Determining stellar properties with FORCAST Emma Beasor NASA Hubble Fellow NSF's NOIRLab

1. FORCAST: Faint Object infraRed CamerA for the SOFIA Telescope

Camera Details

Camera	Wavelength Range	Detector
SWC	5–25 μm	Si:As (BIB)
LWC	25–40 μm	Si:Sb (BIB)

Each channel consists of a 256x256 pixel array that yields a 3.4'x3.2' instantaneous field-of-view with 0.768" pixels

SWC Filters		LWC Filters		
λ _{eff} (μm)	Δλ (µm)	λ _{eff} (μm)	Δλ (µm)	
5.4	0.16	11.3	0.24	
5.6	0.08	11.8	0.74	
6.4	0.14	24.2	2.9	
6.6	0.24	31.5	5.7	
7.7	0.47	33.6	1.9	
8.8	0.41	34.8	3.8	
11.1	0.95	37.1	3.3	
11.2	2.7	A subset of	f thoso will	
19.7	5.5	be chosen each cycle as the nominal set.		
25.3	1.86			

Filter Parameters

2. Handling the data

The data generally comes fully reduced, including flux calibration (hurray!) but you can find an excellent guide and tutorials for data reduction here: https://www.sofia.usra.edu/data/data-pipelines

Beasor et al. 2021

З

2. Handling the data

In this case, the stars are well separated. So we can use aperture photometry.

Software: GAIA Starlink

Could also use e.g. DAOPHOT, Starfinder (IDL), various Python packages

		X Starlink GAIA::Skycat: GaiaTempCubeSection2.sdf (1)
<u>G</u> raphic	cs <u>G</u> o	<u>I</u> mage-Analysis <u>D</u> ata-Servers Intero <u>p</u> <u>H</u> elp
	Object:	/Users/ebeasor/Google_Drive/Project/SOFIA/wd1/F0427_F0_IMA_050
	X:	474.5 Y: 4.5 Value:
	a:	δ: Equinox:
	Min:	-0.03455351291 Max: 5.394180774688 Auto Cut:
	Low:	-0.017464 High: 0.156394 Color Map:
	Scale:	2x = Z Z G Z H Color Scale:
		Zoom
Å		
14		
A. 1		
1.1		
-46		

2. Handling the data

In this case, the stars are well separated. So we can use aperture photometry.

- Stellar luminosities are essential properties for stellar evolution V
- Solution For massive stars helps us understand which stars explode, and which do not

Let's assume we only have 1 photometric point... how do we get luminosity?

 $m_{\rm bol} = m_{\lambda} + BC_{\lambda}$

 $m_{\rm bol} = 4.8 - 2.5 log(L/L_{\odot})$

Let's assume we only have 1 photometric point... how do we get luminosity? V

Let's assume we only have 1 photometric point... how do we get luminosity?

 $m_{\rm bol} = m_{\lambda} + BC_{\lambda}$

 $m_{\rm bol} = 4.8 - 2.5 log(L/L_{\odot})$

Let's assume we only have 1 photometric point... how do we get luminosity? V

Magnitude at a given wavelength

Let's assume we only have 1 photometric point... how do we get luminosity?

 $m_{\rm bol} = m_{\lambda} + BC_{\lambda}$

 $m_{\rm bol} = 4.8 - 2.5 log(L/L_{\odot})$

Let's assume we only have 1 photometric point... how do we get luminosity?

Let's assume we only have 1 photometric point... how do we get luminosity?

Davies & Beasor 2018

8

- Stellar luminosities are essential properties for stellar evolution
- For massive stars helps us understand which stars explode, and which do not

Let's say you have two detections - great! You know the color of your star.

Now you need to assume a temperature, and fit a model...

- Stellar luminosities are essential properties for stellar evolution
- For massive stars helps us understand which stars explode, and which do not V

Let's say you have two detections - great! You know the color of your star.

Now you need to assume a temperature, and fit a model...

- Stellar luminosities are essential properties for stellar evolution
- Solution For massive stars helps us understand which stars explode, and which do not

Let's say you have two detections - great! You know the color of your star.

Now you need to assume a temperature, and fit a model...

- Stellar luminosities are essential properties for stellar evolution V
- Solution For massive stars helps us understand which stars explode, and which do not

Let's say you have two detections - great! You know the color of your star.

Now you need to assume a temperature, and fit a model...

- Stellar luminosities are essential properties for stellar evolution V
- For massive stars helps us understand which stars explode, and which do not $\mathbf{\overline{\mathbf{V}}}$

Let's say you have two detections - great! You know the color of your star.

Now you need to assume a temperature, and fit a model...

- Stellar luminosities are essential properties for stellar evolution
- For massive stars helps us understand which stars explode, and which do not V

Let's say you have two detections - great! You know the color of your star.

Now you need to assume a temperature, and fit a model...

- Stellar luminosities are essential properties for stellar evolution
- Solution For massive stars helps us understand which stars explode, and which do not

- Stellar luminosities are essential properties for stellar evolution
- Solution For massive stars helps us understand which stars explode, and which do not

Now you need to assume a temperature, and fit a model...

1

10

Wavelength (µm)

Beasor et al. 2021

Beasor et al. 2021

Beasor et al. 2021

Now it's simple

We can integrate under the observed SED and derive a luminosity!

For this, I use IDL function int_tabulated and scale for the distance of the star (can of course also be done in Python)

Now it's simple

We can integrate under the observed SED and derive a luminosity!

For this, I use IDL function int_tabulated and scale for the distance of the star (can of course also be done in Python)

Wavelength (μ m)

Now it's simple

We can integrate under the observed SED and derive a luminosity!

For this, I use IDL function int_tabulated and scale for the distance of the star (can of course also be done in Python)

Wavelength (μ m)

- Distance 100
- Extinction

Wavelength (μ m)

Extreme stellar diversity... BSGs, WRs, RSGs, YSGs, LBV and a magnetar.

Extreme stellar diversity... BSGs, WRs, RSGs, YSGs, LBV and a magnetar.

- Under the single star paradigm, only a <u>very specific age</u> could explain the existence of both RSGs and the WRs
- Clark et al. (2005) first used the stellar diversity to suggest an age of ~ <u>5 Myr</u>, implying a progenitor population with masses > 30 Msun
- First example of a super star cluster in the MW - total mass of ~ 10⁵ Msun
 <u>the most massive Galactic cluster</u> yet discovered

18

18

Flux

Flux

Wavelength

Re-emitted here

Wavelength

The shape of this bump tells us about the dust composition, for RSGs it's silicate rich dust

Re-emitted here

Software: DUSTY (Ivesic 1999)

Wavelength (µm)

SVO Filter Profile Service

5. Advice for infrared astronomers

Ø

When proposing for telescope time... start with the science

Ask people to read your proposals. Most postdocs/faculty have served on some sort of panel, you learn what makes a strong proposal

Don't be put off by negative referee reports - use them to make your work stronger!

Remember how cool our job is!

