MAGNETIC FIELD GEOMETRY AND GAS KINEMATICS IN NGC2024

DAREK LIS

J. PETY, P. F. GOLDSMITH, M. GERIN, J. ORKISZ, C. D. DOWELL, F. LEVRIER, J. CHANUSSOT, P. CHAINAIS, K. DEMYK, M. GAUDEL, J. R. GOICOECHEA, V. GUILLET, N. PERETTO, A. ROUEFF, N. YSARD

LAKE ARROWHEAD, MARCH 2, 2022

Jet Propulsion Laboratory California Institute of Technology

INTRODUCTION

Magnetic fields play a key role in supporting molecular clouds against gravitational collapse.

Planck dust polarization maps revealed a dramatic change in the alignment between the magnetic field and dust and gas in the ISM, from parallel in diffuse regions to perpendicular in dense supercritical filaments and ridges.

Such a transition should be accompanied by a corresponding change in the kinematic properties of the gas.

This can be investigated through a combination of wide-field dust polarimetry and velocity-resolved molecular line imaging at high angular resolution.

IRAM ORION-B LARGE PROGRAM

The IRAM-30m ORION-B Large Program has imaged a 5 square degree field (~20 pc across) in the Orion B molecular cloud.

Angular resolution of 26'' ($10^4 au$, or 0.05 pc).

At least 30 molecular lines observed in the 72–116 GHz range with a spectral resolution \sim 0.6 km s⁻¹.

The species include CO, HCO⁺, HCN, and CS, as well as their optically thin isotopologues.

VELOCITY FIELD AND FILAMENTS

Dynamically young, gravitationally stable network of filaments.

Filament widths 0.12±0.04 pc

Wide range of linear (1–100 M_{\odot} pc⁻¹) and volume densities (2×10³–2×10⁵ cm⁻³).

Filament population dominated by low-density, thermally subcritical structures.

Most of the filaments are not collapsing to form stars.

Only 1% of the mass in supercritical star-forming filaments.

MOTIVATION FOR SOFIA OBSERVATIONS

Unprecedented characterization of the physical structure, chemistry, and dynamics of a typical star-forming GMC with a favorable geometry.

Lack of knowledge of the magnetic field on scales comparable to the characteristic size of dense ridges (~0.1 pc, 50").

Our goal is to correlate changes in the magnetic field geometry with corresponding changes in the kinematic properties of the gas.

SOFIA OBSERVATIONS

Challenging observations, ~20×20' region, but excellent data quality.

MAIN NGC2024 FILAMENT

Large change in the polarization fraction in the north part of the filament.

High Polarization Fraction (HPF) region.

COMPARE 155 AND 214-MICRON HAWC+ DATA

Same pattern seen at 155 and 214 μ m – independent observations. But the very high polarization fraction does not seem reasonable!

FILTERING OF EXTENDED DUST EMISSION

Good agreement between PACS and HAWC+ fluxes near the peak of the emission.

Significant filtering in the HAWC+ images at low flux levels.

Can we correct for this effect by using total PACS flux and polarized HAWC+ flux to recompute the polarization fraction?

CORRECTED POLARIZATION FRACTION

²olarization Fraction (%)

Zeroth order correction: use HAWC+ polarized flux and PACS total flux (should be done earlier in the pipeline).

A peak in the polarization fraction at the same location.

Maximum polarization fraction ~6% only.

Much more consistent with observations of other star-forming regions.

Changes in the molecular line shapes—three velocity components can be identified in the spectra in the vicinity of the HPF region

12

¹³CO VELOCITY FIELD

Multiple velocity components with distinctly different morphologies. The 5 kms⁻¹ component spatially coincident with the HPF region.

10.25 kms⁻¹ 9.5 kms⁻¹ 5.0 kms⁻¹ Comp 1: 5.5-15.5 kms⁻¹ Comp 2: 6.5-12.5 kms⁻¹ Comp 4: 1.5-8.0 kms 200 150 100 50 50 100 150

Gaudel et al. 2022

SUMMARY

Evidence for a correlation between changes in the polarization fraction and the kinematic properties of the gas in one particular region.

Developing techniques for the analysis of the full map.

PACS/SPIRE images should be used by the HAWC+ pipeline as an input model to help correct for the extended emission filtered out by HAWC+.

Molecular line observations provide kinematic information for separating spatially overlapping cloud components along the line of sight.

© 2022 California Institute of Technology. Government sponsorship acknowledged.