Magnetic Field Measurements via the Zeeman Effect - Strengths & Limitations

George Stokes

University of Kentucky Magnetic Fields and the Structure of the

Filamentary Interstellar Medium

SOFIA Workshop, June 25, 2021

1. Nature of the Zeeman Effect

Zeeman Effect results from an interaction between the magnetic dipole moment µ_m of an atom or molecule and the external magnetic field B.

• Gyromagnetic ratio
$$\gamma = \mu_m / J$$

For a particle with charge q and mass m:
γ = q / 2m

Wikimedia Commons

• $\gamma_{\text{electron}} \approx 2000 \, \gamma_{\text{proton}}$, so *electronic* angular momentum produces higher μ_{m} than proton angular momentum.

1. Nature of the Zeeman Effect

 Atoms or molecules with unpaired electrons have electronic angular momentum.

 So they have much higher magnetic dipole moments, hence, much higher sensitivity to the Zeeman Effect.

– Typical Zeeman splitting is 1-2 Hz/ μ G*

Most other species (e.g. CO) are nearly insensitive to the Zeeman Effect.

*See splitting values in Table 1 of review by Crutcher & Kemball 2019

Note - Table excludes H₂O & CH₃OH, only detected in maser emission.

1. Nature of the Zeeman Effect

◆ Zeeman sensitive species (non-zero electron J)

Species	ν (GHz)	Region sampled	Notes
H ⁰	1.42	Diffuse H ⁰	Extensive detections
СН	0.70 - 0.77	Low density H ₂	Zeeman effect not detected
ОН	1.66	Low density H ₂	Extensive detections (OH main lines)
CCS	11, 22, 33, 45	Low density H ₂	1 likely detection (Nakamura+ 2019)
SO	Various, 30-158	High Density H ₂	Zeeman effect not detected
ССН	87	Low density H ₂	Zeeman effect not detected
CN	113, 226	High density H ₂	Multiple detections
$H^+ RRL$	various	H+ regions	Zeeman effect not detected
C ⁺ RRL	various	H ⁰ in PDRs	Zeeman effect not detected

1. Nature of the Zeeman Effect

- The normal Zeeman effect can be understood and derived from classical physics by imagining three oscillating charges immersed in a magnetic field.
- See Appendix A to this slide set. (To be posted)

Appendix A - Classical Model for the Zeeman Effect

• Consider three oscillating charged particles: σ^+ , σ^- , π

• If B = 0

– all particles oscillate at \boldsymbol{v}_0

• If $B \neq 0$

 $-\pi$ still has v₀

 $-\sigma^+$, σ^- have $v_0 \pm \Delta v$, respectively, owing to the Lorentz force

...where $\Delta v = qB/4\pi mc = 1.4 \text{ Hz/}\mu\text{G}$ for an electron

- If the Zeeman splitting >> spectral line width, then the splitting is a measure of *total field strength B_{tot}*.
- If the Zeeman splitting << spectral line width, then the splitting is a measure of *line-of-sight field strength B*_{los}. (Usual case, see Appendix A.)
 - Zeeman splitting is detected in Stokes V profile (RHC LHC) as a residual signal having the shape of the *derivative* of the Stokes I profile (RHC + LHC).

Fitting of the Stokes V_{ν} profile to the derivative of the Stokes I_{ν} profile:

• $\mathbf{V}_{\nu} = \frac{1}{2} z B_{\text{los}} dI_{\nu} / d\nu$

– Where z is Zeeman splitting factor, typically 1-2 Hz/µG

- For the 21cm HI line, $z = 2.8 \text{ Hz/}\mu\text{G}$

• Result of the fit is values for $B_{los} \pm \sigma(B_{los})$

- The Zeeman effect can independently sample B_{los} in multiple velocity components along the line of sight.
- Zeeman effect can be detected in *emission* and *absorption* lines (i.e. localized regions along los).
- Example (next slide) from Heiles & Troland 2005, *Arecibo Millennium Survey* of Zeeman effect in HI absorption lines (seen against extra-galactic continuum sources).

2. Application of the Zeeman Effect – HI Absorption from CNM

- The technique can be used with *aperture synthesis arrays* as well as single dishes. Creates maps of B_{los} .
 - VLA used for Zeeman effect in HI & OH absorption lines towards galactic H⁺ regions.

• The technique is applicable to λ_{mm} arrays (ALMA) with CN emission lines. (Recall Peter Barnes talk.)

- A. Only B_{los} (and its sign) is measured, so individual results only provide lower limits to B_{tot} .
 - However, multiple measurements of B_{los} can be used to derive B_{tot} statistically (Crutcher+ 2010).
- B. Since Zeeman splitting ∆v << spectral line width (typically 1%), circular polarization in the line is very weak, requiring long integrations times.

- C. Zeeman-sensitive species are few (since unpaired electrons are required).
- **D.** Zeeman-sensitive molecules (with unpaired electrons) are *reactive*, so regions sampled may be difficult to specify on basis of astrochemical models.

- **E.** Measurements are sensitive to instrumental polarization effects.
 - Instrumental circular polarization arises when telescope beam pattern is different in orthogonal circular polarizations.
 - That is, *polarized* (Stokes V) beam pattern is non-zero.

 One common type of instrumental polarization (*beam squint*) can lead to false Zeeman effects.

- However, if a molecule (e.g. CN, CCH) has multiple hyperfine transitions, each with a different Zeeman splitting, then beam squint effects can be separated from true Zeeman effects.
 - -See Crutcher+ 1996; Crutcher+ 1999; Falgarone+ 2008

A relatively large body of Zeeman effect observations now exists covering a *large range in n(H) and N(H)*.

Arecibo (HI, OH)

Green Bank Telescope (OH)

IRAM 30m Telescope (CN)

• Three Zeeman species sample *different densities*

Species (Beam size)	Wavelength	n(H) sampled
HI	21 cm	$10^1 - 10^2 \text{ cm}^{-3}$
(pencil beam to extra- galactic sources)		(diffuse gas)
ОН	18 cm	$10^3 - 10^4$ cm ⁻³
(3' at Arecibo)		(low density H ₂)
CN	3 mm	$10^5 - 10^6$ cm ⁻³
(23" at IRAM 30m)		(high density H ₂)

• Published Zeeman data comprise ≈ 200 measurements of B_{los}

Data set	Reference	No. of <i>B</i> los
Compilation (HI, OH, CN as of 1999)	Crutcher 1999	27
OH absorption toward galactic H ⁺ regions	Bourke, Myers, Robinson & Hyland 2001	22
Arecibo HI absorption Millennium Survey	Heiles & Troland 2004, 2005	67
Arecibo OH emission (dark clouds)	Troland & Crutcher 2008	34
IRAM 30m CN emission	Falgarone, Troland, Crutcher & Paubert 2008	11

• Published Zeeman data comprise ≈ 200 measurements of B_{los}

Data set	Reference	No. of <i>B</i> _{los}
Galactic OH absorption towards extragalactic continuum sources	Thompson, Troland & Heiles, 2019	38

 λ is mass-to-flux ratio. $\lambda^2 = \text{grav. energy/B energy.}$

4. Existing Zeeman Effect Data

5. Zeeman Effect Studies - The Future

Diffuse H⁰ and low-density molecular gas:

- HI and OH absorption line Zeeman observations via FAST and SKA instruments (creating a much denser matrix of extra-galactic lines-of-sight).
- Survey of the Zeeman effect in HI emission at DRAO led by Tim Robishaw.

5. Zeeman Effect Studies - The Future

High-density molecular gas:

- ALMA observations of the CN Zeeman effect will offer the best opportunity to measure magnetic field strengths at high spatial resolution in star forming regions.
 - Data will provide more definitive indications roles of turbulence vs. magnetic fields in shaping the star formation process.
 - Good luck to Peter Barnes and collaborators!

END of regular presentation

 Consider radiation from three oscillating charges: σ+, σ-, π

- $-\pi$ is a *linear* oscillator
- $-\sigma$ + and σ are *circular* oscillators in opposite senses

 Consider radiation from three oscillating charges: σ+, σ-, π

• If B = 0

– all particles oscillate at v_0

 Consider radiation from three oscillating charges: σ+, σ-, π

• If $B \neq 0$

- $-\pi$ still has v₀
- $-\sigma$ +, σ have v₀ ± Δ v, respectively, owing to the Lorentz force

...where $\Delta v = qB/4\pi mc = 1.4 \text{ Hz/}\mu\text{G}$ for an electron

• If radiation viewed *parallel* to *B*:

• Circular polarization (blue) only (π not seen)

• If radiation viewed *perpendicular* to *B*:

Linear polarization (red) only

◆ If radiation viewed *at an angle* **θ** to *B* (*e.g.* 75°):

 Circular (blue) & linear (red) polarization (*i.e. elliptical* polarization)

• If spectral line width $<< \Delta v$

- Frequency offset Δv of σ + and σ - is a measure of total field strength B (*i.e.* B_{tot}).

• If *spectral line width* >> Δv (the usual case)

- There is a frequency offset between orthogonal *circular* polarizations of σ - and σ +, leading to a non-zero Stokes V profile, proportional to the *derivative* of the line profile.

• If spectral line width >> Δv (the usual case)

- However, the *strength* of the circular polarization of σ + and σ - *declines* as cos(θ), where θ is the angle between the line-of-sight and *B*.

- If spectral line width >> Δv (the usual case)
 - So the measured Stokes V profile is proportional *both* to B and $cos(\theta)$.
 - In effect, the measured Stokes V is proportional to the line-of sight component of the magnetic field $B_{los} = B \cos(\theta)$.

 Arecibo beam pattern (at 1175 MHz)

♦ Stokes I = RHC + LHC

Heiles+ PASP, 2001

 Arecibo beam pattern (at 1175 MHz)

Stokes V = RHC - LHC

JCHTNESS Darker shading implies higher positive intensity Lighter shading implies higher negative intensity OFFSET, ARCMII negative lobe positive lobe A -10-55 AZ OFFSET, GREAT-CIRCLE ARCMIN

0.75

1.50

STOKES V, PERCENT

-0.75

-1.50

Heiles+ PASP, 2001

- Stokes V pattern is equivalent to a small position offset* of the telescope beams in RHC and LHC polarizations.
- Effect is called "beam squint".

*Position offset typically ≈ 1% of HPBW

- If the spectral line source has a velocity gradient on the sky, then the RHC & LHC beams (offset from each other) sample the line at slightly different velocities (hence, frequencies).
- This instrumental effect exactly mimics the Zeeman effect.

