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Motivation — the Nearby Ecosystems

It’s 5Spm on the last big science day, so I'm going to take our desire to understand the physical
conditions, timescales, efficiencies, and composition of the ISM and star formation as given.
The “nearby ecosystems’ specifically contribute a few key angles to this view.

= Statistics and diversity of environments — key to general results
= External perspective — key to place ISM and feedback in context

= Ability to achieve a complete accounting via multiwavelength data

And we are making amazing progress on this topic — as we have heard this week already. But
increasingly resolved IR spectroscopy and imaging are the limiting reagent to make progress.



Conclusions (People Version)

A lot of what I will tell you reflects great thesis and post-doc work by three amazing first term
postdocs. Please check out their papers, invite them for talks, and reach out to them!

Jiayi Sun I-Da Chiang Eric Koch

CITA National Fellow at ASIAA Postdoctoral SMA/NSERC Postdoctoral
McMaster Fellow Fellow at CfA
Cloud-scale molecular The resolved dust-to- New views of atomic gas
gas and star formation metals ratio and CO- in the Local Group and

in context across the to-H2 conversion factor highly resolved studies of

local galaxy population. in low redshift galaxies. the ISM.



A Picture of My Dog

It has been amazing to be back in person and it’s been a great conference. But the one thing [
predict we will all miss from the bad old zoom days is the prevalence of cute pets in talks.




Outline

We are in an exciting time to study star formation in local galaxies, with major new surveys
from ALMA, Hubble, the VLT, AstroSat, and soon JWST. The infrared accessed by SOFIA or
similar future observatories contains key diagnostics to make the most of these data!

=  Cloud-scale CO and star formation

= Dust and metals in galaxies

= The elusive, but important, cold neutral medium



We are in an exciting time to study star formation in local galaxies, with major new surveys
from ALMA, Hubble, the VLT, AstroSat, and soon JWST. The infrared accessed by SOFIA or
similar past and future observatories contains key diagnostics to make the most of these data!

= Cloud-scale CO and star formation
o Molecular gas is closely coupled to host galaxy
o Gas and star formation at high resolution
o Precision a., remains a major obstacle

o The CII-to-CO ratio is a key but often missing quantity

* Dust and metals in galaxies

* The elusive, but important, cold neutral medium



Nearby galaxies in unprecedented detail

ALMA, Hubble, AstroSat, optical IFUs, and soon JWST have covered the nearby galaxy
population as part of a series of programs (PHANGS, LEGUS, CALIFA, SDSS 1V, etc.). The
PHANGS surveys: PHANGS-ALMA, PHANGS-MUSE, PHANGS-HST have mapped a large

sample of very nearby galaxies in tracers of cold gas, stars, star formation, and feedback.
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A new sharp view of molecular gas in galaxies

PHANGS-ALMA mapped the CO 2-1 emission from 90 nearby, massive star-forming galaxies
(i.e., most of them) at ~1" or ~100pc resolution. This sharpens our view by ~ 10 times
compared to previous single dish mapping of large samples and gives us a “cloud scale” view.
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We have cloud-scale CO 2-1 observations of almost 100 galaxies!

PHANGS-ALMA aimed to map all of the massive star-forming galaxies visible to ALMA within
about 17 Mpc — these 100 galaxies reasonably sample the main sequence of star-forming
galaxies and give us a sharp, sensitive new view of the molecular ISM. They are all public!

https://sites.google.com/view/phangs/home/data

Leroy, Schinnerer et al. (2021)


https://sites.google.com/view/phangs/home/data

YOU have cloud-scale CO 2-1 observations of almost 100 galaxies!

The CO data, the MUSE VLT IFU data, HST images, and a host of higher level data products
and software are all public. We want you to use them (Please! We worked really hard on them!)

https://sites.google.com/view/phangs/home/data

REVERSE CHRONOLOGICAL ORDER:
= Stellar Structures, Molecular Gas, and Star Formation across the PHANGS sample of nearby galaxies by Querejeta et al. (2021) environmental masks for 74
PHANGS galaxies (link)

= PHANGS-MUSE Public Release
= PHANGS-MUSE Public Release (via ESO Link * via CADC: Link)
= Emsellem et al. (2021) Survey Paper (PDF)
= Description (PDF)
= PHANGS-ALMA Public Release (90 galaxies via Link)
= PHANGS-ALMA Public Release (74 galaxies via JAO Link)
= README

= Leroy et al. (2021) Survey Paper (arXiv)

= Leroy et al. (2021) PHANGS Pipeline paper (ADS)

= CADC archive coming soon

= PHANGS-ALMA image atlas (pdf ; individual images )
= PHANGS-HST data release DR 1 (link)


https://sites.google.com/view/phangs/home/data

Molecular gas at ~100 pc resolution knows about its host galaxy

A major result from these surveys is that the properties of molecular gas on ~100 pc scales
varies within and among galaxies and shows a close coupling to the host galaxy. The internal
(probably turbulent?) pressure of clouds represents a primary axis of variation.
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Sun et al. (2018, 2020b) and see Rosolowsky et al. (2021) for similar results using cloud segmentation



Molecular gas at ~100 pc resolution knows about its host galaxy

One can predict the mean properties of the local ~100 pc scale molecular gas from the local
environment and global galaxy properties. Molecular clouds (or at least gas at 100 pc scales)
are an integrated part of the galaxy disk, not universal, decoupled objects.
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Sun et al. (2018, 2020b) and see Rosolowsky et al. (2021) for similar results using cloud segmentation



Molecular gas at ~100 pc resolution is closely coupled to its host galaxy

One can predict the mean properties of the local ~100 pc scale molecular gas from the local
environment and global galaxy properties. Molecular clouds (or at least gas at 100 pc scales)
are an integrated part of the galaxy disk, not universal, decoupled objects.
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Resolving the Gas-Star Formation-Feedback Cycle

By cutting across wavelength these same observations sample the star formation process at

different stages. The visible association and separation of tracers of massive stars (Ha, IR) and

the fuel for star formation (CO) provides a clear, quantitative observable signature related to
the evolution of individual star forming regions via feedback and star formation.
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Ilustrations of how Ha (tracing massive young stars) and CO (tracing cold star-forming gas) appear in different locations
when observed at high resolution. See the visible separation of the two.




Resolving the Gas-Star Formation-Feedback Cycle

From statistical analysis of the fractional coverage, separations, or scale-dependent flux ratios, one has
access to the life cycle of star forming regions. Covered in detail in great talk earlier in the week by
Jayeon Kim!
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The same data allow us to estimate 100 pc-scale densities and make quantitative estimates of the mean
efficiency per free fall time. The result is the largest, most systematic direct estimate of the efficiency per
free fall time. In Utomo et al. (2018) we found eg of 0.7% - lower than some Milky Way estimates, but in

reasonable agreement with previous less direct estimates and current theoretical expectations.
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This all goes through CO and we know acq varies

Essentially every single one of these measurements relies on the use of CO to trace molecular
gas. This does work at a basic level, but we know acq varies with metallicity, excitation, and
opacity of the gas — which makes the interpretation of results ambiguous. We want to move as
close to “precision aco”’ as we can to make the most of these amazing new-generation data.

Z,D/G
? i e All CO data
: ® |
o o B Data median +10
' : CO upper limits |50
—-7.5 !

pcz]

Mg yr‘1
K km s~ !

|

0

)

SFR/CO in star-forming
galaxies (each point is a
galaxy). The CO relative to
star formation drops at low
metallicity — a trend that
appears in most analyses of

: SFR in galaxies. How much
; : gl i 410.0 is CO-to-H2 and how much
-9.5 é 7 '0 lil is physics?

log;, ’L'é‘égl [yr~!] fixed aéao

logip SFR/Lco [
|
(0 ]
()]

|
©
=

From Leroy, Bolatto, Wilson et al. (in prep.) after Fig I in Leroy, Schinnerer et al. (2021)



CII-to-CO as a key to this problem

The CII line intensity is a fundamental observable that has direct, crucial bearing on half of
this problem and is only accessible in the IR, and only from SOFIA right now. CII is the
dominant, observable phase of C mixed with the “CO dark” phase of the molecular gas. It is a
crucial complement to (and not replaced by) multi-line, multispecies molecular modeling.
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CII-to-CO as a key to this problem

Observations that combine CII, CO, and (ideally) the information needed to estimate the CII
emissivity of the gas and contribution of potential contaminants offer a power way to probe the
CO-dark gas reservoir. This is one of our best ways (along with dust) to calibrate CO or trace
molecular gas as a function of metallicity — which is critically important! SOFIA is our only
access to this critically important observable now or for the foreseeable future.
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We are in an exciting time to study star formation in local galaxies, with major new surveys
from ALMA, Hubble, the VLT, AstroSat, and soon JWST. The infrared accessed by SOFIA or
similar past and future observatories contains key diagnostics to make the most of these data!

=  Cloud-scale CO and star formation

* Dust and metals in galaxies
o Many (most?) “metallicity” effects in galaxies are “dust” effects
o The dust to metals ratio is strongly environment dependent
o We need access to the IR peak to push this field forward

= The elusive, but important, cold neutral medium



Mapping of metallicity in galaxies is a booming industry

The last decade has seen many new optical IFU maps (from CALIFA, MaNGA, SAMI, and
PHANG—MUSE) that yield resolved tracers of metallicity across galaxies. Metallicity impacts

the ISM, can act as a tracer of the history of the gas, and is a view of the buildup of galaxies.
We are resolving metallicity across galaxies as never before.
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“Metallicity” effects are dust effects for a large swath of nearby galaxy science

For star formation, “metallicity” affects the CO-to-H, conversion factor, H, abundance,
radiation pressure into and a host of other topics related the structure of ISM in galaxies. But
for many (not all) of these applications, “metallicity” means "the dust-to-gas ratio.”
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Hollenbach and Tielens (1997) - PDR structure laid out as a function of dust shielding. Dust-to-gas ratio,
not just metallicity, is a controlling parameter for the structure of PDRs (the structure is often even
framed in terms of AV from the surface of the cloud).



The dust-to-metals ratio varies (a lot! [and systematically!])

A major result from multiple Herschel programs (and HST absorption work) has been that the
dust-to-metals ratio is not fixed (so that D/G is not simply a factor times metallicity), but varies

with metallicity (or mass fraction) and phase of the ISM. This complicates how we think about
“metallicity” effects on star formation and the ISM.
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Dust-to-gas ratio and metallicity -~
A next major frontier here is to resolve the dust-to-metals ratio across galaxies. This requires
maps of metallicity, HI (atomic gas), CO, and dust (plus ideally a lot of other things). This
offers the prospect to constrain the conversion factor, resolve the impact of density or ISM

phase on the dust-to-metals ratio, and generally figure out how dust works in galaxies.
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Dust-to-gas ratio and metallicity
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A next major frontier here is to resolve the dust-to-metals ratio across galaxies. This requires
maps of HI (atomic gas), CO, and dust (plus ideally a lot of other things). This offers the
prospect to constrain the conversion factor, resolve the impact of density or ISM phase on the
dust-to-metals ratio, and generally figure out how dust works in galaxies.

Dust-to-metals here for different conversion factor cases

D/M (ag3? case) D/M (ag§? case) D/M (af¥ case)

D/M (afd® case)

I-Da Chiang, Karin Sandstrom, Jeremy Chastenet et al. (2018, 2021, and in prep.)
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To move forward we need to be able to map dust mass

In almost a complete reversal from a decade ago, we are not really limited by metallicity maps
of galaxies, CO, or HI data, but are instead limited by the inability to make new dust maps. IR
emission remains the most powerful way to map all of the dust, but to do this we need a
temperature, which means observing around the peak of the dust SED (then this can

complement bolomoter surveys at mm- or submm- wavelengths). This capability appears
restricted to SOFIA for the foreseeable future.
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We are in an exciting time to study star formation in local galaxies, with major new surveys
from ALMA, Hubble, the VLT, AstroSat, and soon JWST. The infrared accessed by SOFIA or
similar past and future observatories contains key diagnostics to make the most of these data!

= Cloud-scale CO and star formation

* Dust and metals in galaxies

" The elusive, but important, cold neutral medium
o HI remains the most massive phase of the ISM in disk galaxies
o The CNM is cold and dense and may outmass molecular gas

o The CII-to-HI ratio can help constrain this quantity



Most gas in galaxies is HI, making HI a key to star formation

While we have made amazing progress in studying the molecular ISM over the last decade,
progress on the atomic ISM has been slower (totally understandably). But atomic gas makes up
most of the gas in galaxies at essentially all redshifts. We need to understand the physics of the
atomic medium, how it forms cold, molecular gas, and how it experiences feedback! (Orr talk!)
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Walter et al. (2020)



The cold neutral medium remains elusive but really important

The HI shows a wide range of densities and temperature and the H2/HI ratio shows a huge
range in galaxies. We know that about a 25-35% of the HI is cold and dense near us in the

Milky Way, but the detailed distribution and variations in the location and properties of the
cold neutral medium in other galaxies remain substantially unknown.

TABLE 3
Hi MAss FRACTIONS
Phase | Absorption Total
CNM 0.56 0.10 0.28 €5
UNM 0.41+£0.10 0.20 . s#
WNM 0.03 £ 0.05 0.52
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The Local Group L Band Survey aims to resolve the physics of atomic gas

We (including Jeremy, Liz, Remy) are trying to address this with new, sensitive 21-cm, OH, and
1-2 GHz continuum imaging targeting the closest galaxies using an “extra large” VLA

program. Aims include extending “Milky Way-style” absorption, structure, and kinematic
analysis to the northern Local Group targets — M31, M33, NGC6822, IC 10, IC 1613, WLM.
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Local Group L-Band Survey

A Karl G. Jansky Very Large Array "extra large' survey of 21-cm , continuum, and OH emission from the Local Group of Galaxies

www.lglbs.org

Leads: Chomiuk, Dalcanton, Leroy, Rosolowsky, Stanimirovic, Walter
Doing the lion's share of awesome work: Eric Koch, Sumit Sarbadhicary


http://www.lglbs.org/

The Local Group L Band Survey aims to resolve the physics of atomic gas

The 1-2 GHz continuum reveals star forming regions and supernova remnants at < 10 pc
resolution. The HI reaches resolution 20-40 pc and < 1 kms spectral resolution. The survey will
give an unparalleled look at the physical state and structure of HI and a deep inventory of the
past and present star formation in each target.
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Eric Koch et al (in preparation — expect 2022)



The Local Group L Band Survey aims to resolve the physics of atomic gas

The 1-2 GHz continuum reveals star forming regions and supernova remnants at < 10 pc
resolution. The HI reaches resolution < 40 pc and < 1 kms spectral resolution. The survey will

give an unparalleled look at the physical state and structure of HI and a deep inventory of the
past and present star formation in each target.
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The CII-to-HI ratio

Absorption and very high resolution are hard and substantially confined to close, big-on-the-
sky galaxies. We need some ability to trace the phase breakdown of HI across the whole galaxy
population. One of the best tools we have here is the ClI-to-HI ratio where gas is mostly HI.
The emissivity of CII mixed with CNM is much higher than the emissivity of CII mixed with
WNM — see Tielens talk.
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CII emissivity (x-axis) vs. pressure changing CNM temperature (left), CNM mass fraction (middle),
and H2 contribution (right). CII-to-HI contributes a key piece of information and is very widely observable.

From Herrera Camus et al. (2017) and see Tarantino et al. (2021) and (I think?) Tarantino talk!



The CII-to-HI ratio

This makes the CIlI-to-HI ratio in regions where HI dominates the mass a key observable.
Interpretation is not always trivial but this is one of our only ways to get at a combination of
CNM abundance and thermal pressure in the atomic gas of distant galaxies. Currently there

have been some inspiring FIFI-LS maps, but a lot of the work still rests on Herschel coverage.
This is an area where we still have a HUGE amount to learn.
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From Herrera Camus et al. (2017) and see Tarantino et al. (2021) and (I think?) Tarantino talk!
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Conclusions

We are in an exciting time to study star formation in local galaxies, with major new surveys
from ALMA, Hubble, the VLT, AstroSat, and soon JWST. The infrared accessed by SOFIA or
similar past and future observatories contains key diagnostics to make the most of these data!

= Cloud-scale CO and star formation
o Molecular gas is closely coupled to host galaxy
o Gas and star formation at high resolution
o Precision a., remains a major obstacle
o The CII-to-CO ratio is a key but often missing quantity

* Dust and metals in galaxies
o Many (most?) “metallicity” effects in galaxies are “dust” effects
o The dust to metals ratio is strongly environment dependent
o We need access to the IR peak to push this field forward

" The elusive, but important, cold neutral medium
o HI remains the most massive phase of the ISM in disk galaxies
o The CNM is cold and dense and may outmass molecular gas
o The CII-to-HI ratio can help constrain this quantity



Spectral Sensitivity SOFIA
(point source)

Low-res mode

PRIMA

THE PROBE FAR-INFRARED MISSION FOR ASTROPHYSICS

Preliminary

A community-driven general-observer-accessible far-IR-
optimized observatory for 2030.

e JPLimplementation lead, GSFC key contributions.
* International partnerships in development.
* A cryogenic telescope with a target aperture of 2-3 meters.

Science and hardware formulation underway — inputs welcome.
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Base low-resolution spectroscopy w/ wideband gratings: ~25 to 330 um.

¢ Resolving power 60 to 250.

¢ Unprecedented line surface brightness sensitivity (bottom center figure).

e Spectral-line sensitivity when pointed: 5, 1 hour of 5x102° to 2x101° W/m2 (top right).
¢ Full instantaneous coverage of at least one ~octave bandwidth spectrometer band at a
time, multiple bands simultaneously on source is a goal.

L Spatial-Spectral]

FIA IFI-LS i
SO Survey Time

Low-res mode
Preliminary

=
o

=
o

¢ Mapping speed: 10! to 10 sq degrees per hour to 3x101° W/m? (bottom right figure).

Medium-resolution capability using
addition to low-resolution gratings:
same 25-330 um band.

e Available resolving power: up to
5000-8000.

e Sensitivity range: 50, 1 hour of 101°
to 2x10°18 W/m? per spectral resolution
element (or unresolved line).

* Mapping speed in medium-res mode:
modest, to be determined, depends on
R desired.

Contact with questions:
Jason Glenn (jason.glenn@nasa.gov),
Matt Bradford (matt.bradford@jpl.nasa.gov)
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