German/European Instrumentation Effort

04-Mar-2022

Bernhard Schulz
Deputy Director SOFIA Science Mission Operations, NASA Ames
Deutsches SOFIA Institut, Univ. Stuttgart
Workshop 26-28 Jul 2021
• 231 registered participants;
• 3 days @ ~4.5h per day
• 56 Presenters
• **Main Themes**: ISM, PDRs, shocks, star formation, astrochemistry
• 1/3 of presentations extragalactic
 – High resolution spectroscopy MIR and FIR

An example from the talk by Maytraiyee Tiwari

![Average spectra](image)

- RCW 49, Tiwari et al.
- Average spectra over the entire observed mapped region
- $^{12}\text{CO} \times 1.5$
- $^{13}\text{CO} \times 4$

![Energetics and Morphology](image)

- KE of shell = 2×10^{50} ergs.
- ME from winds = 6×10^{55} ergs.
- Plasma’s thermal energy = 2.4×10^{50} ergs
- The shell is broken open in the west and the plasma is venting out.
- Shell’s expansion must be driven by momentum.
Science Requirements

Workshop 26-28 Jul 2021

- 231 registered participants;
- 3 days @ ~4.5h per day
- 56 Presenters
- **Main Themes:** ISM, PDRs, shocks, star formation, astrochemistry
- 1/3 of presentations extragalactic
 - High resolution spectroscopy MIR and FIR
 - Trade spectral resolution for sensitivity

An example from the talk by Melanie Chevance

30Dor: SOFIA/FIFI-LS data

Chevance et al. 2020b
Science Requirements

Workshop 26-28 Jul 2021

- 231 registered participants;
- 3 days @ ~4.5h per day
- 56 Presenters
- **Main Themes:** ISM, PDRs, shocks, star formation, astrochemistry
- 1/3 of presentations extragalactic
 - High resolution spectroscopy MIR and FIR
 - Trade spectral resolution for sensitivity
 - Polarimetry in FIR
 - MIR/FIR broadband photometry
 - Specific lines
 - Time sampling
- **Specific requests:**
 - Fine structure lines, HD, CO ladder, oxygen compounds
 - large scale mapping of [NII] 122\(\mu\)m / 205\(\mu\)m
 - 350\(\mu\)m filter
 - NIR capabilities for occultation obs

<table>
<thead>
<tr>
<th>Session</th>
<th>Talks</th>
<th>Posters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar System</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Star & Planet Formation</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Interstellar Medium</td>
<td>15</td>
<td>8</td>
</tr>
<tr>
<td>Late Stellar Evolution</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Nearby Galaxies</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>High-Redshift Galaxies</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Instrumental Requirements

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Count</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectrometer</td>
<td>46</td>
<td>73%</td>
</tr>
<tr>
<td>Photometer</td>
<td>15</td>
<td>24%</td>
</tr>
<tr>
<td>Heterodyne</td>
<td>32</td>
<td>51%</td>
</tr>
<tr>
<td>R=5000 FIFI</td>
<td>13</td>
<td>21%</td>
</tr>
<tr>
<td>FIFI-LS</td>
<td>19</td>
<td>30%</td>
</tr>
<tr>
<td>EXES</td>
<td>4</td>
<td>6%</td>
</tr>
<tr>
<td>FIR camera</td>
<td>12</td>
<td>19%</td>
</tr>
<tr>
<td>MIR camera</td>
<td>2</td>
<td>3%</td>
</tr>
<tr>
<td>NIR camera</td>
<td>3</td>
<td>5%</td>
</tr>
<tr>
<td>Pol.</td>
<td>7</td>
<td>11%</td>
</tr>
<tr>
<td>Time sampling balloon</td>
<td>5</td>
<td>8%</td>
</tr>
<tr>
<td>Time sampling balloon</td>
<td>6</td>
<td>10%</td>
</tr>
<tr>
<td>single pointing maps</td>
<td>21</td>
<td>33%</td>
</tr>
<tr>
<td>maps</td>
<td>37</td>
<td>59%</td>
</tr>
<tr>
<td>Total Science Cases</td>
<td>63</td>
<td>100%</td>
</tr>
</tbody>
</table>

Version: 14-Oct-2021
Second Workshop

Workshop 17-19 Nov 2021

• 156 registered participants;
• 3 days @ ~4.5h per day
• 31 Presenters

• Main Themes:
 – Airborne platforms
 – Heterodyne devices/systems
 – Direct detection devices/systems
 – Instruments and funding
Heterodyne Technology

Typical SIS Receiver Architecture

- Sky
- Telescope Optics
- Beam Splitter
- Feedhorn
- RF Antenna
- Mixer
- 300 K Electronics and Readout
- LO
- 4 K Stage
- LNA

Herschel HIFI

Balanced Mixer fort CHAI

Balanced Mixer at 1.9 THz

460 GHz

SuperCam 64 Pixel (Guest on APEX)
Heterodyne Technology

- Highest spectral resolution ($R \approx 10^6$)
- Well understood technology

- Feedhorns
- Mixer:
 - $v > 1$ THz: HEB (Hot electron bolometers)
 - $v < 1$ THz: SIS (Superconductor-Insulator-Superconductor)
 - IF Bandwidth < 5 GHz, with new materials ≈ 9 GHz possible

- Local Oscillator (LO):
 - $v < 2$ THz: Frequency multiplied types
 - $v > 2$ THz: Quantum cascade lasers (QCL)

- Backend Spectrometer
 - Much electronics that requires power
- 100 Pixels challenging
- Challenges:
 - Micromachining and handling
 - Miniaturization
 - LO coupling and power
 - Mixer cooling
 - Low power spectrometer electronics (CMOS?)

- Modular approach? 35 pixels?
- Single frequency exchangeable front end
Direct Detection Technology

MKIDs

Integral Field Unit (IFU)

TES Detectors

Cold Electron Bolometers

Si Polarimetric Bolometers
Direct Detection Technology

- large pixel counts
- No quantum noise penalty
- Maximum $R \sim 10^5$

Kinetic Inductance Detectors (KIDs)
- Lumped element KIDs (CNRS Grenoble)
 - NEP $\sim 10^{-19}$ W/√Hz
- Antenna Coupled KIDs (SRON, TU-Delft)
- Integrated Field Unit (IFU) (TU-Delft)
 - Spectrally resolved pixels with KIDs
 - 350 μm spectral mapping at $R \sim 10$ (“filter”) or $R = 100$-2000?
- FIFI+LS Upgrade (Illinois, DSI, JPL, UdEC, USRA)
 - Use JPL Starfire KID development
 - Increase spaxels to 9x7 and FOV by 1.75
 - Extend range to 42μm and 206μm

Transition Edge Detectors (TES)
- Wide range all IR/submm, very adaptable
- TES application for security scanner (Leibnitz Inst.)

Semiconductor Bolometers
- Silicon Polarimetric Detector Arrays (CEA, MPE)
 - On chip polarimetry
 - Add spectroscopy with Etalon, Fabry-Perot Scanner, Moving Backshort

Cold Electron Bolometers
- Multichroic receivers with Cold-Electron Bolometers (Chalmers, Nizni Novgorod TU...)
- Wide wavelength range and very small detector element
- Self cooling
Airborne Platforms

- **SOFIA** (NASA, DLR)
 - Airplane 2.7m telescope, ~150 flights per year to the stratosphere 4 flights/week @ 10h
 - Crewed mission
 - Fully functional observatory with 20 year operational lifetime
 - Payload mass <600kg, <6500 Watts (instrument only)
 - LHe cryocoolers

- **COPILOT** (CNES, IRAp, IAS, CEA, Cardiff, Rome)
 - Balloon missions, 1 m telescope
 - Wide field broad band photometry of C+

- **Blast Observatory** (NASA and Italian space agency)
 - Balloon mission, 1.8 m Gregorian telescope
 - 175 µm 250 µm, 350 µm MKIDs (~8000 det), 30 days, ~500 W power by solar cells (up to 1980W)
 - Payload 1225kg (includes telescope)

- **ASTHROS** (NASA-JPL)
 - Balloon mission, 2.5m telescope, 2 year cadence
 - [NII] 122µm (2.675 THz) and 205µm (1.461 THz), 4 pixels, 4K cryocooler, 20 days
 - 15 days around Antarctica
 - Payload 2700 kg, 900kg, 450kg (balloon type)
 - 900 W of power

- **Sunrise Mission** (MPS Göttingen)
 - 1 m telescope, UV and visible
 - Altitudes are 35km-43km
 - Durations are 5-6 days arctic, <43 days antarctic
Airborne Platforms as Observatories

- Airplane and balloons have each their individual strengths
- **SOFIA**
 - Regular observations 4 days a week
 - Safe landings
 - Good calibration
 - Long instrument lifetime
 - Observatory operation serves many communities
 - Accommodating power and mass limits
 - Moveable observatory
 - “Rapid” response within reason is possible
 - Overflight restrictions only minor problem

- **Balloons**
 - Higher altitude
 - Long observing time, especially with high pressure balloons
 - Relatively cheap
 - Safe landing considered biggest issue
 - Gondola protection for payload
 - Probability for total loss high
 - Overflight restrictions an issue in the north
 - Very different schedule considerations
 - Typically plan for 1 flight, next one ~2 years later
 - Waiting for the right weather conditions
 - Stringent mass and power limitations
 - Long duration balloons less lift
 - Good for focused longer duration missions
• Terahertz Mapper
 – Relatively clear idea how it will look
 – Specific frequencies important (science feedback needed)

• 100 Pixels considered a challenge
 – Needs simple reproducible design
 – Multiple suggestions of building modular and upgradeable
 • (GREAT example)
 – LOs for >1 THz will be QCLs that are harder to tune
 – Exchangeable front ends for single frequency

• Expertise is still there. Funding needed.
Direct Detection Instrument Ideas

- FIFI+LS: FIFI-LS Upgrade to more pixels and better detectors
 - Est. cost is ~$4M ($2.5M is for detectors), ~2.5 years (1.5 years downtime)
- HIRMES-2: Solve detector issues, reduce complexity and finish
- HIRMES pHD: HD specialized spectrometer based on HIRMES
 - Could be modular approach to HIRMES-2
- Near-infrared channel for SOFIA's Focal Plane Imager FPI+
 - NIR channel ~$350k, new M3 ~$940k
- B-BOP derivative for Co-PILOT (or SOFIA)
- 350 μm Spectral Mapper based on IFU technology

- Many options: Loop back with science needed
Airborne Platforms

• Balloons are great for focused high altitude missions
 – It is still a long way to a regular observatory operation
 – Main obstacles are
 • Considerable risk during landing
 • Strong weather dependence of launch

• New airborne observatories need safe landing and mobility
 – Study steerable glider landing and propulsion systems
 – Study by Keck Institute of airships reaching 65000 ft.
 – Considering development time, this would be a good SOFIA successor

• SOFIA is a working and well performing observatory
 – There are still 11 years of the 20 year operational lifetime left
 – New instrumentation can be built but needs project stability
Conclusion

- European technology is there to substantially upgrade SOFIA abilities and science.
- Another iteration with scientists is needed
- Any European funding will require project stability for the projected development time, i.e. >= 5 years
- Balloons are good for specific tasks but are not the Far-IR observatory solution for the next 10-15 years due to lack of safe landing capability and strong weather dependence

Keep SOFIA flying!

Stopping now is like stopping Herschel after 2 years!

Agree on a remaining lifetime and provide stability
- Spend a moderate budget per year on upgrades
- Start preparing for a successor now
Backups
Sensitivity Limits Direct Detection vs. Coherent Detection

Talk by Baselmans
High resolution spectroscopy using direct detectors

On needs a folded mechanism to beat the long path length differences:

- disambiguation distance: $\Delta d = \frac{1}{2} \lambda \cdot R$, $R = \frac{\lambda}{\delta \lambda}$
- Resonant cavities, such as VIPA's, are more compact

Bourdarot, G. Et al., (2018). Experimental test of a 40 cm-long R=100 000 spectrometer for exoplanet characterisation. https://doi.org/10.1117/12.2311696