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Why does Al matter?
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Flood Risk Is Rising Are Our Models Keeping Up?
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Flood Damages

Major
Moderate
Globe
*Minor Us
+ $1 trillion $ 36.2 billion Mitigation
Since 1980: )
220,000 fatalies ~ 26.4% by 2050 Plans
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Al-Driven High Water Mark Estimation

OPEN the APERTURE



Community-sourced Flood Images

Limited
Observed
Data
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Limited
Observed

Al-based Image Segmentation

Masked-attention Mask Transformer for Universal Image Segmentation
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Limited
Observed

Al-based Image Segmentation
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Limited
Observed
Data

Flood Depth Estimation using GPT 40 Model

Akinboyewa et al. Computational Urban Science (2024} 4:12 Com putatiDn al Urban
https:/fdoi.org/10.1007/s43762-024-00123-3

Science
o
w &

ORIGINALPAPER  OpenAccess
®

Automated floodwater depth estimation S
using large multimodal model for rapid flood
mapplng Flood photo

Temitope Akinboyewa', Huan Ning', M. Naser Lessani' and Zhenlong Li'"'®

= B s ism

GPT

» Street object dimensions
» Instructions

Abstract

Information on the depth of floodwater is crucial for rapid mapping of areas affected by floods. However, previous
approaches for estimating floodwater depth, including field surveys, remote sensing, and machine learning
techniques, can be time-consuming and resource-intensive. This paper presents an automated and rapid approach
for estimating floodwater depth from on-site flood photos. A pre-trained large multimodal model, Generative pre-
trained transformers (GPT-4) Vision, was used specifically for estimating floodwater. The input data were flood photos
that contained referenced objects, such as street signs, cars, people, and buildings. Using the heights of the common
objects as references, the model returned the floodwater depth as the cutput. Results show that the proposed
approach can rapidly provide a consistent and reliable estimation of floodwater depth from flood photos. Such rapid
estimation is transformative in flood inundation mapping and assessing the severity of the flood in near-real time,
which is essential for effective flood response strategies.

Keywords Flood mapping, Large multimodal model, Large language model, ChatGPT, GeoAl, Disaster management
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Limited
Observed
Data

Automated Depth Estimation Using Al

Estimated Depth: 0.9 meters
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Limited
Observed
Data

ooding Extent Estimation
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Limited
Observed

Automating Geolocation of Images

Michael Baker

INTERNATIONAL

15 OPEN the APERTURE




Gaps In Flood Risk Mapping
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Counties in Texas do not have
effective Flood Insurance Rate Maps

Counties are partially mapped

Square miles of flood prone area
with unknown annual chance
floodplain

Population in flood prone area with
unknown annual chance floodplain

R

Unmapped
Areas

Approximate data
Areas with effective data more than |0 years old
Atlas |4 data update required

Available data lacks analytical rigor (BLE)

I Available data lacks analytical rigor (Fathom)

© | Incomplete coverage*
Nolgvailable floodplain data

Source — TWDB 2024
State Flood Plan

Flood planning regions




Machine Learning to
Map the Unmapped
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Unmapped
Areas

Data-driven Flood Extent Estimation

' . Floodplain§ 2 sqmi.
' - Floodplains 1 sqmi.
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*Pluvial
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Unmapped
Areas

Feature Importance

..... Importance Cutoff (0.01)
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Unmapped
Areas

Prediction Probability

100-year, Fluvial + Pluvial Flooding 20-sq.mi. drainage (minimum) floodplain probability

Prediction Probability

0.5 The likelihood or confidence of correct
classification (dry/wet)

Fluvial and Pluvial Flooding (100-yr)
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Challenges

Flood
Modeling

Limitations

PHYSICS-BASED

GIS-BASED

DATA-DRIVEN

2hr 3hr 4hr Shr 6hr 7hr 8hr 9hr 10 hr

HEC-RAS, RASPLOT, Delft3D-Flow
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Challenges

Flood
Modeling

Limitations

PHYSICS-BASED

DATA-DRIVEN

Map Legend

Population served by
October 2023.

NWS County Warning
Areas

NWS River Forecast
" Center Boundaries

Qver the next 3 years, the
National Weather Service's
National Water Center will
WOrk In cooraination with
NWS River Forecast Centers,
Weather Forecast Offices,
and other Federal partners to
release forecast flood
inundation mapping services
to the Nation.

- NWS Flood Inundation Mapping

| r,j,.ﬁ;: \ Implementation Services
0

Bathtub, HAND

Disarta Dira 0,11 C Vienin lelaerde
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Challenges

Flood
Modeling

Limitations

|

PHYSICS-BASED

GIS-BASED

DATA-DRIVEN
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Transferability of ML Flood Models
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Overarching Goal

Evaluate the ML model performance for
hindcasting flood depths and test its
transferability across different flood

7 o
&
4

events In a coastal watershed.
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Flood
Modeling

Limitations

Hurricane Ida (2021)

New Orleans




Study Area

Flood
Modeling
Limitations
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Flood
Modeling

Limitations

Observed Flood Data
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Flood
Modeling

Features

GEOGRAPHIC
LOCATION HYDROLOGIC METEOROLOGIC TOPOGRAPHIC

LAND SURFACE SOIL HYDRODYNAMIC
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Flood
Modeling

Limitations

Features

GEOGRAPHIC
LOCATION
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Flood
Modeling
Limitations

Features

HYDROLOGIC
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Features

METEOROLOGIC
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Flood
Modeling

Features

TOPOGRAPHIC
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Flood
Modeling

Limitations

Features

SOIL
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Features

Flood
Modeling

Limitations
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ML Models

RANDOM FOREST XGBOOST NEURAL NETWORK
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Customized Loss Function

HWMs range

Smith et al. (2021)
Amount of vertical uncertainty Uncertainty Ferguson et al. (2022)
Within £0.05 foot. Excellent (E) Ortega et al. (2014)
Within £0.10 foot. Good (G)
Within £0.20 foot. Fair (F)
Within £0.40 foot. Poor (P)
More than £0.40 foot. Very poor (V)
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Rain
Point-based

Elevation

Storm stige
Watershed avagage

39

Aggregated SHAP Feature Importance Radar Plot

Antecedent soil moisture
Point-based

Nind speed
Watershed maximum

0.15

0.10
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Other Flood
Events

* Hurricane Isaias (2020)
* Hurricane Sandy (2012)

* Hurricane Irene (2011)



Results

Flood event

e oo [ a0 [

Hurricane Isaias 0.73 1.54 86.3 326
Hurricane Sandy 0.70 1.71 109.2 370
Hurricane Irene 0.85 1.12 36.7 113

Michael Baker
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Results

R:.:Z:er:ax Cumulative Antecedent Storm Max wind Distance
Event Year rainfall depth soil moisture Surge speed to storm track
depth
(mm) (%) (m) (m/s) (m)
(m)
Ida 2021 0.85-36.66 121.92-201.81 27.64-35.49
2020 0.22-35.35 17.37-62.22 9-39% 0.20-0.76 48.29-65.33 0.23-1.14
2012 0.24-35.98 19.83-56.53 17-38% 63.43-76.97 0.77-2.16
2011 147.29-217.74 19-43% 1.05-1.37 51.05-60.68 0.00-0.93
Michael Baker I 3 . OPEN the APERTURE
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Hurricane lda Hurricane Isaias

Storm Track
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Flood
Modeling

Limitations

Summary of Flood Modeling

Performance

Delielniiiioloe The ML models demonstrated strong performance in
niiiiatiii hindcasting maximum flood depths for the event they were
trained for in coastal watersheds.

@ Uncertainty Integration
Incorporating the uncertainty of flood observations
substantially improved the performance and transferability of

the hindcast model.

%ﬂ Application to Unseen data

Successful transferability across other hurricanes

R s OPEN the APERTURE
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Key Takeaways

Al in H&H Modeling

Enhanced Flood
Prediction

Mapping the
unmapped

Data Enrichment

Al and image recognition can
aid in data collection for flood
modeling

Al can serve to increase our
extent of floodplain mapping to
unmonitored areas

Al can provide enhanced flood
prediction in complex scenarios
including compound flooding

Michael Baker
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Flood
Modeling

Limitations
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Ky Points:
 Hindcasting maximum weter depths on
strcams and off-channel in large
coastal watersheds via machine
lcarming (ML) modcls

ML models trained by stream water
depth data did not perform

Hind casting Maximum Water Depths in Coastal
Watersheds: The Importance of Incorporating Off-Channel
Data and Their Uncertainties in Machine Learning Models
Maryam Pakdehi'? ) and Ebrahim Ahmadisharaf'2

"Department of Civil and Environmental Engincering, FAMU-FSU College of Enginecring, Tallahassee, FL, USA.
“Resilient Infrastructure and Disaster Response Center, FAMU-FSU College of Engineering, Tallahassee, FL, USA

satisuctorily
watcr depths off-channcl
Incorporating the HW M’ uncertainty
improved the hindcasts, particularly in
s of bias and the transferebility
across watersheds

‘Supporting Information:
Supporting Information may be found in
the anline version of this aticke
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Citation:
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Hindcasting maximum waicr depths in
coustal watersheds: The importance of
incorporating off-channl data and their
uncertainties in models

Abstract In the absence of adequate observations on the off-channel areas, flood models are typically
trained and validated against stream water depths. This approach can be efficient for physics-based models,
which incorporale the underlying physical processes, but the efficiency for data-driven models like machine
learning (ML) algorithms is unclear. The existing off-channel observations like high-water marks (HWMs) are
also subject to uncertainty. This paper addressed three research questions: (a) how useful are ML models,
trained with stream gauges, for hindcasting water depths in the off-channel areas? (b) how does incorporating
the uncertainty of HWMs improve the model performance? and (c) does the uncertainty incorporation improve
the model transferability to other watersheds and events? To answer these questions, we evaluated the
performance of ML models across three large coastal watersheds in the US during three hurricanes—Michael,
Ida and lan. The model was developed under three scenarios, which differed in terms of the flood ebservational
data (stream gauges and HWMs) used for their training and validation. A loss function was proposed to
incorporate the uncertainty of observations. We found that ML models trained solely by stream gauges
performed well only for stream hindcasts. Satisfactory hindcasts on off-channel areas were obtained by
incorporating the HWMs' uncertainty via the loss function. This uncertainty incorporation reduced the mode!
bias and resulted in the best transferability to other coastal watersheds and flood events. Our study provides
insights about developing transferable ML models for hindcasting water depths on streams and off-channel
areas in coastal watersheds during extreme events.
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1. Introduction

Flood events impose significant societal and economic burdens that are growingly increased by climate change
and sea level risc (Mayou t al.. 2024; Taherkhani et al., 2020). Since 1980, floods have caused economic
damages surpassing $1 trillion and resulted in approximately 220.000 fatalities across the globe (Munich
Re, 2018). In the US alone, the annual average losses due to flooding and tropical cyclones between 1980 and
2024 are estimated at $36.2 billion (NOAA NCEL, 2024), with a projected increase in flood risks by 26.4% by
2050 (Wing et al.. 2022). To mitigate these losses, management strategies arc proposed and implemented. De-
cisions related to the selection of these strategies are supported by flood models. The efficiency of these models is.
thus, linked with the reliability of mitigation strategies and reducing future losses (Ahmadisharaf et al., 2015,
2016; Qi et al., 2021; Tkach & Simonovic, 1997).

Flood models are trained and validated against historical observations. In terms of the location, the obser-
vational data can be categorized into streams and off-channel. The former data, which are typically recorded
by stream gauges, has a greater number of obscrvations as well as betier spatial coverage and temporal
resolution. Stream observations also provide more information about the dynamics of multiple flood char-
acteristics such as depth, duration and velocity. Compared to the stream observations, the off-channel data is
very limited. Off-channel data can be acquired from satellite imagery (via remote sensing), local reports and
high-water marks (HWMs). Satellite-based observations can be limited to locations, the presence of clouds
and frequency of observations (Bates, 2023; Neal et al., 2009; Wemner et al., 2005). HWMs are not continuous
in either time or space. These data are reported only for a limited number of fload events. Studies have
leveraged HWMs to validate flood models in off-channel arcas (Chen et al., 2021; Dichl et al., 2021; Ferguson
et al. 2022; Li et al. 2021; Oriega ct al.. 2014; Schubert et al., 2022; Zarmiello & Bent, 2011; Zarriello
et al., 2014; Zheng et al., 2022).
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