Subscriber Networks

Randy Francis

ACTERNA

(800) 622-5515

randy.francis@acterna.com

Outline

- Why the rush to clean it up?
- The Issues
- House wiring architectures
- Component Requirements
- Testing & Troubleshooting
- Recommendations
- Suggestions for a more available service

Competition Drives the Market to New Sources of Revenue

- High speed data services (Internet) becoming viable with availability of cable modems and xDSL technology
 - Work at home (Teleworkers & Telecommuters)
 - Internet access (news, research, etc.)
 - Home banking
- Digital video technology maturing and viable business as shown in widespread DBS application
- Telephony in a bundled package is attractive to consumers
 - Bundled services and one-stop-shop offer lower overhead, cheaper rates, and less confusion

Companies Planning New Digital Services

- Cable companies
 - Typically coaxial and broadband RF
 - Many houses wired by subcontractors or the homeowner
 - Issues arise when new services are added:
 - High speed data
 - DTV
 - Telephony

Home LANs on the Rise

- Tele-workers and Tele-commuters
- Multiple computers
- Sharing of peripherals
 - Printers, cable modem, fax, VCR, etc.
- File sharing
- Security could be an issue
 - "Always-on" connection with cable modem
 - Firewall software may be required

Home Wiring is the Weak Point

- 75 90% of ingress is caused in the home & wreaks havoc on reverse path
 - Find in the home before connecting to the network
 - One house can take down the whole node!
 - Must be monitored continuously and eliminated quickly
- Home wired with poor componentry and craftsmanship
 - Microreflections
 - Frequency response variation & excessive loss
 - Leakage & Ingress
- Replacing all home wiring is unacceptable
 - Testing is required to bring it up to standards

Customer Premise Equipment (CPE)

- Passives
 - Drop line, CAT5 cable, USB/Ethernet adapter
 - In-house splitters, filters, & DCs
 - Barrels and in-line pads
- Actives
 - House amp
 - NID
 - Settop box
 - Cable modem

Distribution System

New Technology, Old Wiring Habits

ACTERNA

The Home Network

Home Architectures & House Amps

Path Loss

- Forward path loss:
 - Tap value
 - Drop cable size, length, and frequency
 - House loss and gain for passives and actives
- Reverse path loss:
 - Tap value (first or last tap)
 - Type of amplifier (trunk, bridger, LE, passive amp)
 - Balancing scenario (port or hybrid)
 - Home network architecture
 - Home-run wiring
 - House amp, NID, filters, A/B switches, etc.
 - Splitters or DCs

NID Powering

- Distribution powering
 - 60 or 90 Vac
 - Current draw
 - Centralized powering
 - Drop line powering or Siamese cables
 - MOVs and power routing
- Residential powering
 - Reliable source (amperage capability)
 - Battery backup (8 hours?)
 - How many phones will be ringing?

House Protection

- NEC article 820
 - Direct buried 12 inches deep
 - Protected to a height of 8 feet on buildings

- NEC article 830
 - 18 inches deep or 6" in metal conduit
 - Protected to a height of 8 feet on buildings

or

Use of fault protection devices

Drop Cable Types

- Commonly known as drop line
 - RG-59 (rarely used)
 - RG-6
 - RG-7

- Impedance 75 ohms +/- 2
 - Not RG-58!

Drop Line Specifications

- No smaller than RG-6 for > 550 MHz
- RG-7 or RG-11 for spans more than 150'
- Tested from 5 MHz to 1 GHz
- Tri or Quad shield
 - Bonded foil
 - At least 60% braid

Drop Connectors

- 80 dB or better shielding effectiveness up to 1 GHz
- Seal connections at the connector/cable interface
 - Prevents ingress/egress
 - Provides protection from the weather
 - Use a boot with silicon if warranted
- Compression fittings not screw-on types
 - Still have to verify the right connector for the style of cable and proper installation

House Passives

- 110 dB EMI shielding from 5 MHz to 1 GHz
- > 15 dB input/output return loss
- > 18 dB isolation
 - Should be much better than this
- Rugged housing and backplate
- Voltage blocking capacitors

CPE Requirements

- 0 dBmV for the TV
- 3 dBmV for a settop box
 - May be surprised by the loss of VCRs and games
- VCR cables should be examined for quality
- Modems require +/- 15 dBmV (analog)
- NIDs
- House amps
 - Don't pad the input below a certain level
 - Pad the output if necessary

Subscriber Drop Remains the Weakest Link

- Least equipped to deliver interactive digital services
- Most labor intensive part of the network
- Costliest part of the network
- Seven out of ten service calls are generated by problems at the drop
 - Even with today's more forgiving analog signals
- What's the failure rate gonna be with digital signals of tomorrow and NID powering?
- If problems continue, customers will go elsewhere

Testing and Troubleshooting

- Measuring all signal levels is a standard requirement for analog CATV services
- Test for ingress prior to connecting the drop to the tap
 - Possibly go in the house and turn on noisy motors
 - Vacuum cleaner, hair dryer, electric drill
 - Can opener, CB, Ham, etc.
- Testing for leakage helps find wiring damage or poor craftsmanship
 - Not all leaks are ingress points and vice-versa
 - Some problems are frequency selective

More Testing Ideas

- Check frequency response to ensure no bandedge problems
 - Indicates faulty components or poor craftsmanship
- Locating faults for repair is simplified with frequency domain reflectometry
- Process of elimination is used when test equipment is unavailable
- Measurements will locate potential problems
 - Sometimes problems don't show up with a simple "see if the modem works" test

Typical Home Wiring Evaluation

- SIGNAL LEVELS / SCAN
 - Verify FCC or recommended system levels from tap / drop
- SWEEP
 - Characterize frequency response
- LOCATE
 - Pinpoint cable / component problems within the residence
- INSTALLATION TEST
 - Hard copy and proof!
- INGRESS
- LEAKAGE
- DOWNLOAD to StealthWare

Test Equipment Features

- Locate (FDR) mode
- Sweep mode
- Digital Option (Quick Check or Digi-Check modes)
- 5-890 MHz Ingress Scan
- Abundant file storage capacity
- Dedicated tagged leakage signal source at subscriber drop (no guesswork or false alarms)
- Transmit a CW carrier (+30 dBmV) from 5-800 MHz for subscriber troubleshooting

Checking Frequency Response

- Sweep is inserted at tap and/or ground block and measured at subscriber terminal locations
 - Look for standing waves
 - Excessive loss
 - Roll-offs
 - "Suck-outs"
- Frequency response helps identify faulty or nonstandard components

 Can be used to verify loss of cable and nontermination

Identify Faulty or Non-Standard Components

Connectors & cable

• Passives (splitters, filters, etc.)

 One way subscriber amp in a two way system?

Effects of Impedance Mismatches

Before

Failure to properly terminate wall plates, or installing poor quality signal splitting devices

After Terminating all wall plates & installing quality passives

Ingress Scanning

5 - 890 MHz Range

for ingress test

ACTERNA

TDR

Injects DC pulses (reflects little energy at RF faults)

 Nearly 100% of the source energy is reflected by any in-line frequency selective device

Tends to roll off rapidly at high frequencies

 < 2% of pulse energy is distributed in the RF ranges

Frequency Domain Relectometer

- FDR is the measure of the reflections of a medium across frequency
- Part of the energy is reflected back if the load is not a perfect match of 75 ohms
- The reflected energy will be the same frequency as the incident wave but 180° out of phase
- The resulting wave (incident + reflected) will appear as standing waves on the frequency sweep
- This can be correlated to a distance vs fault display

FDR

- Sweeps the system at radio frequencies
- Sensitive to RF problems, accurately identifies return loss, and operator selectable resolution
- Fault vs. distance and Return Loss (SWR) per Event
- No need for access to the subscriber's house
 - Advantageous to know the internal architecture, though
- Advantages of FDR vs. TDR
 - Excellent event resolution no "dead-zone"
 - Higher dynamic range farther distance
 - Can measure through multiple taps, splitters, etc.

FDR (cont.)

- The reflection is such that the peaks of the individual cycles can be translated to distance to the fault (impedance mismatch) through the this equation:
 - D= 492*Vop/f
- Where D = distance to fault in feet, 492 = speed of light / 2 in million ft/sec, Vop = velocity of propagation of the cable, and f = the separation between 2 peaks of the standing wave in MHz
- The peak-to-peak value of the reflection determines the magnitude of the fault and is calculated by:
 - Return Loss (dB) = 20*log(Reflected Energy)

FDR Identifies Mismatches

- Measures opens, shorts and structural damage to cable or home wiring passive devices
- Highly accurate distance to fault measurement
- Worst case faults are quickly pinpointed

ACTERNA

Fault Locating

ACTERNA

Must have an idea of the internal architecture to understand the readout Event #3 Unterminated Cable 100 feet Event #1 Ground Block 50 feet Event #2 Event #4 Unterminated Cable 110 feet

Digital Signal Level Measurements

- Measures (Non-bursted) Digital
 Signals
- User Selectable Bandwidth for Accurate Power Measurements
- Quick Mode Measures Signals
 Based on Bandwidth Estimation
 / Normalization Technique
 - digital Mode Measures
 Digital Signals via
 Integrated Power Technique

Measuring the Digital "Haystack"

ACTERNA

Measuring Signal Levels

- Use Meter's Signal Level or Scan Modes
 - Go/No-Go limits simplify signal level testing
 - Digital measurement option for measuring average power of digital signals in level mode

Full Scan

Installation Check

- Provides installation status check of system levels at drop according to FCC or custom limits
- Results viewed by individual channel or global pass / fail

Separate analog and digital limits

Testing for Ingress

- Pass/Fail limits simplify test
- Measurements above the limit indicates a problem
- This measurement can be misleading unless you know the filter width

ACTERNA

- Ingress
- Impulse Noise
- Power Supply Noise
- Common Path Distortion
 - Defective line terminators
 - Bad caps
 - Bad grounds
 - Feed-through connectors

Noise Reduction Techniques

Proper house grounding

Common mode coiling

Beads and torroids

"Ghost busters"

Drop isolators or matching transformers

Overview

- Good drop line
 - Integrated messenger (IM)
 - Quality shielding
 - Low attenuation & dc-loop resistance
- Passives
 - Good shielding
 - Proper isolation
 - Adequate return loss / VSWR
 - Voltage blocking capacitors
- Exhaustive testing before the "bean counters" start selling!

Tips & Suggestions

- Aware "user base" (customers)
 - Sometimes too much information is dangerous
- Pin connectors for larger cables
- Quality componentry and craftsmanship
- Selective frequency placement of services
- Better Carrier-to-Ingress (C/I)
 - Creative usage and placement of filters & traps
 - Protect your investment and buy windowed filters
 - Find the problem and fix it!
- Constant monitoring and preventive maintenance

Conclusion

- Have contingency plans for everything
- Train employees and customers
- Obtain good customer relations and loyalty
- Try to be as non-intrusive as possible
- Utilize equipment that quickly characterizes and separates real problems from minor events

Comments

- All comments and suggestions are sincerely appreciated
- Check out the ACTERNA web page WWW.ACTERNA.COM

