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1. FORCAST: Faint Object infraRed
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CamerA for the SOFIA Telescope

SWC
LWC

Camera Details

" Cumens | Wavsengeti ange

5-25 um
25-40 pm

Si:As (BIB)
Si:Sb (BIB)

Each channel consists of a 256x256 pixel array that yields a
3.4'x3.2" instantaneous field-of-view with 0.768" pixels

Filter Parameters
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5.6
6.4
6.6
7.7
8.8
11.1
11.2
19.7

5 25.3

0.16
0.08
0.14
0.24
0.47
0.41
0.95
2.7
55
1.86

11.3 0.24
11.8 0.74
24.2 2.9
31.5 5.7
33.6 1.9
34.8 3.8
37.1 3.3

A subset of these will

be chosen each cycle

as the nominal set.



2. Handling the data

The data generally comes fully reduced, including flux calibration (hurray!) but you can find an excellent guide and
tutorials for data reduction here: https://www.sofla.usra.edu/data/data-pipelines
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% Starlink GAIA::Skycat: GaiaTempCubeSection2.sdf (1)

Eile Migw Graphics an Image-Analysis Data-Servers Interop Help

Object: /Users/ebeasor/Google_Drive/Project/S0FIA/wdl/F0427 FO_IMA 050

2. Handling the data

X: [474.5 v: 4.5 Value: |

a | a: Equinox: |

Min: -0.0345535129] Max: 5. 39418077468¢ auto Cut: -
Low: [-0. 017464 High: [0, 156394 ColorMap:
Scale: = —|Z| z] S| 2| Color Scale: —

v Z0am

In this case, the stars are well separated.
SO We can use aperture photometry.

Software: GATIA Starlink

Could also use e.g. DAOPHOT,
Starfinder (IDL), various
Python packages




2. Handling the data

In this case, the stars are well separated. So we can use aperture photometry.

% Starlink GAIA::Skycat: GaiaTempCubeSection2.sdf (1)

File Miew Graphics G@n Image-Analysis Data-Servers Interop Help |

Object: /Users/ebeasor/Google_Drive/Project/SOFIA/wdl/F0427 F0_IMA 050

X: [221.8 v: [0.8 Value: blank |

a: [16:47:03. 228 & [-45:53:08.42  Equinox: 72000 |
Min: -0.0345535120]  Max 5. 30418077468 st Cut =
Low: [-0. 017464 High: [0. 156394 Color Map: -

Scale: dx Z El g‘ El w Color Scale: |

[v Zoom

L
Background - no stars
contributing to flux

Flux from star /
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Bolometric magnitude,..,
(Myo)= m, + BC;

ey = 4.8 — 2.5l0g(L/L,)
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3.Determining stellar properties

g [et’s assume we only have 1 photometric point... how do we get luminosity?

Magnitude at a given wavelength

¢ my ¥ BC,
Nl 2.5log(L/L)



3.Determining stellar properties

g [et’s assume we only have 1 photometric point... how do we get luminosity?



3.Determining stellar properties

g [et’s assume we only have 1 photometric point... how do we get luminosity?

Bolometric correction
My = M,y

m, = 4.8 > 0g(L/Lg)



3.Determining stellar properties

¥ |et’s assume we only have 1 photometric point...

1.0}

-1.0

NGC2100
A NGC7419
O x Per
O RSGC2

0.5}

0.0

|~ NGC2100

A NGC7419
O x Per
0 RSGC2

.....
......

0

2

4 6 8
Spectral type (M+)

BC,

BC,

0 .':::“" ‘‘‘‘‘ %—i——— ——————————————————— -
-2 ;_ % _;
NGC2100
-3 | a NGC7419 .
F| O x Per ;
f | O RSGC2
-4 : 1 A A A 1 A A A 1 A A A 1 A A A 1
0 2 4 6 8
Spectral type (M+)

35F h
I } )
Sl IR
2-5 Fi ..... %‘"“ e e e e e - - — - - — - — - - - _..:
20r NGC2100 » |]
NGC7419 A |1
I x Per O |
1.5 RSGC2 O |-
0 2 4 6 8

how do we get luminosity?

Spectral type (M+)

Davies & Beasor 2018



3.Determining stellar properties

g Stellar luminosities are essential properties for stellar evolution

@ For massive stars - helps us understand which stars explode, and which do not

Brightness

A

Let’s say you have two
detections - great! You know
the color of your star.

Now you need to assume a
temperature, and fit a model..

Wavelength
9
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3.Determining stellar properties
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3.Determining stellar

Main sources of error:
B Distance
B Extinction

properties
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4. Westerlund 1
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4. Westerlund 1

Spitzer/IRAC1

HL1: z=1.48 lens HL1: z=1.48 lens

VLA contours VLA contours
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4. Westerlund 1

Extreme stellar diversity...
BSGs, WRs, RSGs, YSGs, LBV
and a magnetar.
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4. Westerlund 1

Extreme stellar diversity...
BSGs, WRs, RSGs, YSGs, LBV
and a magnetar.

» »

There Is no other cluster like this.
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4. Westerlund 1

Under the single star paradigm, only
a very specific age could explain the
existence of both RSGs and the WRs

. Clark et al. (2005) first used the
stellar diversity to suggest an age of
~ 5 Myr, Implying a progenitor
population with masses > 30 Msun

First example of a super star cluster
in the MW - total mass of ~ 105 Msun
- the most massive Galactic cluster
vet discovered
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4. Westerlund 1
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4. Westerlund 1
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4 .0ther applications: mass-loss rates
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4 .0ther applications: mass-loss rates
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5. Advice for infrared astronomers

When proposing for telescope time... start with the science

@ Ask people to read your proposals. Most postdocs/faculty have

served on some sort of panel, you learn what makes a strong
proposal

@ Don’t be put off by negative referee reports - use them to make
your work stronger!

@ Remember how cool our job is!
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