Network Maintenance Welcome POP & CLI

Presented by
Lance Bannister
Technical Services Manager
Trilithic Inc.

- Reference Document Title 47 CFR Subpart K Technical Standards
 - 76.601 Performance Tests
 - Defines When tests are to be conducted, how many test points are required and where the test points are located
 - Paragraph (c)
 - Requires that performance tests be made twice a year at six month intervals for parts 76.605(a) (2) through (10) described later
 - Test results be maintained for five years
 - Paragraph (c) (1) Number and Location of Test Points
 - For cable systems with 1,000 to 12,500 subscribers
 - » 6 test points
 - For each additional 12,500 subscribers
 - » add 1 test point
 - For Portions of the System which are not "Mechanically Continuous"
 (Microwave Hubs)

- Reference Document Title 47 CFR Subpart K Technical Standards
 - 76.601 Performance Tests
 - Location of Test Points
 - Represent all geographic areas served by the cable system
 - One Third of which must be located at subscriber terminals most distant from the system input (headend or hub site)
 - Identification of Test Equipment, Procedures and Technician
 - Instrument includes Make, Model and Date of Calibration
 - Procedures Used (NCTA Standard Practices, etc.)
 - Identity and Qualifications of the technician

- Reference Document Title 47 CFR Subpart K Technical Standards
 - 76.601 Performance Tests
 - Paragraph (c) (2) Number of Channels to be Tested
 - Requires each channel to be tested for
 - » Visual Carrier Frequency
 - » Visual Signal Level and Variance
 - » Aural Signal Level
 - Requires four channels to be tested for
 - » Aural Carrier Frequency
 - » Characteristics Frequency Response
 - » Visual Signal to Noise
 - » Coherent Disturbances
 - » Isolation
 - » Chroma Display
 - » Differential Gain
 - » Differential Phase

- Reference Document Title 47 CFR Subpart K Technical Standards
 - 76.601 Performance Tests
 - Paragraph (c) (3) Specifies Dates and Time Interval for the Visual Signal Level Variance 24 Hour Test
 - Requires that measurements are made every six hours
 - Requires Date and Time information for each measurement
 - Requires Measurements to be made in Jan/Feb and Jul/Aug
 - Paragraph (c) (4) Requires that performance tests be made every three years for
 - Chroma Display
 - Differential Gain
 - Differential Phase
 - Paragraph (d) Requires that all subscriber terminals meet the technical specifications outlined above

The Visual Carrier Frequency

- Compliance Testing for Part 76.605 (a) (?)
 - Test All Channels
 - Performed Twice per Year
 - Test Locations
 - Subscriber Terminal (or equivalent) test points
 - Specification
 - The center frequency of the aural carrier must be 4.5 MHz above visual carrier
 - Tolerance +/- 5 kHz

The Aural Carrier Frequency

- Compliance Testing for Part 76.605 (a) (2)
 - Performed Twice per Year
 - Test 4 Channels
 - Plus 1 per 100 MHz of upper frequency distribution
 - Example a 550 MHz plant would be required to test 10 channels
 - Test Locations
 - Headend
 - Subscriber Terminal
 - Specification
 - The center frequency of the aural carrier must be 4.5 MHz above visual carrier
 - Tolerance +/- 5 kHz

The Visual Signal Level Test

- Compliance Testing for Part 76.605 (a) (3)
 - Performed Twice per Year
 - Test All Channels
 - Test Locations
 - Subscriber Terminal
 - Specification
 - Maintain 0 dBmV at subscriber terminal
 - Maintain 3 dBmV at the output of a 100' drop connected to the subscriber tap

The Visual Signal Level Variance (24 Hr Test)

- Compliance Testing for Part 76.605 (a) (4)
 - Performed Twice per Year
 - Test All Channels
 - Test Locations
 - Subscriber Terminal
 - Test at six hour intervals
 - Specification
 - Maintain 8 dB or less variation in visual signal level over a six month interval when connect to a subscriber tap through a 100' drop
 - Maintain 3 dB or less variation in visual signal level for carriers within a 6 MHz nominal frequency separation
 - Maintain 10 dB or less variation from any other channel up to 300 MHz (add 1 dB for each 100 MHz to the upper frequency limit)

Visual Carriers-System Flatness

- Regulation FCC 76.605 (a) (4) and (5)
 - The signal level on each channel, as measured at the end of a 30 meter drop shall not vary more than 8 dB within any six month interval
 - Tests must be performed twice a year during Jan or Feb and during July or August
 - Each test shall consist of 4 measurements made over a 24 hour period at six hour increments
 - Visual signal levels shall be maintained within 3 dB of any visual carrier within a 6 MHz nominal frequency separation
 - Visual signal levels shall be maintained within 10 dB of any other visual signal on a cable television system of up to 300 MHz
 - For systems with operational bandwidths greater than 300 MHz add 1 dB to the above for every 100 MHz or part there of
 - Limit the maximum signal level such that overload at the subscriber terminal does not occur

Separation of Visual and Aural Carriers

- Regulation FCC 76.605 (a) (4) and (5) Continued
 - The RMS voltage of the Aural signal shall be maintained between 10 and 17 dB below the associated visual signal level.
 - For subscriber terminals that use equipment which modulate and re-modulate the signal (baseband converters) the RMS voltage of the aural signal shall be maintained between 6.5 and 17 dB below the associated visual signal level
 - Requirements must be meet at the subscriber terminal and at the output of processing and modulating equipment

Proof of Performance Measurements

The Visual Signal Level Variance Test

- Calculate Pass/Fail on 3 dB requirement for 6MHz
- Calculate Pass/Fail on system "flatness"
 - Function automated on most SLMs
- Calculate Pass/Fail 6 month variation

100

860 DSP

Aural Signal Level

- Compliance Testing for Part 76.605 (a) (5)
 - Performed Twice per Year
 - Test All Channels
 - Test Locations
 - Subscriber Terminal
 - Headend
 - Specification
 - Maintained 10 to 17 dB down from the associated visual signal level
 - Maintained 6.5 to 17 dB down for base band converters

Proof Of Performance Measurements

The Aural Signal Level Test

Record Levels for each Aural carrier

> Calculate Pass/Fail on Video - Aural delta

> > Function automated on most SLMs

860 DSP

Characteristic Frequency Response

- Compliance Testing for Part 76.605 (a) (6)
 - Performed Twice per Year
 - Test 4 Channels
 - Plus 1 channel for every 100 MHz of upper frequency distribution
 - Test Locations
 - Subscriber Terminal (after converter effective 12/30/99)
 - Specification
 - Maintain +/- 2dB flatness from 0.75MHz to 5.0 MHz above the lower boundary of the Cable TV channel

Proof Of Performance Measurements

The Characteristic Frequency Response Test

- Set video generator for full field sweep
- Set Analyzer to test frequency
 - Place the analyzer in Max Hold
 - set markers on on min and max points
 - Divide delta by 2 to obtain the +/variation and record

Suggested Analyzer Settings

- Span 6 MHz
- RBW 300 kHz
- VBW 300 kHz
- Sweep 750ms

Visual Carrier to Noise Ratio

- Compliance Testing for Part 76.605 (a) (7)
 - Performed Twice per Year
 - Test 4 Channels
 - Plus 1 channel for every 100 MHz of upper frequency distribution
 - Test Locations
 - Subscriber Terminal
 - Specification
 - Maintain 43 dB or better for signals that are:
 - Delivered by the Cable TV system within the predicted Grade B contour for that signal
 - Each signal that is first picked up within its grade B contour
 - Each signal that is first received by the cable TV system by a direct video feed from a TV broadcast station, a low power TV station or a TV translator station

Proof Of Performance Measurements

The Visual Signal to Noise Ratio Test

860 DSP

- Determine if preamplifier is needed
 - Check for <3 dB drop in floor when signal is disconnected
 - Determine if Band pass Filter is needed
 - Check for change in signal level when analyzer input attenuator is changed
 - Signal level should not change
- Do not change reference level or attenuator settings
 - use external attenuator if necessary
- Measure noise and correct for 4 MHz B/W
- Suggested Analyzer Settings
 - Use sample detection mode
 - RBW 30 kHz
 - VBW 100 Hz

Carrier to Noise

Peak RF level of Carrier

Average level of Noise Floor

Carrier to Noise

Coherent Disturbances

- Compliance Testing for Part 76.605 (a) (8)
 - Performed Twice per Year
 - Test 4 Channels
 - Plus 1 channel for every 100 MHz of upper frequency distribution
 - Test Locations
 - Subscriber Terminal
 - Specification
 - Maintain 51 dB or better ratio for non coherent channel cable TV systems when measured with modulated carriers and time averaged
 - Maintain 47 dB or better for coherent channel cable systems when measured with modulated carriers and time averaged

Coherent Disturbances CSO & CTB

- CSO max is at the lowest and highest frequency channels
- CTB max is in the mid frequency channels

To measure CSO/CTB you must briefly turn off the video carrier.

860 DSP senses that the carrier has been removed, it will measure and display CSO and CTB.

- ➤ Worst case CSO & CTB displayed below ch info
- Detailed list of 5 components listed in Table
- > 860 DSPi keeps record of readings after carrier is turned back on.

Coherent Disturbances CSO & CTB

- Composite Triple Beat (CTB) has Traditionally required the channel to be turned off because the disturbance is located below the carrier
- New devices have been produced to combat this problem. They can turn the channel off at a specified time for a very short duration that is invisible to subscribers
- The devise settings usually allow for the choice of the particular line to be tested (deleted)

Coherent Disturbances CSO & CTB

- The video line to be "deleted" is selected
- The effect is the carrier will be off during the measurement interval and CTB can be measured without actually disrupting the channel
- The Trilithic 860DSP can utilize this effect without the need to perform a special set up to synchronize with the test line

Line Deletion & 860DSP

- Using the Advanced Spectrum Analyzer (Option SA-1) set the analyzer for the channel under test
 - Select the RBW and reduce it to 30 kHz
 - Change the averaging to MAX
 - Place Marker A on the video carrier and record level
 - Change the averaging to MIN
 - When the carrier is gone
 - observe the CTB as a small hump in the noise
 - Place the marker on that peak and record the level
 - Use Marker B to measure CSO and record level
 - Add absolute values of video level to CSO/CTB level
 - Example:
 - » Carrier at 10 dBmV, CTB at -50 dBmV
 - \rightarrow add the absolute values 10 + 50 = 60 dBc

Terminal Isolation

- Compliance Testing for Part 76.605 (a) (9)
 - Performed Twice per Year
 - Test 4 Channels
 - Plus 1 channel for every 100 MHz of upper frequency distribution
 - Or provide written specifications from equipment manufacturer
 - Test Locations
 - Subscriber Terminal
 - Specification
 - Maintain 18 dB or better isolation for each subscriber terminal
 - Prevent reflections caused by open circuit or short circuited subscriber terminals from causing visible picture impairment at any other subscriber terminal

Proof Of Performance Measurements

The Terminal Isolation Test

• Submit vendor specifications

Low Frequency Disturbances

- Compliance Testing for Part 76.605 (a) (10)
 - Performed Twice per Year
 - Test One Channel
 - Test Locations
 - Subscriber Terminal
 - Specification
 - Maintain less than 3% peak to peak variation in visual signal frequency level caused by undesired low frequency disturbances (HUM) as measured on a unmodulated carrier

Proof Of Performance Measurements

The Low Frequency Disturbances Test

- Test
 - < 1 KHz
- Troubleshoot
 - 60 Hz
 - 120 Hz

Differential Gain for the Color Subcarrier

- Compliance Testing for Part 76.605 (a) (11) (ii)
 - Performed Every Three Years
 - Test 4 Channels
 - Plus 1 channel for every 100 MHz of upper frequency distribution
 - Test Locations
 - Headend
 - Specification
 - Ensure that differential gain does not exceed +/- 20%
 - Measured as the difference in amplitude between the largest and smallest segments of the chrominance signal (divided by the largest and expressed in percent)

Differential Phase for the Color Subcarrier

- Compliance Testing for Part 76.605 (a) (11) (ii)
 - Performed Every Three Years
 - Test 4 Channels
 - Plus 1 channel for every 100 MHz of upper frequency distribution
 - Test Locations
 - Headend
 - Specification
 - The phase difference shall not exceed +/- 10 degrees
 - Measured as the largest phase difference in degrees between each segment of the chrominance signal and the reference segment (the segment at the blanking interval of 0 IRE)

Chrominance - Luminance Delay Inequality

- Compliance Testing for Part 76.605 (a) (11) (i)
 - Performed Every Three Years
 - Test 4 Channels
 - Plus 1 channel for every 100 MHz of upper frequency distribution
 - Test Locations
 - Headend
 - Specification
 - Ensure that Chrominance Luminance delay does not exceed 170ns

Chrominance - Luminance Delay Inequality

- Compliance Testing for Part 76.605 (a) (11) (i)
 - Performed Every Three Years
 - Test 4 Channels
 - Plus 1 channel for every 100 MHz of upper frequency distribution
 - Test Locations
 - Headend
 - Specification
 - Ensure that Chrominance Luminance delay does not exceed 170ns

Proof Of Performance Measurements

The Chrominance – Luminance Delay Inequality Test

Differential Gain for the Color Subcarrier

- Compliance Testing for Part 76.605 (a) (11) (ii)
 - Performed Every Three Years
 - Test 4 Channels
 - Plus 1 channel for every 100 MHz of upper frequency distribution
 - Test Locations
 - Headend
 - Specification
 - Ensure that differential gain does not exceed +/- 20%
 - Measured as the difference in amplitude between the largest and smallest segments of the chrominance signal (divided by the largest and expressed in percent)

Proof Of Performance Measurements

The Test

Point

- Span 1 to 6 MHz
 - RBW 300 kHz
 - VBW > 300 kHz
- Sweep 20ms

Differential Phase for the Color Subcarrier

- Compliance Testing for Part 76.605 (a) (11) (ii)
 - Performed Every Three Years
 - Test 4 Channels
 - Plus 1 channel for every 100 MHz of upper frequency distribution
 - Test Locations
 - Headend
 - Specification
 - The phase difference shall not exceed +/- 10 degrees
 - Measured as the largest phase difference in degrees between each segment of the chrominance signal and the reference segment (the segment at the blanking interval of 0 IRE

Measurement Techniques

- Amplitude Measurements with a Spectrum Analyzer
 - Measuring carriers over wide frequency ranges
 - Set Span to display the frequencies of interest
 - Set RBW and VBW for single carrier
 - Calculate sweep time
 - Vertical sync pulses occur every 16ms
 - Measurement points 400 (Span set to 400 MHz)
 - Allow for 10 sweeps of the spectrum
 - » Calculate sweep time as
 - » Sweep time = Vertical sync pulse * # sweeps * # sweep points
 - \sim Sweep time = 16.7 * 10 * 400
 - **»** Sweep time = 67 seconds
 - Or Use Max Hold until the carrier amplitude peaks

Differential Gain

- The measurement of the change in the color saturation as the luminance, or brightness changes
- Appears as "washed out" or pale portions of color
- Luminance is the distance from zero voltage to the average of each packet in the VITS (Vertical Interval Test Signal)
- The Peak to Peak height of each burst of chroma, at 3.58 MHz, is the magnitude of the signal. The heights of the packets should be the same, representing a uniform gain for the different levels of luminance. If video processing changes these burst heights, different al gain distortion results.

Differential Gain

• Different Gain = [(max-min)/(max+100)]*100

Differential Phase

- The phase of the video signal determines it's color hue.
- Changes in color hue as brightness changes is due to poor differential phase

Chrominance to Luminance Delay

- Measure of difference in the time it takes the chrominance and luminance parts of the signal to pass through the system
- Delays appear as colored shadows or "ghosts" in the picture
- In the example below the luminance is arriving at the TV sooner than the color information causing the three colors to appear instead of one.

Chrominance to Luminance Delay

- Measuring Chrominance to Luminance Delay
 - The 12.5 T Pulse
 - Special test signal that rides in the VITS
 - Produces two pulses in the video base band
 - luminance at the carrier frequency
 - a color burst at the sub carrier frequency

Time Domain

Luminance Component Chrominance Component 12.5T Pulse

Frequency Domain

FCC Requirements

- Tests to be performed as outlined in Part 76.60 (a)
 - Aural Carrier Frequency 76.605 (a) (2)
 - Visual Carrier Frequency 76.605 (a) (3)
 - Visual Signal Level Reference 76.605 (a) (4)
 - Aural Signal Level 76.605 (a) (5)
 - Characteristics Frequency Response 76.605 (a) (6)
 - Visual Signal to Noise Ratios 76.605 (a) (7)
 - Coherent Disturbances 76.605 (a) (8)
 - Isolation 76.605 (a) (9)
 - Hum 76.605 (a) (10)
 - Chroma 76.605 (a) (11) (i)
 - Differential Gain 76.605 (a) (11) (ii)
 - Differential Phase 76.605 (a) (11) (iii)

FCC Requirements

- Testing Requirements 76.601
 - Tests outlined in 76.605 (a) (2) through (10)

AUTOTEST RESUL	.TS	×
17-Nov-2003		14:21:06
Step #1 : SCAN,FAIL	Step #9:	
Step #2 : MOD,FAIL	Step #10 :	
Step #3 : C/N,PASS	Step #11 :	
Step #4 : HUM,FAIL	Step #12 :	
Step #5 : TILT,FAIL	Step #13 :	
Step #6 : QAM,FAIL	Step #14:	
Step #7 :	Step #15 :	
Step #8 :	Step #16 :	
Msg:		DSP OK
LOAD		

- Leakage terminology
- What is leakage?
- Why do we monitor for leakage?
- What causes leakage?

- Leakage characteristics
- Locating source of leakage
- Ingress
- Quiz for Review

- Egress
- Radiation
- Leakage
- Ingress
- uV/M
- Squelch
- Calibration

What is Signal Leakage?

- Definition:
 - Undesired emission of signals out of an HFC network

Ingress

 RF or electrical energy that enters the coaxial environment

Egress

 RF signal leaking out of the coaxial environment

Signal Leakage History

- Mid-band expansion
- Aeronautical interference discovered (1976)
- Frequency offsets (1979)
- Radiant dome (1980)
- Mandatory FCC enforcement (1980s)
- Cumulative Leakage Index (1990)

Reason #1 to Monitor for Leakage

Prevent Off-Air Broadcast Interference

Spectrum Chart

• 108MHz

138MHz

Off-air Cable CH 98 CH 99 CH 14 CH 15 CH 16

Reason #2 to monitor for leakage

Cumulative Leakage Index (CLI)

- CLI is the net effect of the combination of all the leaks in the system added together
- These cumulative leaks form an invisible cloud of unwanted RF energy over the cable system

CLI Quarterly Rules

- Ride out 100% of system and log all leaks
- Log should include Date found and Date fixed
- Documenting leakage levels isn't required for this drive out
- Actual practice for your system may vary!

CLI Annual Rules

- Ride out 75% of the oldest part of the system and log all leaks location and measured level
- Must be performed within a reasonable period of time
 - Usually within 2 wks of due date

Required Actions

- All leaks 20uV/m must be logged and fixed
- Only leaks above 50 uV/m are used in CLI calculation
- All measurements taken outside 108-137 MHz must be converted as if they were taken within the band

uV/M

- Standard unit of measure for CLI
- 50 Ohm off air measurement
- Voltage developed in 1 meter of infinitely thin section of wire submerged in a leakage field produces 1uV of energy

C.L.I.

- Cumulative Leakage Index
- Mathematical summation of leakage in a system designed to approximate the interference to aircraft flying overhead
- Figure of merit for system performance
- 1 leak of 1588uV/M within a system is enough to fail C.L.I.

Cumulative Leakage Index

Compliance = 64 or less

Reason #3 to Monitor for Leakage

- Eliminates ingress
 - -Improved System Performance
- The prevention of leakage also aids in the prevention of ingress.
- The elimination of ingress will provide
 - Fewer service calls
 - Clearer pictures over the HFC system
 - Better public relations over competitors

Reason #4 to Monitor for Leakage

- Locate Physical problems with plant
- In most cases, when you pinpoint a leakage problem, you will discover some type of physical problem has occurred.
 - Loose F-connector
 - Loose hardline connector
 - Loose tap face
 - Cracked hardline
 - Punctured or chewed RG coax
 - Loose amp housing
 - Signals emanating from someone's rooftop antenna
 - Illegal installations

Common Causes of leakage?

Common Causes continued

- 70% of all leakage is caused by problems between the tap and entry to the house
 - Aging and environmental stress
 - Physical trauma to cables or connectors
 - Loose drop connectors
 - Inferior quality coaxial cable, passives, or connectors
 - Loose hard line connectors

Other Causes of Leakage

- Improperly installed connectors
- Cracks in the trunk and feeder cable
- Animal chews
- Poorly-shielded drop cable
- Bad connectors at the tap
- Corroded connectors

Other Causes Continued

- Customer installed equipment
- Damaged amplifier housing or loose amplifier housing lids
- Broken tap ports
- Poor installation of splices and connectors
- Poorly-shielded customer premise equipment

Problems Caused by Ingress & Egress

- Lines in picture
- Ghosting
- Pay-per-view problems
- High speed data problems
- De-scrambling problems
- Interference with two-way radio services using the same frequencies

Ingress on Digital Channels

- Mosaic
- Freeze Frame
- Picture and Sound go to black

Leakage Measurement Procedures

- Use a calibrated halfwave dipole antenna
- Antenna must be elevated 3 meters off the ground and positioned 3 meters from the leakage source
- Antenna must be rotated 360° in the horizontal plane for maximum reading
- This is the <u>ONLY</u> acceptable procedure for leakage measurement by the FCC

Polarization Angle

Monopole

Leakage Antennas-Whip

Leakage Antennas-Dipole

Electrical Noise

 Electrical noise is an interesting annoyance to the leakage technician.

- In most cases, electrical noise is caused by "spark gap energy" at power line insulators. This energy can manifest itself as RF!
- This spark gap energy (RF) may reach the leakage frequency range and cause a buzzing noise on the audio circuit of a leakage detector.
- Channel tagging usually eliminates this problem.

Highest Potential Lowest Potential

Distance Correction

```
Reading x Distance
----- = Corrected Reading
10
```


Patrolling for Leakage

20uVm T

100 feet

2 uVm

Walking Out a Leakage Area

Installation Leakage

Ingress TRILITHIC

Ingress on Analog Channels

- Lines in picture
- Ghosting
- Pay-per-view problems
- High speed data problems
- De-scrambling problems
- Intermittent lines in the picture and possibly audio buzz. Possible causes are:
 - CB radio effecting channel 5
 - Local pager services effecting channels 19 & 20
 - Ham radio effecting 5-40 MHz return band and 550-750 MHz band

Ingress on Digital Channels

- Mosaic
 - This happens when ingress has created marginal Bit Efror causing the loss of a packet(s) of video compression data
- Freeze Frame
 - This happens when ingress has created significant Bit Error causing the loss of an entire refresh frame
- Picture and Sound go to black
 - This happens when ingress is severe enough to completely destroy a data stream into unusable garbage
- Circular pattern around the ideal plot on Constellation

Calibrating Leakage Detection Equipment

- Connect calibrated signal source set at 20 μV/m
- Position the dipole antenna
- Adjust meter to read 20 μV/m

Drive-up Calibration Point

Why and How Check for Leakage?

- Public Safety.
 - Potential interference with aircraft communication/navigation.
 - The cable system could interfere with off-air signals.
- Quality of Service.
 - Ingress impairs picture quality.
 - Ingress/Egress (leakage) usually is a sign of a pending equipment failure.

Why and How Check for Leakage?

- Increased implementation of services requiring return path activation.
 - If a system has egress it will most likely have ingress.
 - Ingress brings the viability of two-way services into question.
 - VOIP demands higher network reliability.
- European CENELEC EN 50083-8 standards (Feb. 1996).

Why and How Check for Leakage

- Recommended frequency range is 108-140MHz
- Measurements must be repeatable
 - Dipole 3 meters from leak above the ground
 - Dipole should be rotated about a vertical axis and maximum reading recorded
 - Other conductors must be 3 or more meter away from the measuring antenna
 - The measurement range should be free from obstacles
 - Less than 20 uV/m at a distance of 3 meters

Why and How Check for Leakage?

- Monopole antenna typically used
 - Mounted near the center to enable detection from both sides of the road (road is smaller then 6 meters)
- If less then 10 % of probabilities exceeds the lower threshold, that part of the network fulfils the limits.

Why and How Check for Leakage? GPSantenna 3 m....300 m RILITHIC

Why and How Check for Leakage?

- While patrolling, a leak may travel along the cable in a standing wave
 - Leak strength peaks and ebbs
 - Source can be located at point of highest peak
- Use Triangulation to "vector-in" on leak source
 - Rotate dipole to determine location of peak signal strength
 - Source is perpendicular to dipole elements
 - Repeat process at some distance from first test
 - Leak source will be close to point where vectors cross
- Use common sense, look for logical cause of leakage
 - connectors, tree branch rubs, damaged poles, etc..

Zooming In On The Leak

- Rubber duck has a radial pattern with a null in the direction it is being pointed
 - holding meter with antenna sideways in orientation to the leak will produce the strongest signal strength
 - pointing the antenna at the suspected source will null the field strength

Common Leakage Sources

- Splices and fittings- Water and weather can result in pulled out, loose or corroding fittings.
- Splices at taps, line extenders, splitters, amps and ground blocks.
- Illegal hookups involving twin leads, cheap passive devices, house amplifiers, poor or no connectors, and improperly terminated splitters.
- 15% jumpers from drops to taps or ground blocks.
- 75% of leaks come from subscribers home.

Quiz

- 1) What is the unit of measure for leakage as specified by the FCC2
 - a) dBuV = Decibel per microvolt
 - b) uV/m = Microvolt per meter
 - c) dBm = Decibel per milliwatt
- 2) What is signal leakage?
 - a) The undesired emission of signal out of an HFC network
 - b) The loss of signal amplitude from loose connectors
 - c) Off-air signal getting into an HFC network
- 3) What is a common cause of signal leakage?
- 4) Leakage characteristics are always the same
 - a) True
 - b) False

Quiz

- 5) At what leakage level does the FCC require logging and repair?
 - a) 10 uV/m at 20 feet
 - b) 20 dBmV at 10 feet
 - c) 20 uV/m at 10 feet
- 6) What are the 4 primary reasons for monitoring for leakage?
- 7) The leakage characteristic "Standing waves" describes:
 - a) The reflective nature of signal leakage
 - b) The conductive nature of signal leakage
 - c) The amplitude nature of signal leakage

Questions

lbannister@trilithic.com

317-895-3600

