home devices

The Networked Home: Network Technology Choices

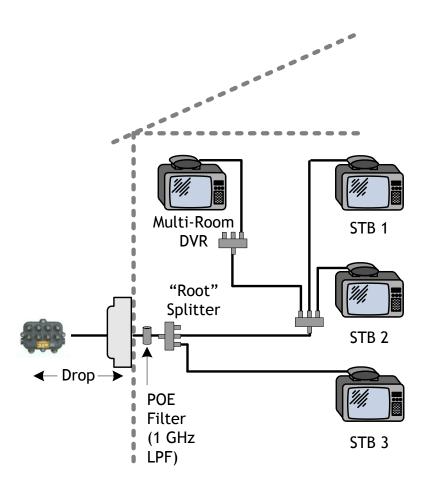
	Ethernet	802.11b/g	HPNA	HomePlug AV	802.11n	MoCA
Physical Media	Twisted Pair	Air	Twisted Pair / Coax	Electrical Wiring	Air	Coax
Maximum PHY Rate	1000 Mb/s	54 Mb/s	160 Mb/s (Twisted Pair) 320 Mb/s (Coax)	200 Mb/s	600 Mb/s	270 Mb/s
Spectrum		2.4 GHz	4 MHz - 28 MHz (Twisted Pair) 4 MHz - 52 MHz (Coax)	2MHz - 28MHz	2.4 GHz / 5.0 GHz	850 MHz - 1525 MHz
Range	300 ft	~150 ft	~4000 ft (Coax)	~500 ft	~200 ft	300 ft

What would be the most optimal choice for your organization?

The Networked Home: Why MoCA?

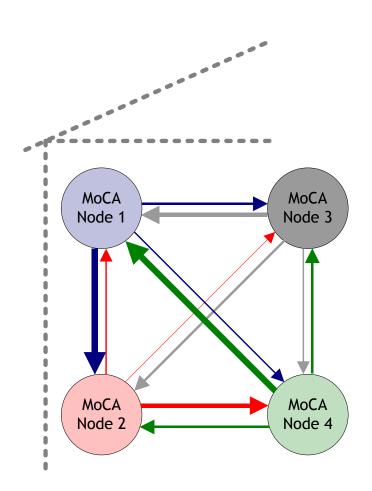
- Coaxial cabling is installed in the home network already
 - 90% North American homes
 - Outlets located near entertainment centers
- The coaxial network currently connects all of the video-enabled devices in the home
- MoCA occupies unused spectrum...adjacent to cable television system carriers
- Coaxial cabling is shielded with greater immunity to noise and interference (especially compared to wireless)
- MoCA offers performance suited for transporting multimedia content
 - Net Throughput = 135 Mb/s or 175 Mb/s
 - Low Packet Loss Rate (< 1e-5)
 - Low Latency (< 10 ms)
 - Low Jitter (< 1 ms)

MoCA: <u>Multimedia over Coax Alliance</u>

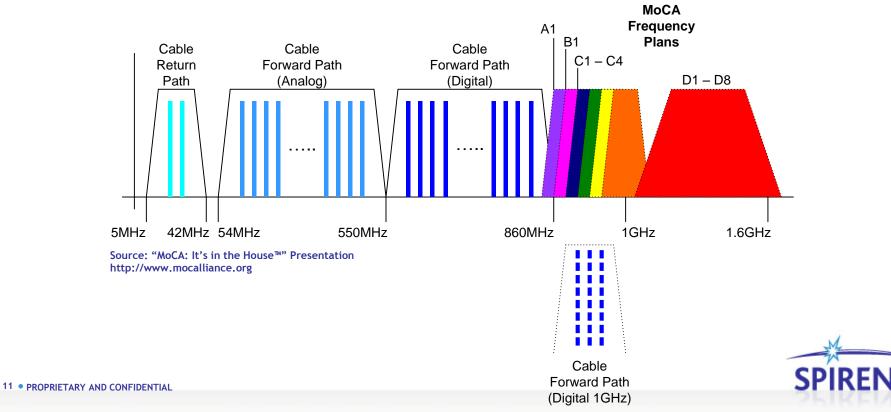

- Association developing and promoting a new standard for transporting multimedia content throughout the home using coaxial cabling
- Consumer Electronics and Chipsets
- Network Equipment Manufacturers
- Communications Services Providers - MSO, Telco and Satellite
- Test and Measurement
 Equipment

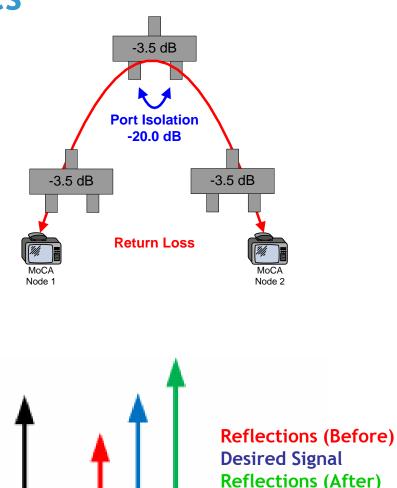
A complete overview of MoCA may be found here... http://www.mocalliance.org

MoCA Physical Topology


- "Branching tree" using coaxial cable and passive filters and splitters
- Equipment connected to the MoCA network called "nodes"
- 1 GHz low pass filter at point of entry
- Designed to support max 300 ft / 25 dB loss (@ 750 MHz) between "root" and nodes
- Amplifiers must bypass MoCA frequencies

MoCA Logical Topology


- Fully-meshed logical point-topoint links established between all MoCA nodes
- Different modulation profiles (or, data rates) between nodes based on physical characteristics
- Maximum 8 nodes (MoCA 1.0) and 16 nodes (MoCA 1.1) connected to same network
- Supports point-to-point, multicast and broadcast transmissions

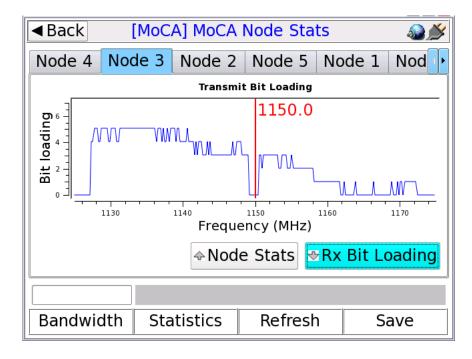

MoCA Frequency Plan

- MoCA operates using 50 MHz channels between 850 1525 MHz
- Analog and digital television uses spectrum between 5 1000 MHz
- MoCA "Frequency Plan D" operating between 1150 1525 MHz is commonly selected by cable system operators

MoCA Channel Characteristics

- Port isolation and return loss (reflections) associated with home coaxial networks affect the MoCA channel's quality
- Reflections create multipath interference
- Reflected signals arrive before, after or at the same time as the desired signals
- MoCA design has been optimized to address channel characteristics

 t_0

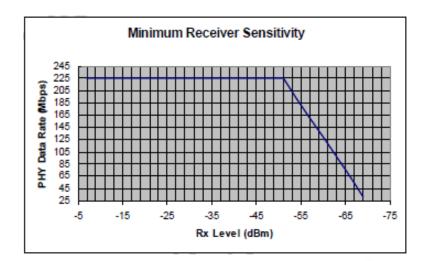

SPIRENT

time

Source: "MoCA Protocols" http://www.mocalliance.org

MoCA Physical (PHY) Layer

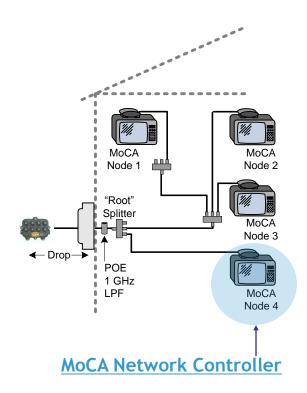
- MoCA uses adaptive constellation multi-tone (ACMT) modulation modeled after OFDM
- ACMT symbols mapped onto 224 discrete orthogonal sub-carriers each modulated using BPSK - 256 QAM (1 - 8 bits per symbol)
- MoCA transmits using sub-carriers that can support the minimum bit error ratio only
- MoCA nodes use a number of "probe" messages to characterize channel conditions and develop optimized bit loading profiles
- Maximum PHY rate = 270 Mb/s
- Reed-Solomon FEC



MoCA Rates and Attenuation

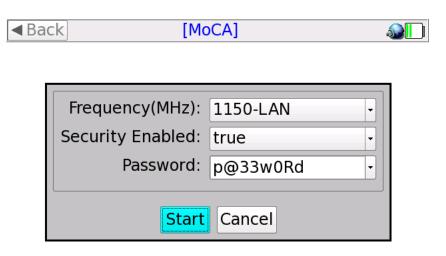
- MoCA nodes maximum transmit power is -4 dBm - +8 dBm (+44 dBmV - +56 dBmV)
- MoCA PHY rates start to decline following about 50 dB loss (or, after power at receiver is less than about -50 dBm or -1 dBmV)

MoCA PHY Rate (Mb/s)	Receive Power (dBmV)
225.0	41.752.25
192.9	-5.25
160.7	-8.25
128.6	-11.24
96.4	-14.25
64.3	-17.25
57.0	-17.95



MoCA Media Access Control (MAC) Layer

- MoCA controls access to the shared channel using TDMA
- Network Controller (NC) assumes responsibility for managing access to the network
 - Maintains and distributes the network's clock reference
 - Advertises the network and handles node admissions
 - Schedules network transmissions and broadcasts media access plans


MoCA Quality of Service

- MoCA 1.0: Prioritized QoS
 - Supports priority-based queuing
 - Three traffic classes high (voice), medium (streaming media) and low (interactive and best effort)
 - Uses Ethernet 802.1p field
- MoCA 1.1: Parameterized QoS
 - Allows guaranteed bandwidth reservations for specific unidirectional flows
 - Nodes make bandwidth requests using traffic specification that include information rate, burst size, packet size and duration
 - Network controller allocates bandwidth and coordinates with other nodes

MoCA Link Privacy

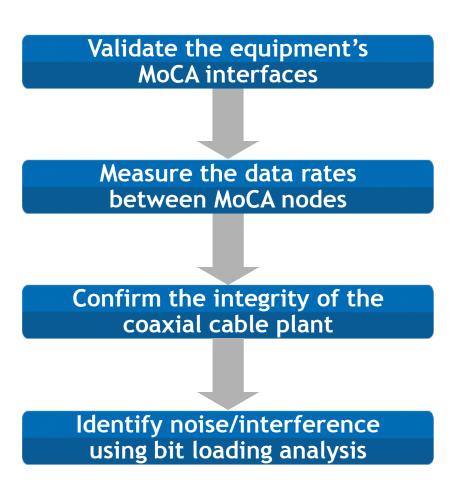
- Secures access to the network
- Protects the information exchanged between nodes
- Key based authentication and encryption
- All nodes share a common password

MoCA Standards

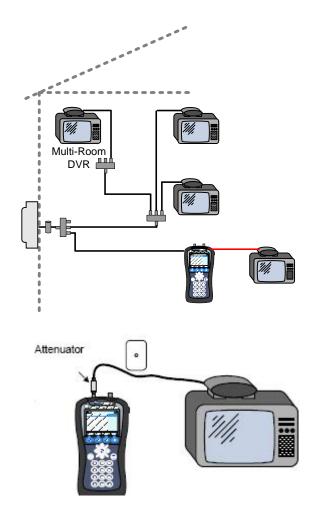
- MoCA 1.0 standard ratified during February 2006
 - PHY Rate = **270 Mb/s**
 - Maximum Net Throughput Rate = 135 Mb/s
 - 8 nodes may be connected concurrently
 - Prioritized QoS Bandwidth reservation based on the 802.1p field
- MoCA 1.1 standardized during October 2007
 - PHY Rate = **270 Mb/s**
 - Packet aggregation (placing multiple Ethernet frames into a MoCA MAC frame) increases maximum MAC throughout rate to 175 Mb/s
 - 16 nodes may be connected simultaneously
 - Parameterized QoS Admission control and reserved bandwidth for specific unidirectional traffic flows
- MoCA 2.0 development occurring now...
 - Target PHY Rates = 700 Mb/s and 1.4 Gb/s
 - Target Maximum Net Throughput Rates = 400 Mb/s and 800 Mb/s

MoCA Introduces Testing Challenges

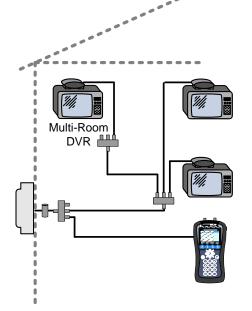
Coaxial Cable Plant Quality


- Connectors, splitters, filters and amplifiers affecting MoCA carriers?
- Spectrum
 - Noise and interference impacting MoCA carriers?
- Network Capacity
 - Sufficient capacity to support customer's applications?
- Customer Equipment Diagnostics
 - Customer equipment or coaxial cable plant?
- Quality of Experience
 - Verify the customer's quality of experience?

MoCA Installation and Maintenance Procedure Overview

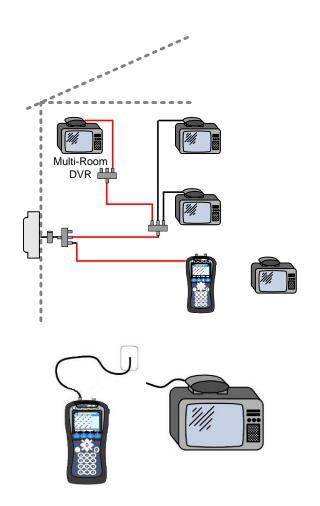

- Does the equipment's MoCA interface function properly?
 - Connect directly to the equipment and determine data rates
- Does a bi-directional data rate issue exist between nodes?
 - Use test set to measure the data rates between MoCA nodes
- Does the coaxial plant between nodes have a problem?
 - Assess the coax segment-by-segment
- Does noise or interference affect the MoCA carriers?
 - Examine the bit loading analysis

MoCA Interface Testing Does the equipment's MoCA interface function properly?


- Connect test set directly to customer equipment using verified coaxial cable
- Determine the transmit/receive data rates attained between the test set and the customer equipment
- Verify that data rates exceed the minimum acceptable values
- Replace customer equipment should data rates fall below benchmark

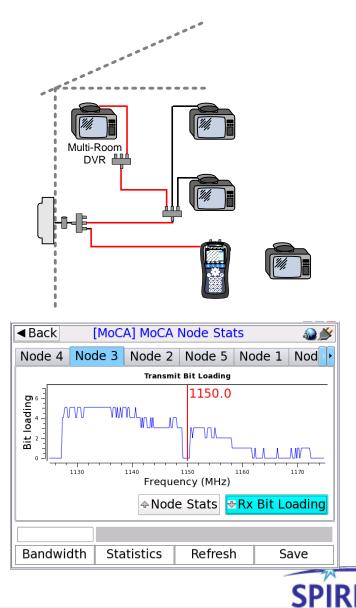
MoCA Data Rate Testing Does a bi-directional issue exist between nodes?

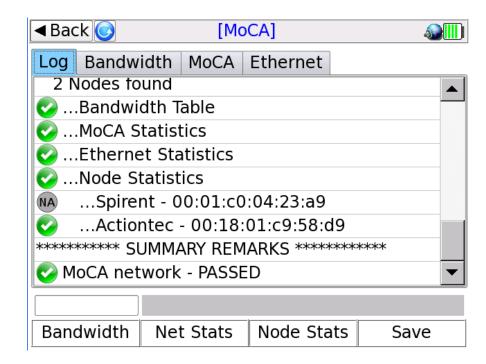
- Connect test set to the coaxial network and determine the data rate between each node
- Verify transmit and receive data rates
- Compare data rates to acceptable minimums needed to support multimedia services



■ Back [MoCA] MoCA Bandwidth						
Channel Freq.(MHz): 1150.0 Privacy: Disabled						
Network MoCA Ver.: 1.0 Flex Node: 3 * = N						
Rx / 1 Tx	3	2	0*			
3 85		231	251			
1 2	70 233					
0*	239					
Statistics	Node Stats		Save Start			

MoCA Coaxial Cable Testing Does the coaxial cable plant between nodes have a problem?

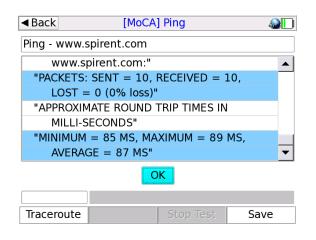

- Connect test set to outlets and splitters to check each coaxial cable segment
- Determine the data rates attained at each segment to isolate physical issues
 - Splitters or filters
 - Un-terminated cables
 - Cable faults
 - Damaged cables or connectors
 - Attenuation due to cable length
 - Amplifiers without MoCA bypass


MoCA Bit Loading Analysis Does noise or interference affect the MoCA carriers?

- Connect the test set to the affected outlet or splitter
- Establish the MoCA link and view the transmit and receive bit loading graphs
- Locate areas of the spectrum with reduced bit loading which are affected by noise or interference
- Identify the suspected sourcemultipath interference, L-band carriers (satellite)...
- Sectionalize the coaxial cable plant to locate the source

MoCA Quick Tests

- Combines coaxial cable, data rate and bit loading tests
- Uses thresholds and analyzes measurement results to determine whether or not the MoCA network is operating properly
- Pass/fail metrics provide quick problem identification
- Measurements may be stored to create "birth certificate" for the customer's MoCA network



MoCA Quality Testing

- MoCA Statistics
 - Link control, probe and admission messages transmitted and received
- Ethernet
 - Identify dropped / errored frames
- Ping / Traceroute
 - Verify MoCA nodes are reachable
 - Determine latency between nodes
- Web Browsing
 - Manage customer equipment

■Back	[MoCA]	MoCA S	Statistics	1	کر 🚱		
Node I Network Ctr		MAC AC RF Fr			01:c0:04:27:00 1150.0		
		MoCA	4				
	Тx	Tx Err	Rx	Rx Err	Drop.		
Link Control	649	0	1000	0	0		
Probe	405	0	417	0	0		
Admission	0	0	25135	1	341		
Async Data	0	0	129	0	0		
Ethernet							
	Pa	ackets		Dropped			
Transmitted		0		-			
Received		130		0			
Bandwidth	Node S	Stats Reset Save S			e Start		

Audio/Video Quality Testing Over MoCA

Audio/Video Quality Testing •Measures multi-room DVR audio/video streams transported using MPEG-2 / IP encapsulation

Quality Scores

•Reports audio/video quality using mean opinion score - 5 (best) - 1 (worst) quality

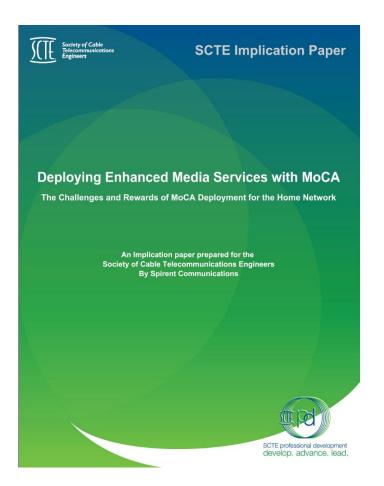
[MoCA] Video QoS

Back

Expert Analysis Differentiate between packet loss and packet delay variation
Lead's technicians to root cause

Passive Mode Measurement Measure audio/video quality "in-line"
Use set top box to control audio/video stream

⊲ Back	[MoCA] Vi	deo QoS				
Plot MOS Stream/Expert Analysis						
Codec Type			MPEG-2 Video			
Image Size			544X480			
Image Type			SDTV			
Degradation from Loss			0.00%			
Degradation from Jitter			0.00%			
Degradation from Codec Type			19.45%			
Degradation from Delay			0.00%			
	Test in progress					
Stream	Transport	Stop Te	est	Save Sta	rt	


MoCA Network Testing Summary

- Measuring MoCA channel quality and data rates are critical for ensuring multimedia quality of experience
- Validating customer equipment and pre-certifying coax will be an effective installation and maintenance strategy
- Technicians need tools to overcome learning curve and efficiently identify a problem's root cause and resolve issues

Deploying MoCA networks and advanced multimedia applications creates new testing needs

SCTE Implication Paper: Deploying Advanced Media Services with MoCA

http://www.scte.org/content/index.cfm?plD=1729

Earl Gill Sales Engineer Geoff Galligher Sales Engineer

earl.gill@spirent.com 919-455-7323 geoff.galligher@spirent.com 301-346-3464

John Schulte Regional Sales Manager

john.schulte@spirent.com 618-282-7770