EXTRAGALACTIC MAGNETISM WITH SOFIA: FIRST RESULTS

Enrique Lopez Rodriguez
KIPAC/Stanford
<table>
<thead>
<tr>
<th>Team Member</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enrique Lopez-Rodriguez (co-PI)</td>
<td>KIPAC, Stanford University, USA</td>
</tr>
<tr>
<td>Sui Ann Mao (co-PI)</td>
<td>Max Planck For Radio Astronomy at Bonn, Germany</td>
</tr>
<tr>
<td>Rainer Beck</td>
<td>Max Planck For Radio Astronomy at Bonn, Germany</td>
</tr>
<tr>
<td>Jean-Phillipe Bernard</td>
<td>Universite Paris Sud Institut d’Astrophysique Spatiale, France</td>
</tr>
<tr>
<td>Susan Clark</td>
<td>Stanford University, USA</td>
</tr>
<tr>
<td>Daniel Dale</td>
<td>University of Wyoming, USA</td>
</tr>
<tr>
<td>Ignacio del Moral Castro</td>
<td>Instituto de Astrofísica de canarias, Spain</td>
</tr>
<tr>
<td>Tanio Diaz-Santos</td>
<td>University of Crete, Greece</td>
</tr>
<tr>
<td>Darrell C. Dowell</td>
<td>Jet Propulsion Laboratory, USA</td>
</tr>
<tr>
<td>Karl Gordon</td>
<td>Space Telescope Science Institute (STScI), USA</td>
</tr>
<tr>
<td>Lucas Grosset</td>
<td>KIPAC, Stanford University, USA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Team Member</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doyal A. Harper</td>
<td>University of Chicago, USA</td>
</tr>
<tr>
<td>Annie Hughes</td>
<td>IRAP, Toulouse, France</td>
</tr>
<tr>
<td>Sergio Martinez Alvarez</td>
<td>KICC, Cambridge, UK —> KIPAC/Stanford, USA</td>
</tr>
<tr>
<td>Evangelia Ntormousi</td>
<td>University of Crete, Greece</td>
</tr>
<tr>
<td>William T. Reach</td>
<td>SOFIA Science Center, NASA Ames, USA</td>
</tr>
<tr>
<td>Julia Roman-Duval</td>
<td>Space Telescope Science Institute, USA</td>
</tr>
<tr>
<td>Alejandro Serrano Borlaff</td>
<td>NASA Ames, USA</td>
</tr>
<tr>
<td>Kandaswamy Sugramanian</td>
<td>Inter-University Centre for Astronomy and Astrophysics, India</td>
</tr>
<tr>
<td>Konstantinos Tassis</td>
<td>University of Crete, Greece</td>
</tr>
<tr>
<td>Ngoc Tram Le</td>
<td>SOFIA Science Center, NASA Ames, USA</td>
</tr>
<tr>
<td>Ellen Zweibel</td>
<td>University of Wisconsin, USA</td>
</tr>
</tbody>
</table>
Stage 1: Field seeds
- Generation of seed fields by Biermann battery, Weibel instability, or plasma fluctuations ($B \approx 10^{-18}-10^{-9}$ G)
LARGE SCALE STRUCTURES

Optical

Magnetic field strength
LARGE SCALE STRUCTURES

z=4.3

Optical

Magnetic field strength
PEAK OF STAR FORMATION ACTIVITY

Optical

Magnetic field strength

z=1.6
Stage 2: Field Amplification

- Amplification of seed fields by turbulent gas flows, i.e. turbulent dynamo (B~10^{-5} G).
- Turbulence is driven by accretion flows, SN explosions, and galaxy formation.
Stage 3: Field Ordering
- B-field ordered (stretched) by shear and by mean-field dynamo (a.k.a. differential rotation) ($t \approx 10^9$ yr, $B \approx 10^{-3}$ G)
- Turbulence driven by SN explosions and magnetorotational instabilities in galaxy disks.
TURBULENT DYNAMOS

Turbulent cascade (Dissipation)

B-field amplification (electromagnetic induction)

Turbulent coherent length of ~50-100 pc driven by SN explosions in spiral galaxies (e.g. Haverkorn 2008, Brandenburg & Subramanian 2005)
OPEN QUESTIONS

- How did the evolution of galaxies in mergers affect magnetic fields?

- Is the circumgalactic medium magnetized?

- How has the magnetic field been amplified by interaction/SF in galaxies?

- What is the structure of the magnetic field around an active nucleus?
SURVEY OF MAGNETIC FIELDS IN GALAXIES WITH SOFIA (SALSA)

GOAL:

First comprehensive study of the B-fields in the multi-phase ISM of nearby galaxies as a function of gas dynamics and galaxy types from hundred- to kpc-scale galactic environments.
SURVEY OF MAGNETIC FIELDS IN GALAXIES WITH SOFIA (SALSA)

GOAL:
First comprehensive study of the B-fields in the multi-phase ISM of nearby galaxies as a function of gas dynamics and galaxy types from hundred- to kpc-scale galactic environments.

<table>
<thead>
<tr>
<th>ISM Phase</th>
<th>Instrument</th>
<th>Tracers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dense and cold</td>
<td>FIR/HAWC+/SOFIA</td>
<td>Continuum dust total/polarized emission of aligned dust B-field orientation</td>
</tr>
<tr>
<td>Warm and diffuse</td>
<td>Radio/VLA/Effersberg</td>
<td>Synchrotron emission B-field orientation/direction/strength</td>
</tr>
<tr>
<td>Molecular gas (CO)</td>
<td>Sub-mm/ALMA</td>
<td>Line emission morphology Velocity field</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Velocity dispersion (turbulent kinetic energy)</td>
</tr>
<tr>
<td>Neutral gas (HI)</td>
<td>21cm (varios telescopes)</td>
<td>Line emission morphology Velocity field</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Velocity dispersion (turbulent kinetic energy)</td>
</tr>
</tbody>
</table>
KEY SCIENCE TOPICS OF THE LEGACY PROGRAM

Active Galaxies

Star Formation

Galaxy Dynamo Theory

Interacting Galaxies

Intergalactic medium, galactic winds, energetic particles

Lopez-Rodriguez et al. 2020
Lopez-Rodriguez et al. 2021c
Borlaff et al. 2021
Lopez-Rodriguez 2021b
Lopez-Rodriguez 2021a

http://galmagfields.com/
Ordered mean-field dominates (galactic dynamo)

Large-scale B-field

Small-scale B-field

Spiral galaxy

NGC1068

HAWC+ (89 um)

M51

HAWC+ (154 um)

ORDERED MEAN-FIELD DYNAMO

Lopez-Rodriguez et al. 2020

Borlaff et al. 2021
M51
SPIRAL GALAXY WITH COMPANION

- Far-IR and radio do not necessarily trace the same B-field component along the LOS

Borlauff et al. 2021
RADIO AND FIR OBSERVATIONS TRACE DIFFERENT GALACTIC SCALE HEIGHTS

Radio

$h \sim 1-2$ kpc

Krause et al. (2018, 2020)
RADIO AND FIR OBSERVATIONS TRACE DIFFERENT GALACTIC SCALE HEIGHTS

Radio

$h \sim 1-2 \text{ kpc}$

Krause et al. (2018, 2020)

FIR

$h < 0.5 \text{ kpc}$

Jones et al. (2020) FWHM (HAWC+): 13.6”
B-field amplification due to galaxy interaction and/or star formation activity

Borlaff et al. 2021
Fletcher et al. 2011

Fletcher et al. 2011
Borlaff et al. 2021
Ordered mean-field dominates (galactic dynamo)

Large-scale B-field

Small-scale B-field

Spiral galaxy

NGC1068

Lopez-Rodriguez et al. 2020

Fluctuation dynamo dominates (SF, galaxy interaction)

Large-scale B-field

Small-scale B-field

M51

Spiral + Interaction

Borlaff et al. 2021
CENTAURUS A
MERGER GALAXY AND ACTIVE NUCLEI

- Distorted B-field across the warped disk.
- B-field arises from fluctuation dynamos.
- Large turbulence kinetic energy and fast rotating disk.

Leslie Proudfit, SOFIA

Lopez-Rodriguez (2021b, Nature Astronomy)
B-FIELD AMPLIFICATION DUE TO TURBULENCE DYNAMO DRIVEN BY MERGER

Ordered mean-field dominates (galactic dynamo)

Fluctuation dynamo dominates (SF and galaxy interaction)

Large-scale B-field

Small-scale B-field

Spiral galaxy

NGC1068

M51

Spiral + Interaction

Centaurus A

Remnant of a merger between elliptical and spiral galaxies

Lopez-Rodriguez et al. 2020

Borlaff et al. 2021

Lopez-Rodriguez 2021b
Polarization arising from synchrotron emission. Magnetized bar due to remnant galactic dynamo. Hints of helical B-field in the starburst region.
B-FIELD TRACED BY RADIO AND FIR POLARIMETRIC OBSERVATIONS

FIR (89 um)

Radio (18 and 22 cm)

Adebahr et al. (2017)
FIR POLARIZATION TRACES THE B-FIELD ALONG THE OUTFLOW AND DISK

Adebahr et al. (2017)

Radio (18 and 22 cm)

FIR (89 um)

Outflow

Galactic B-field

1.0 kpc

Dec. (2000.0)

42'00''

41'00''

40'00''

39'00''

3

2

1

Size in kpc

0.0 0.5 1.0

R.A. (2000.0)

Adebahr et al. (2017)
LARGE-SCALE FLOW ALONG THE GALACTIC OUTFLOW

U_0 \text{ (large-scale flow)}

\text{Observed B-field using HAWC+}

B \text{ (large-scale)}

\text{Turbulence}

B'_{DCF} = B_{DCF} \left|1 - \sigma_{\phi} \frac{U_0}{\sigma_v}\right|

\text{If } U_0 = 0: \text{ no large-scale flow (classical DCF method)}

\text{If large-scale flow dominates} \rightarrow B_{DCF} \text{ overestimates the B-field strength}

\text{If turbulence dominates} \rightarrow B_{DCF} \text{ underestimates the B-field strength}
TURBULENT MAGNETIC AND KINETIC ENERGIES ARE IN CLOSE EQUIPARTITION

Energy budget:
- The entrainment between kinetic, thermal, and magnetic energies are defined by the beta parameter: \(\beta' = \frac{U_K + U_H}{U_B} \)
Turbulent dynamo

Mergers
B-field amplification

SN explosions
Permeate IGM with B-fields

Interaction, SF, galactic dynamo
SF disturbs/amplify mean-field

Mean-field dynamo
Saturated B-field close equipartition with turbulent kinetic energy in the ISM
All galaxies have available radio polarimetric observations, molecular and neutral gas maps, and Herschel observations.

<table>
<thead>
<tr>
<th>NAME</th>
<th>TYPE</th>
<th>DISTANCE (Mpc)</th>
<th>HAWC+ EXIST</th>
<th>HAWC+ REQUEST</th>
<th>ON-SOURCE TIME (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTENNAE (NGC 4038/9)</td>
<td>Interacting</td>
<td>20</td>
<td>-</td>
<td>D</td>
<td>6.75</td>
</tr>
<tr>
<td>CENTAURUS A</td>
<td>S0 (AGN)</td>
<td>3.42</td>
<td>AC</td>
<td>D</td>
<td>3.00</td>
</tr>
<tr>
<td>CIRCINUS</td>
<td>SAb (AGN)</td>
<td>4.2</td>
<td>ACD</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>M 51</td>
<td>Sb</td>
<td>8.6</td>
<td>D*</td>
<td>D</td>
<td>6.75</td>
</tr>
<tr>
<td>M 82</td>
<td>Starburst</td>
<td>3.85</td>
<td>AD</td>
<td>A,C,D,E</td>
<td>2, 2, 2</td>
</tr>
<tr>
<td>M 83</td>
<td>SABs</td>
<td>5</td>
<td>-</td>
<td>D</td>
<td>6.75</td>
</tr>
<tr>
<td>NGC 253</td>
<td>SABc</td>
<td>3.6</td>
<td>C*</td>
<td>C, D</td>
<td>3.5</td>
</tr>
<tr>
<td>NGC 891</td>
<td>SAb</td>
<td>4.6</td>
<td>C*</td>
<td>C,D</td>
<td>5,5</td>
</tr>
<tr>
<td>NGC 1068</td>
<td>SAb (AGN)</td>
<td>14</td>
<td>AC</td>
<td>A,C,D</td>
<td>7, 3, 5</td>
</tr>
<tr>
<td>NGC 1097</td>
<td>SBb</td>
<td>19</td>
<td>ACD*</td>
<td>ACD</td>
<td>5, 6, 7</td>
</tr>
<tr>
<td>NGC 2146</td>
<td>Starburst</td>
<td>13</td>
<td>ACDE*</td>
<td>CDE</td>
<td>2, 2, 2</td>
</tr>
<tr>
<td>NGC 3627</td>
<td>SABb</td>
<td>16</td>
<td>-</td>
<td>D</td>
<td>6.75</td>
</tr>
<tr>
<td>NGC 3628</td>
<td>Sb</td>
<td>18</td>
<td>-</td>
<td>D</td>
<td>6.75</td>
</tr>
<tr>
<td>NGC 4631</td>
<td>Sbd</td>
<td>13</td>
<td>-</td>
<td>D</td>
<td>6.75</td>
</tr>
<tr>
<td>NGC 4736</td>
<td>SAab</td>
<td>7.8</td>
<td>-</td>
<td>D</td>
<td>6.75</td>
</tr>
<tr>
<td>NGC 4826</td>
<td>SAab</td>
<td>10</td>
<td>-</td>
<td>C</td>
<td>4.35</td>
</tr>
<tr>
<td>NGC 6946</td>
<td>SAbcd</td>
<td>3.9</td>
<td>D*</td>
<td>D</td>
<td>4</td>
</tr>
<tr>
<td>NGC 7331</td>
<td>SAb</td>
<td>7.2</td>
<td>-</td>
<td>D</td>
<td>6.75</td>
</tr>
<tr>
<td>MEDIAN</td>
<td></td>
<td>8.2</td>
<td></td>
<td></td>
<td>130</td>
</tr>
<tr>
<td>STDDEV</td>
<td></td>
<td>5.8</td>
<td></td>
<td></td>
<td>157</td>
</tr>
</tbody>
</table>

Data available at:
Legacy Program website (high-level data products):
http://galmagfields.com/
First Data Release
14 galaxies
Starbursts
First Data Release

14 galaxies

AGN Starbursts
First Data Release

14 galaxies

AGN Starbursts Spirals
STUDENTS AND SUMMER INTERNS

Iñigo Valenzuela Lombera + Susan Clark
Stanford Graduate Student
Physics

Magnetic field directions of spiral galaxies

William Jeffrey Surgeny + Susan Clark
Stanford Undergrad.

EB decomposition of B-field in spirals

Ifdita Hasan Orney
Stanford Undergrad.
Computer Science
Summer Intern 2022

Voronio algorithm applied to polarization

Abraar Salem
San Francisco State University
Physics
Cal-Bridge Program, Summer 2022

B-field orientation of starbursts
POSTDOCS AND RESEARCHERS

Alejandro Serrano Borlaff
NASA Postdoctoral Program
NASA Ames

Lucas Grosset
Postdoctoral Fellow

Sergio Martin Alvarez
Postdoctoral Researcher
KICC, Cambridge

Sarah Eftekharzadeh
Instrument Scientist
SOFIA

Ignacio del Moral Castro
PhD. Since Feb. 2022
Instituto de Astrofisica de Canarias

M51 (Paper I)
B-field and kinematics
Data analysis tools

B-field vs. Rotational support in M83

B-field morphology of Circinus

MHD Simulations of galaxies

B-fields of the Unusual NGC 4736
POSTDOCS AND RESEARCHERS

Alejandro Serrano Borlaff
NASA Postdoctoral Program
NASA Ames

M51 (Paper I)
B-field and kinematics
Data analysis tools

Lucas Grosset
Postdoctoral Fellow

B-field morphology of Circinus

Sergio Martin Alvarez
Postdoctoral Researcher
KICC, Cambridge

Join Stanford in Sep. 2022

MHD Simulations of galaxies

Sarah Eftekharzadeh
Instrument Scientist
SOFIA

B-fields of the Unusual NGC 4736

Ignacio del Moral Castro
PhD. Since Feb. 2022
Instituto de Astrofísica de Canarias

B-field vs. Rotational support in M83
STAY TUNED FOR MORE RESULTS

EXTRAGALACTIC MAGNETISM WITH SOFIA
(LEGACY PROGRAM)

http://galmagfields.com/